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Integrated, interdisciplinary crop performance forecasting systems, linked with appropriate decision
and discussion support tools, could substantially improve operational decision making in agricultural
management. Recent developments in connecting numerical weather prediction models and general
circulation models with quantitative crop growth models offer the potential for development of
integrated systems that incorporate components of long-term climate change. However, operational
seasonal forecasting systems have little or no value unless they are able to change key management
decisions. Changed decision making through incorporation of seasonal forecasting ultimately has to
demonstrate improved long-term performance of the cropping enterprise. Simulation analyses
conducted on specific production scenarios are especially useful in improving decisions, particularly
if this is done in conjunction with development of decision-support systems and associated facilitated
discussion groups. Improved management of the overall crop production system requires an
interdisciplinary approach, where climate scientists, agricultural scientists and extension specialists
are intimately linked with crop production managers in the development of targeted seasonal forecast
systems. The same principle applies in developing improved operational management systems for
commodity trading organizations, milling companies and agricultural marketing organizations.
Application of seasonal forecast systems across the whole value chain in agricultural production offers
considerable benefits in improving overall operational management of agricultural production.
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1. INTRODUCTION
(a) Motivation

Agricultural businesses, associated government

systems and farmers depending on agriculture for

sustenance, may all be significantly responsive to

fluctuations in climate, largely through the impacts of

climate on production and associated management

intervention. These systems involve farms, input

supply businesses, marketing and government policy

systems. Skill in operational seasonal forecasting offers

considerable opportunities to crop managers through

the potential to provide improvements in the overall

system involved. This may be through increased crop

production and farm profitability or through reduction

in risks. However, capturing the opportunities associ-

ated with climate and crop forecasting is not necessarily

straightforward as climate forecasting skill, while

nevertheless improving over recent years, remains

imperfect and methods used to apply this type of skill

level to operational management issues in crop

production have not generally been developed or tested

extensively. A key issue in fitting crop forecasting

systems to seasonal climate models is in dealing with
tribution of 17 to a Discussion Meeting Issue ‘Food crops in
ing climate’.
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differences in scale between crop models (normally
developed for field-level application) with the new
generation of general circulation models (GCMs),
which provide output at national or regional scales.
Additionally, there may be a mismatch between the
temporal scale associated with output of a climate
model and that required for input into an agricultural
model. A further key aspect related to seasonal
forecasting of crop performance is that the outputs of
the combined seasonal crop–climate forecasting system
must have direct application for crop production
managers to apply this type of information to modify
their actions ahead of likely impacts of climate
variability or climate change (Hammer et al. 2001;
Hansen 2002b; Challinor et al. 2004). In this respect,
Hansen (2002b) emphasized that seasonal forecasts
have to address a need that is ‘real and perceived’, and,
importantly, the benefit from seasonal forecasts
depends on the ‘existence of decision options that are
sensitive to the incremental information that the
forecasts provide and compatible with the farmer’s
goals’ (Hansen 2002b).

As an example of this type of requirement
Everingham et al. (2002) found the key requirement
for the sugar industry was for forecasts of total industry
yield and for those forecasts to be made as early in
the growing season as possible in order to better
manage international market commitments. However,
q 2005 The Royal Society
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close involvement of key components of the sugar
industry was needed in order for suitable development
of a crop performance forecast system. This type of
commitment resulted in the Australian sugar industry
shifting from having the lowest proportion of users
engaged in uptake of seasonal forecast information to
the highest of all farming groups in Australia
(CLIMAG 2001; Everingham et al. 2002). The use of
operational seasonal forecasts of crop performance by
decision-makers can be facilitated through use of
decision-support systems that are capable of forecast-
ing potential farm-level production both before the
crop is planted and during critical stages of crop
production management (Meinke et al. 2005).
However, it is argued use of these systems needs to be
driven by the potential capability to positively influence
agricultural management practices. In this sense,
so-called ‘discussion support’ systems may provide a
novel means, whereby a simulation-based support
software can act as a key vehicle for facilitating infusion
of forecasting capability into practice (Nelson et al.
2002).

(b) Objective

The aim of this paper is to provide an overview of a
number of techniques, especially those developed in
Queensland, Australia, that are already successfully
applied in operational seasonal forecasting of crop
performance and to draw attention to needs and
methods of integrating climate modelling systems
with agricultural–economic modelling systems.
Emphasis will be placed on the need for a shift towards
an interdisciplinary approach where, climate scientists,
agricultural scientists and extension specialists are
intimately linked with stakeholders (e.g. crop pro-
duction managers, policy makers) in the development
of targeted seasonal forecast systems. It is suggested
this framework offers the potential for application for
improving crop management and production for many
regions, worldwide.
2. OPERATIONAL FORECAST SYSTEMS
(a) Operational decision making associated with

seasonal crop forecasting

Decision-makers associated with crop production,
needing to prepare for a range of possible outcomes,
often use conservative risk management strategies to
reduce negative impacts of climatic extremes. In more
favourable seasons, this can be at the expense of
reduced crop productivity and profitability, inefficient
use of resources, and accelerated natural resource
degradation (e.g. under-investment in soil fertility
inputs or soil conservation measures). Broad &
Agrawala (2000) showed the value of climate forecast-
ing in crop production management but cautioned
against regarding seasonal forecasting as a panacea for
solving food crises. The designated role of climate-
related risk management tools for cropping systems
needs to be carefully established and the chosen
strategies identified must take this into account. This
also requires a careful analysis and understanding of
the existing overall policy framework. Policies may
have been developed with the aim of alleviating the
Phil. Trans. R. Soc. B (2005)
consequences of high climate variability (such as

drought). In particular, policies such as income
subsidies may act as disincentives for the adoption of

better climate-related risk management strategies

(Meinke et al. 2003; Meinke & Stone 2005).
Additionally, major stakeholder groups, especially

those involved in agricultural planning (policy makers,
regulators and large agribusinesses, including financial

institutions) and those involved directly in crop
production (farmers, farm managers, rural businesses

and consultants) have information needs. Tactical as

well as strategic decisions need to be made continu-
ously and climate forecast-related information might

only be highly relevant for some of these decisions.
Furthermore, when new seasonal forecast systems are

being developed there may be an implicit assumption

that perfect knowledge of, for instance, future rainfall
would change the way crop management is practised.

However, it may be the case that such ‘perfect
knowledge’ might be never achievable due to intrinsic

chaotic elements of the climate system (Meinke et al.
2004). Although, there is still much to learn about the

underlying physical processes in climate systems, it is

now appreciated that climate systems have many
chaotic and non-deterministic features, which will

prevent achieving complete certainty in seasonal
climate forecasting (Hunt & Hirst 2000; Meinke et al.
2004).

Additionally, not all seasonal forecasts will be useful
and lead to improved outcomes in crop management

and associated areas. Although, many examples can be
found, where seasonal forecast systems have been

identified as providing value to crop management
systems (in addition to having ‘forecast skill’), others

show either negative outcomes or identify management

decisions that are insensitive to such information. It is
suggested that there are several conditions that must be

met before a seasonal forecast will result in improved
value to the management system; a seasonal forecast

system must: have ‘skill’ (assessed by applying recog-

nized hindcast or independent verification ‘skill-
testing’ criteria—e.g. applying scores that measure

‘linear error in probability space’ (LEPS); Potts et al.
1996); honestly convey the inherent uncertainty (i.e.

the information must be presented in a probabilistic
form); be relevant, timely; be able to be ‘tracked’ in

terms of how well the forecasts are representing the

actual climate conditions; provide background infor-
mation on previous forecast outputs; be of value; and

the information content must have application to a user
(Glantz 1996; Pulwarty & Redmond 1997; Nicholls

2000; Meinke & Stone 2005).

In developed countries, economic outcomes across
the value chain associated with crop production are

important, but decisions are also based on many other
factors such as environmental consequences (on- and

off-farm), weed and disease impact, lifestyle and the

existing policy framework. At the farm-level, most
management decisions have to fit within a whole farm

strategic plan such that many decisions are planned
months ahead and their consequences seen months

afterwards. This requirement for a certain lead-time
between deciding on a course of action and realizing its



Table 1. Agricultural decisions at a range of temporal and spatial scales that could benefit from targeted climate forecasts
(Meinke & Stone 2005).

farming decision type frequency (years)

logistics (e.g. scheduling of planting/harvest operations) intra-seasonal (greater than 0.2)
tactical crop management (e.g. fertilizer/pesticide use) intra-seasonal (0.2–0.5)
crop type (e.g. wheat or chickpeas) or herd management seasonal (0.5–1.0)
crop sequence (e.g. long or short fallows) or stocking rates interannual (0.5–2.0)
crop rotations (e.g. winter or summer crops) annual/bi-annual (1–2)
crop industry (e.g. grain or cotton; native or improved pastures) decadal (approximately 10)
agricultural industry (e.g. crops or pastures) inter-decadal (10–20)
land-use (e.g. agriculture or natural systems) multi-decadal (20C)
land-use and adaptation of current systems climate change
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results is a characteristic of managing cropping systems

(Carberry et al. 2000; Carter et al. 2000).
Pannell et al. (2000) stressed the importance of

getting the big decisions right in crop management,

such as land purchase, machinery investment and

resource improvement. They pointed out that farmers

are usually better off, ‘if they solve the whole problem

roughly, rather than to attempt to solve part of

the problem extremely well’. This issue reinforces the

importance of considering climate issues across the

spectrum of temporal scales. Crop management

decisions that could benefit from targeted seasonal

forecasts range from tactical decisions regarding the

scheduling of planting or harvest operations to policy

decisions regarding land-use allocation (e.g. grazing

systems versus cropping systems). Table 1 provides

examples of these types of decisions at similar time-

scales to those seen in climatic patterns. In water-

limited environments such as the semi-arid tropics and

sub-tropics, rainfall variability represents the main

factor determining crop production variability and

environmental risk. However, other factors such as

starting soil moisture, soil type, soil fertility, tempera-

ture, planting dates, rainfall intensity, and timeliness of

rainfall are particularly important when operational

seasonal forecasting systems are applied in practical

farming system management (Meinke & Stone 2005).
(b) Methods of operational seasonal forecasting

of crop production

Sivakumar (2000) describe agricultural modelling ‘as a

priority to address sustainable agricultural develop-

ment in the twenty-first century’. Crop simulation

models have been used as ‘knowledge depositories’ to

describe a particular area of interest. Once simulation

models became available, interest shifted somewhat

from aspects associated with underlying principles to

using models in a predictive capacity (e.g. to develop

scenarios or as a decision-support tool) or in an

explanatory capacity to investigate interactions

between processes. Detailed descriptions of the

underlying physiological processes and parameters

values are often difficult to obtain experimentally.

This parameter uncertainty may result in low pre-

dictive ability. On the other hand, models that are built

explicitly to predict management responses often use

phenomenological description of groups of processes

with easily derived parameter values but fewer process
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details (Dent & Anderson 1971; Meinke 1996;
Meinke & Stone 2005).

Case studies can provide useful evidence of the value
of simulation models in operational crop management
decision making and in operational aspects of forecast-
ing crop performance. For example, the APSIM-wheat
model (Keating et al. 2003) has been applied using data
from 100 plant breeding experiments across 23
experimental sites. The performance in this type of
model is believed to be adequate to characterize the
environment of gene functions and their interactions
with their environments. Using data from a long-term
soil fertility trial, where all the necessary input
parameters and starting conditions were measured
and available, an R2 value of 0.8 has been obtained.
Measured and simulated data were in better agreement
when the input parameter uncertainty was reduced.
However, the same dataset also highlights the
deficiencies of using R2 values as an indicator of
model performance (Oreskes et al. 1994). For instance,
when only a sub-set (i.e. data from one dry year) has
been used for testing, the R2 was zero, in spite of the
model’s obvious ability to capture the climate-related
year-to-year variation in yield. Further details of this
model’s performance are available in Meinke & Stone
(2005). A simulation approach incorporating process-
based crop models offers the advantage of analysing
cropping systems and their alternative management
options experimentally and in real-time that is not
otherwise, generally, feasible. This approach also offers
the capability to assess a large number of combinations
suitable for scenario analysis of potential value to the
crop production manager. Empirical climate forecast
models that are connected to process-based crop
simulation models include CERES-wheat model
derivatives (Abrecht & Robinson 1996) and the
APSIM-wheat simulation model (Hammer et al.
1987; Keating et al. 2003). Various scenario analysis
programs and decision-support systems can be pro-
vided as output systems from this type of approach
(e.g. Hammer 2000;Meinke &Hochman 2000; Gadgil
et al. 2002; Nelson et al. 2002; Podesta et al. 2002;
Meinke & Stone 2005).
(c) Seasonal forecasting methods

Improvements in the understanding of interactions
between the atmosphere and sea and land surfaces,
advances in modelling global climate, and investment
in monitoring the tropical oceans mean some degree of
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Figure 1. Example of ‘hindcast’ output for a cropping location in Queensland, Australia together with modelled crop yield
output (hindcasts) for the same period. (a) The output provided here shows the actual rainfall that has occurred in history for the
June–October period following a ‘consistently negative SOI phase’ at the end of the immediately preceding May. (b) Cumulative
probability distributions can be produced using data obtained from this type of information (after Hammer 2000).
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predictability of climate fluctuations months in

advance in many parts of the world is now possible.

While some of the year-to-year variations in climate are

the result of random sequences of events, many

climatic variations are part of patterns that are coherent

on a large scale. Skilful prediction may then be possible,

particularly if the patterns are forced by observable

changes in surface conditions such as sea-surface

temperatures (SST) (Cane 2000; Goddard et al. 2001).
‘The most dramatic, most energetic, and best-

defined pattern of interannual variability is the global

set of climatic anomalies referred to as El Niño and

southern oscillation (ENSO)’ (Cane 2000). Progress in

predicting ENSO and associated climatic anomalies or

values follows advances made in ocean–atmosphere

modelling and the development of associated ocean–

atmosphere observing systems. Predictions of the

global impacts of ENSO are now often made using

physical models, statistical procedures, or other

empirical methods. If the physical models are global

coupled GCMs they are capable of predicting global

impacts as well as core changes in the equatorial

Pacific. A two-tiered approach can also be employed

which utilizes a simpler model that predicts tropical

Pacific SSTs as boundary conditions to calculate global

climate variations (Barnett et al. 1994).
Empirical approaches may also be ‘two-tiered’

deriving climate forecasts by combining a predicted
Phil. Trans. R. Soc. B (2005)
ENSO index such as the southern oscillation index

(SOI) or ‘Nino3’ region in the equatorial Pacific with

the historical relationship of a local climate variable,

such as rainfall at a meteorological station adjacent to a

crop production region or even a farm. They may also

do the entire prediction at once (as is commonly

applied operationally in Australia), using observed

values of an ENSO index to predict future local

conditions. For example, the prediction of global

rainfall of Stone et al. (1996) based on the ‘SOI-

phase’ system uses clustered values of principal

component scores of SOI activity at two different

times to predict rainfall a season or more ahead.

Figure 1 shows the amount of rainfall that has occurred

in recorded history following a ‘consistently negative

SOI phase’ in April/May for a wheat growing location in

Queensland, Australia. These values are incorporated

as input into subsequent cumulative probability

distributions and final forecast output. Hindcast tests

for discriminatory ability among the probability distri-

butions produced from these outputs are the provided

using non-parametric methods such as Kruskal–Wallis

or Kolgomorov–Smirnov while (cross-validated) fore-

cast verification skill is assessed using tests such as

‘LEPS’ (Potts et al. 1996; Maia et al. 2004).

Considerable effort is also applied to independent

verification assessment in real-time using the LEPS

method and similar techniques. Potgieter et al. (2003)
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provide a useful summary of approaches in assessing
climate forecast skill.

The method of clustering similar key climatic
indices also allows for the identification of analogue
years or seasons. These are then employed to derive
daily weather parameters for use in crop production
models (Stone et al. 1996; Cane 2000; Hammer et al.
2001). Output from the crop simulation model
‘APSIM’ (Keating et al. 2003) is also provided in
figure 1. Rainfall that has occurred following the
‘consistently negative SOI phase’ in May is provided
in figure 1. Notably, this has mostly been below the
long-term median. Similarly, simulated yield obtained
using APSIM for the same years as the hindcast rainfall
also shows most yield values are below the long-term
median. However, they can be different years, demon-
strating the need to employ systems that can account
for the effectiveness in rainfall timing, temperature,
radiation and evaporation, as well as total rainfall
amount throughout a growing season. This approach
demonstrates the value of simulation modelling to
provide users with an improved perspective of likely
potential yield under these circumstances. The model
output shown here is following a consistently negative
SOI phase occurring at the end of May with a two-
thirds-full soil moisture profile at planting (Meinke
et al. 2003). Regional maps of more general forecast
information (e.g. probability of exceeding the climato-
logical median) are also available for more general user
application.

ENSO is not the only mode of climate variability
with large-scale near-global impacts. The North
Atlantic oscillation, defined by an oscillation in sea-
level pressure between stations in Iceland and the
Azores, is important because of connections to climate
anomalies in Europe, North Africa, the Middle East
and eastern North America (Hurrell 1995). SST
variations in the tropical Atlantic have been related to
droughts in the Sahel region (Folland et al. 1986) and
the Nordeste region of Brazil (Ward & Folland 1991;
Nobre & Shukla 1995). From these and other
developments, there is now considerable evidence
supporting the substantial progress being made in the
developments of operational ‘seasonal weather predic-
tion’ systems, such as those outlined above and
especially at the European Centre for Medium Range
Weather Forecasts, the International Research Institute
for Climate Prediction and the Climate Prediction
Center in the United States (Challinor et al. 2003).

However, Podesta et al. (2002), in their case study of
farmer’s use of climate forecasts in Argentina, found a
reluctance to use seasonal forecasts in management of
crop production because the temporal and spatial
resolution of the forecasts was perceived as not relevant
to local conditions (Buizer et al. 2000). These types of
issues must be taken into account in order to improve
the relevance and potential adoption of seasonal
climate or crop forecasts. For example, for effective
management systems to be put into place, integrated
climate–crop modelling systems need to be developed
at the appropriate farm or regional scale suitable for the
decision-makers needs (Meinke & Stone 2005).
Challinor et al. (2003) make the point that reliable
forecast output will not result from simply linking
Phil. Trans. R. Soc. B (2005)
climate and crop models. In this respect, they suggest
consideration should be given to the spatial and
temporal scales on which the models operate, the
relative strengths and weaknesses of the individual
models, and the nature and accuracy of the model
predictions. A key aspect of this approach is that on
longer time-scales, process-based forecasting has the
potential to provide skilful forecasts for possible future
climates, where empirical methods would not necess-
arily be expected to perform well.

While it is recognized that statistical approaches
may, in future, have limitations and it is expected that
dynamic climate modelling will provide much
improved forecast skill in the near future, this will
require continued effort to identify appropriate sol-
utions to solve the ‘connectivity problem’ between
seasonal climate forecast systems and crop production
forecast systems. For example, ways need to be found
to convert large, grid point GCM output into some-
thing akin to point scale daily weather station data for
use in farm-scale crop forecast models. The use of
higher resolution regional climate models initialized
from GCM data is considered an alternative option,
but statistical properties of these data usually differ
considerably from the observed historical climate
records, requiring further manipulation (Landman &
Mason 1999; Landman & Goddard 2001; Meinke &
Stone 2005).

Another approach may be to apply a statistical
clustering process to GCM forecast output (hindcasts)
in order to derive analogue years or seasons suitable for
input into crop simulation models (Stone et al. 2000).
Alternatively, GCM output could be used to establish
climate trends, which are then used to modify
historical climate records for use with biological
models. This approach may be taken when the impact
of climate change on agricultural systems is to be
assessed (e.g. Reyenga et al. 1999; Howden et al.
2001). Hoogenboom (2000) also draws attention to
the different scales implicit in GCMs and biological
models.

In development of the DEMETER project
(Development of a European Multi-Model Ensemble
System for Seasonal to Interannual Prediction; Palmer
et al. 2004) both statistical/empirical methods and
dynamical regional climate models have been used and
applied for downscaling purposes with the further aim
of connecting such output to crop modelling systems.
In the statistical/empirical methods, a mapping
technique based on regression methods, analogue
techniques or neural networks is one method of
application. A second method using dynamical down-
scaling has been based on the Rossby Centre Atmos-
phere model, a climate version of the HIRLAM
regional weather prediction model (Rummukainen
et al. 2001). This model has been nested to the
ECMWF model output and run in a climate mode
for six months. However, problems arise from propa-
gation of systematic biases from the global to regional
model. Nevertheless, an ‘innovative’ approach has
been developed to supply seasonal forecast information
to crop models by running the crop model on each
member of the ensemble of climate forecast output to
derive a probability distribution function of crop yield.



2114 R. C. Stone & H. Meinke Operational seasonal forecasting
Challinor et al. (2004) demonstrate the value of the
new crop model, the general large area model for
annual crops, for the purpose of connecting numerical
climate models to crop model output. The challenge
for this type of approach is in its capability to capture
previously unobserved weather conditions, an import-
ant consideration in operational development of these
types of systems under climate change. An important
aspect of this approach is in the use of ‘seasonal
weather forecasting’ to estimate daily weather values
months in advance. Importantly, seasonal weather
prediction (Challinor et al. 2003), on scales close to
200 km is now routinely carried out using GCMs of
the atmosphere and ocean. While these models provide
probabilistic predictions of the seasonal mean climate
they also produce daily time-series of the evolution of
the weather and, therefore, provide information on the
statistics of the weather during the crop-growing
season. Of prime importance is that these daily time-
series can be used to drive crop simulation models.
The spatial structure of the relationship between
rainfall and crop yield has been explored using an
empirical orthogonal function (EOF) analysis that
identified a coincident large-scale pattern for both
rainfall and yield. Noteworthy with this approach, on
the sub-divisional scale the first principal component
of rainfall was found to correlate well with the first
principal component of yield clearly demonstrating
that the large-scale patterns picked out by the EOFs
are related. However, the use of larger averaging areas
for the EOF analysis resulted in lower less robust
correlations. As an alternative, it is suggested the mean
forecasts could be used as inputs to a weather
generator that produces a time-series consistent with
both the probabilistic climate scenarios and the locally
observed weather patterns (Wilks 2002; Challinor et al.
2003).

Hansen et al. (2004) also applied a GCM in an
experiment to forecast regional wheat yields in
Queensland, Australia. To achieve this, they used a
GCM-based seasonal rainfall forecast combined with a
wheat simulation model that uses a stress-index, STIN
(Stephens et al. (1989), for yield forecasting. The
model calculates a stress index (SI) as a cumulative
function of water demand and plant extractable soil
water simulated dynamically using daily rainfall, and
average weekly temperatures and solar irradiance
required to calculate potential evapotranspiration.
Final yields are estimated as linear regression functions
of SI and year, accounting for linear trend associated
with changing technology. Hansen et al. (2004)
provide more detail on use of the atmospheric GCM
ECHAM 4.5 and SST boundary conditions applied
up to the forecast start time. Hansen et al. (2004) note
prediction accuracy was, generally, better at the state
scale than at the smaller district scale. It was
noteworthy that the wheat simulation model
accounted for 75% of the variance of the detrended
state average wheat yields. However, correlations for
individual districts were lower, accounting for an
average of 58% of the variance. A key outcome was
that for every forecast period, the GCM-based method
gave better results for state average yields simulated
with observed weather than those based on the
Phil. Trans. R. Soc. B (2005)
empirical SOI phase-based method of Stone et al.
(1996) and applied to the yield forecast method
developed by Potgieter et al. (2002). A potentially
valuable outcome for production managers (e.g. farm-
ers/farm managers) was that this result was more
pronounced for forecasts with longer lead-times. Also
potentially importantly for managers in production
and production reliant industries is that the GCM-
based method appears to provide distinct advantage in
the ability to improve forecast accuracy during the pre-
planting period near the end of April when ENSO may
be less predictable. However, the comparisons
between the numerical climate forecast-based method
and the empirical climate forecast-based method are
difficult to determine, primarily due to the differences
in number of years of available predictor data for the
two systems. Additionally, certain SOI phases applied
in this experiment were combined to create composite
SOI phases. This resulted in SOI phases of a slightly
different type to the originally designed system, again
making comparisons difficult, although this approach
does provide increased numbers of cases with more
suitable sample sizes (Potgieter et al. 2002; Hansen
et al. 2004)

In operational seasonal forecasting of crop perform-
ance, historical climate records can also be partitioned
into ‘year or season-types’ based on concurrently
prevailing ocean and atmospheric conditions (i.e.
SOI and/or SST anomalies), resulting in ‘SOI phases’
(Stone et al. 1996) or ENSO phases (Messina et al.
1999; Phillips et al. 1999). Such categorization needs
to be based on an understanding of ocean–atmosphere
dynamics and incorporate appropriate statistical pro-
cedures to partition the data successfully. Current
conditions can then be assigned to a particular
category and compared to other categories in order
to assess the probabilistic performance of the biologi-
cal system in question (e.g. Meinke & Hochman 2000;
Podesta et al. 2002). This rather pragmatic method of
connecting climate forecasts with biological models
also only requires historical weather records. Figure 2
provides an example of output of an operational crop
forecast system that utilizes an integrated climate
forecast system—a crop modelling system. The
particular example presented here provides indication
of the capability of the forecast system to provide
future potential shire yield values in the early
developmental stages of an El Niño event soon after
the crop was planted. Probability values are for the
probability of exceeding the long-term relative median
yield.

The method described above has been used in other
countries and has provided valuable information
for many decision-makers (Meinke & Stone 1992;
Messina et al. 1999; Hammer et al. 2000; Nelson et al.
2002; Podesta et al. 2002). The SOI phase system has
become the dominant scheme used in Australia and
neighbouring countries while ENSO phases are often
used in the Americas. However, both schemes are
globally applicable. Hill et al. (2000) and Hill et al.
(2001) compared the value of the SOI phases
versus broader ‘ENSO phases’ for Canadian and US
wheat producers and found that, in the particular case
being examined, the SOI phase system, generally,
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provided more valuable information for operational
crop management in terms of potential for increasing
gross margins.

Additionally, for broader regional-scale applications,
empirical climate forecast models may be connected to
the simpler (hybrid) agroclimatic model, based on
moisture stress (and described earlier in this paper),
developed by Stephens et al. (1989). The projected
seasonal climate forecast is based on the ‘SOI phase
system’ (Stone et al. 1996) which is combined with the
agroclimatic model to generate a crop forecast that can
be updated each month throughout the growing season
(Stone & Meinke 1999). The moisture-SI is similar in
concept to that proposed byNix &Fitzpatrick (1969) in
that it utilizes biophysical knowledge of the crop, allows
consideration of soil type effects, and derives the SI by
contrasting soil water supply with crop demand. The
regression model has been previously fitted to historical
shire wheat yields that are provided by the Australian
Bureau of Statistics. The variance of wheat yield
explained, using the SI, ranges between 78 and 93%
at the state level and 93% at the national level (Hammer
et al. 2001). Using this method, maps showing the
probability of exceeding median yield for each wheat-
producing shire are produced with predictions com-
mencing at the beginning of the wheat-growing season
(April/May in Australia). Thesemaps are produced and
updated each month as the season progresses. Figure 3
provides an example of output from this approach.

The information provided indicates the likely size of
the total crop as well as highlighting those areas, where
production has the highest chance of being abnormally
high or low. For management considerations, this
information provides forward warning in relation to
logistics for grain transport, quantifies the potential
need for exceptional circumstances support for farmers
by government in places indicating a high risk of low
yields, and provides grain traders with indication of the
total size of the crop for commodity trading purposes
(Stone &Meinke 1999; Hammer et al. 2001). A similar
approach is being applied to operational maize
production forecasting in South Africa, where com-
puted maize grain yield forecasts using a crop growth
model linked to the SOI phase climate forecast system
are compared against long-term cumulative probability
distribution functions of yield to determine their
probabilities of non-exceedance. The system has wide
acceptance and credibility in the Free State Province
and is used by grain merchants, importers, exporters
and millers (DeJager et al. 1998).

Additionally, Verdin & Klaver (2002) have
developed useful techniques for monitoring crop
performance and estimating crop (maize) yields during
the establishment of the crop growing season and
throughout the subsequent performance of the crop in
southern Africa by applying remote sensing, modelling
and geospatial analysis through a regression technique.
The approach is especially valuable when large gaps in
rainfall station coverage exist. Verdin & Klaver (2002)
provide an alternative grid-based cell-based formu-
lation for water requirement satisfaction (WRSI),
which can provide a useful alternative as a means of
inferring water limitation impacts on yield. WRSI is a
useful indicator of crop performance based on the
Phil. Trans. R. Soc. B (2005)
availability of water during the crop growing season
(see also Frere & Popov 1979; Senay & Verdin 2001).
3. LINKING FORECASTS AND DECISION
SYSTEMS
(a) Requirements for successful application of

seasonal forecasts of crop production

Hansen (2002b) carefully articulated the prerequisites
for potential benefits of seasonal forecasts if they are to
be applied by growers and industry decision-makers.
First, forecasts have to address a need that is real and
perceived. Very importantly, the benefit from crop and
climate forecasts also depends on the ‘existence of
decision options that are sensitive to the incremental
information that the forecasts provide and compatible
with the farmer’s goals’ (Hansen 2002b). Additionally,
farmers need to be able to correctly interpret relevant
aspects of crop and climate forecasts, which also have
to be made with sufficient lead-time to affect their
decisions. Hansen also notes that institutions must
provide commitment to providing forecast information
and support for its application to decision-making and
policies that favour beneficial use of climate/crop
forecasts by farmers and associated institutions. The
minimum skill for seasonal forecasts to affect decision
making depends on the cost and benefit of the different
decision options (Hansen 2002a,b; also from Katz &
Murphy 1987; Gadgil et al. 2002).

This key point is reinforced by Nicholls (1991,
2000) in that while the value of seasonal forecasts to
farmers will depend on their accuracy, the value will
also depend on the management options available to
the farmer to take advantage of the forecasts. Indeed,
the value of seasonal forecasting to the grower may
never have been demonstrated to the farming commu-
nity by the institution developing and promoting the
forecast information. This aspect is reinforced by
Sonka et al. (1987) who states that for benefits to
occur in farming practice it is necessary to identify
those areas, where tactical changes can be made either
to take advantage of predicted (probabilistic) con-
ditions or to reduce losses in predicted (probabilistic)
below-average conditions. In other words, seasonal
forecast systems, including those now incorporating
coupled GCMs and process-based crop models, may
have absolutely no value unless they are capable of
affecting key management decisions that, ideally, have
been identified through close interaction between
climate scientists, agricultural scientists and crop
production managers (Hammer et al. 2001).

(b) The value of a participative approach with

crop production managers

Crop production managers may need to participate in
the development of the appropriate response strategies
and in deciding what decisions related to seasonal
forecast information are best for themselves (Patt &
Gwata 2002). The key advantage of developing a
participative approach with users is that the approach
tends to moderate against the frequent ‘mismatch’
between the knowledge systems of both seasonal
climate and crop forecast developers and the knowl-
edge systems of users. Additionally, this approach
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greatly facilitates the integration and adoption of these

scientific outputs to deliver broader industry benefits

(Everingham et al. 2002).
Cash & Buizer (2005) ‘emphasize that effective

systems should ground the collaborative process of

problem definition in the users’ perspectives regarding
the decision context, the multiple stresses bearing on

the manager’s decisions, and ultimate goals that the

knowledge-action system seeks to advance’. In this

instance, (following Cash & Buizer 2005) this would

mean shifting the focus towards the promotion of broad,
user-driven risk-management objectives, rather than
Phil. Trans. R. Soc. B (2005)
emphasizing the uptake of particular seasonal fore-

casting technologies. Hansen (2002b) also identifies

this point as a core and urgent need to bridge the

institutional and cultural gap that exists between

providers of seasonal forecast information and agri-

cultural support institutions if users are to gain from
improvements in developments in operational seasonal

forecasting. A key point from Hansen (2002b) is that

institutions responsible for development of seasonal

climate forecasts tend to regard forecasts as stand-

alone products, whereas the users, in assessing seasonal
forecasting as an aid to increasing farm productivity,
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regard seasonal forecasting as a process. To help

overcome this problem in ensuring that the objectives
of the process are more user-driven, it has been

suggested that a knowledge-action system needs to be
evaluated relative to the achievement of the users’

ultimate goals (e.g. more effective crop management),
rather than the goals of the developers of seasonal

forecasts (e.g. more or better understanding and use or
non-use of forecasts, with the goal of improving

content, format and distribution in order to increase
use and impact) (Hansen 2002b; Cash & Buizer

2005).
Thus, a further key focus for achieving future

advances in seasonal forecasting science for the benefit

of crop production will be through making better
connections between agricultural scientists and the

developers of climate forecasting systems. Also, those
professions involved in decision making in industry

may need to take a proactive role in the development of
seasonal forecasts if the design and use of these systems

are to reach their full potential (Hammer et al. 2001;
Hansen 2002b). Emphasis on a participative approach

with users in order to better appreciate more precisely
their decision systems may help overcome issues

associated with institutional and cultural barriers. For
example, through a very strong emphasis on a

participative approach with users, Everingham et al.
(2002) found that sugar growers’ requirements for

seasonal forecast systems were not for the ‘standard’
three month seasonal climate forecast period but for

two months (i.e. better management of the harvesting
period) and preferably for the data to be produced as

numbers of ‘wet days’ rather than total rainfall in
millimetres. Following lengthy participative interaction

with crop marketers, Everingham et al. (2002) found

the key requirement for this industry sector was for
forecasts of total industry yield to be made as early in

the growing season as possible in order to better
manage international market commitments. Following

this close involvement of industry in development of
suitable crop performance forecast systems, the Aus-

tralian sugar industry shifted from having the lowest
proportion of users engaged in uptake of seasonal

forecast information to the highest of all farming
groups in Australia applying seasonal forecasting to

their crop production planning (CLIMAG 2001;
Everingham et al. 2002).

Cash & Buizer (2005) point out that designing fully
‘end-to-end’ systems means that seasonal forecast

developers should begin their process by going into the
field and listening to farmers and their consultants, learning
their perspectives, their problems, and their needs. As
Everingham et al. (2002) and Ingram et al. (2002) also
imply, these conversations with users reveal that they

need climate information as one type in a suite of
information that can help them manage a broad array

of risks. Initiating conversations with lead innovators
within the farming community appears to be a key

factor to success. Such farming leaders (‘local
champions’) can lay the groundwork for broader

participation of other farmers and a greater connection
between science producers and farmers (Glantz 1996;

Cash & Buizer 2005).
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4. THE VALUE OF MORE INTEGRATED, SYSTEMS
APPROACHES
The emphasis in a systems approach is to develop
targeted information for influencing the most relevant
decisions in the system of interest. This concept is
relevant across the wide range of scales and issues
associated with cropping systems and their associated
business and government systems. Hammer (2000)
points out the ‘emphasis needs to be on the analysis
required to target the seasonal forecast information to
the issue and the decision-maker’. Generalized seaso-
nal forecasts, which have information relevant across all
systems, are likely to have little value if their targeting is
not considered. Importantly, the relevant decision-
maker at each scale must be included as part of the
systems approach to ensure clear problem definition
and understanding of relevant decisions and infor-
mation needs. The systems approach will usually
involve systems modelling as a means to move from
general to targeted information (Hammer 2000).
Everingham et al. (2001, 2002) provide an example of
the range of scales and issues associated with seasonal
forecasting of sugar cropping systems (figure 3).

In the example for sugar crop performance manage-
ment, Everingham et al. (2002) described the impact of
climate variability on the sugarcane production system
at the farm-level, where climate variability directly
determines the process of yield accumulation and the
amount of sugar produced. Additionally, climate
conditions influence the development and spread of
fungal diseases, insects, pests and weeds, which can
restrict crop growth. Further, rainfall sets the potential
for runoff and deep drainage with possible environ-
mental impacts associated with the movement of
nutrients and pesticides. Beyond the farm-level, know-
ledge of seasonal forecasts can allow harvest managers
to enhance and better plan harvesting strategies for the
coming season. Knowledge of the chance of high
rainfall towards the end of the harvest season allows
harvest operators and farmers to alter typical harvest-
ing strategies. At the mill level, mill scheduling, which
is subject to considerable disruption because mechan-
ical harvesting requires dry conditions, can be con-
siderably improved through use of targeted seasonal
forecasting. Furthermore, if there is likely to be rain
interruption during the harvest period then sugar
marketers can factor this aspect into their planning so
as not to overcommit sugar supplies to customers
(Everingham et al. 2002).

A major issue for all sectors of the sugar industry
value chain is predicting the total size of the crop.
Developments of sugar crop yield forecast systems are
allowing farmers to better plan fertilizer and irrigation
regimes. Additionally, forecasts of crop yield are
allowing harvest operators and millers to better plan
for the likely start and finish of the season. Appropriate
forecasts of the size of the crop (incorporating seasonal
climate forecasts based on the SOI phases) (Stone et al.
1996) and the method outlined by Everingham et al.
2001 in which Monte Carlo procedures were used to
determine which of the five SOI phases were most
useful for indicating when Australian sugarcane yields
were likely to be above or below the long-term median
for eight mill locations of relevance to the Australian
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sugar industry. This approach is permitting the harvest

period for sugar cane to be brought forward and is also

facilitating forward selling strategies for marketing

plans (Everingham et al. 2002).
Most management decisions ‘on-farm’ in crop

production have to fit within a whole-farm strategic

plan so that many decisions are planned months ahead

and their consequences seen months afterwards. This

requirement for a certain lead-time in seasonal

forecasting to enable more efficient planning in

deciding on a course of action and realizing its results

is a characteristic of managing and farming cropping

systems (Carberry et al. 2000; Carter et al. 2000).

Effective operational seasonal forecasting of crop

performance has the capability of improving the ‘big

decisions’ in farm management such as land purchase,

machinery investment and resource improvement

(Pannell et al. 2000).
Interaction with farmers and technical experts can

help define ‘typical management practices’ (and key

decision points) in crop management by farmers.

Through development of operational seasonal forecasts

of potential crop production and performance, farmers

could be encouraged to plant crops in seasons that may

have not even been considered without knowledge

gained from seasonal forecasting (Amissah-Arthur et al.
2002; Phillips et al. 2002). Additionally, the value of

integrated climate/crop modelling efforts can be seen

when probability distributions of a large number of

simulated yields and gross margins can be produced

and incorporated into risk assessment tools. The large

number of simulations using the modelling approach

allows the exploration of climate influences such as

ENSO on extreme outcomes, a difficult approach with

purely historical series that are typically short in

duration (Podesta et al. 2002).
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Hammer et al. (2001) stress the most useful lessons
lie in the value of an interdisciplinary systems approach in
connecting knowledge from particular disciplines in a
manner most suited to decision-makers engaged in
crop production. The RES AGRICOLA network is an
evolution of the ‘end-to-end’ concept proposed by
Manton et al. (2000). It distinguishes three discipline
groups that need to interact closely if crop production
systems are to benefit from seasonal forecasting:
(i) climate sciences, (ii) agricultural systems science
(including economics) and (iii) rural sociology. Figure 4
provides insight into the linkages needed to operation-
ally connect research projects and through the
establishment of cross-disciplinary teams for the
benefits of farmers (after Meinke & Stone 2005).

Improved pay-offs across industry scales are signifi-
cantly facilitated when such an integrated systems
approach is employed that includes decision-makers
and scientists across the various disciplines as a partici-
patory approach which ensures that the issues that are
addressed are relevant to the decision-maker (Meinke
et al. 2001). Hansen (2002a) stresses that the sustained
use of such a framework requires institutional commit-
ment and favourable policies. An example, where the
links shown in figure 4 could be strengthened is in the
area of connecting seasonal crop forecasting with both
whole farm economic analyses and broader government
policy analyses (Ruben et al. 2000; Hansen 2002a).
(a) Case studies in operational aspects of

seasonal forecasting of crop production:

the use of scenario analysis, crop models

and ‘discussion-support’ tools

Decision-support systems that encompass databases of
forecast crop simulation output together with a
graphical user interface to generate analyses of risks
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associated with crop management options are particu-
larly useful for development of discussions with users in
relation to the significant crop management decisions
they make. Examples of these decision systems include
‘Wheatman’ that supplies seasonal crop forecasting
information for wheat crop management (Woodruff
1992), ‘Whopper Cropper’ (Nelson et al. 2002)
(incorporating key output from APSIM; McCown
et al. 1996; Keating et al. 2003), that currently provides
targeted seasonal crop production forecasts of wheat
and sorghum crops for use in scenario analyses,
‘flowcast’ (Abawi et al. 2001; Ritchie et al. 2004) that
provides integrated climate forecast, irrigation allo-
cation modelling, and cotton yield information,
CLIMPACTS (Campbell et al. 1999) providing
integrated climate/crop production information, and
CropSyst (Stoeckle et al. 2003) and DSSAT (Jones
et al. 2003) that provide sophisticated crop simulation
platforms useful for integrating and simulating future
climate systems scenarios. Challinor et al. (2003) also
point out there have generally been two approaches in
development of crop models: process-based crop
models which seek to represent many of the processes
of crop growth and development ((e.g. CROPGRO
model; Boote et al. 1998); APSIM; Keating et al.
(2003)) and empirical models which use observed
relationships to predict the variable of interest (e.g.
Parthasarathy et al. 1992). Stephens et al. (1989),
Hammer et al. (1996) and Potgieter et al. (2005) also
describe ‘agroclimatic models’ that use simple moisture
SI approaches.

There are some key but more general lessons that
may be derived in applying seasonal forecasting to
improving management of crop production. In this
respect, case studies may represent many diversified
agricultural systems and various scales of farm
operation. To facilitate case study development a key
activity over recent years is to provide scenario analyses
based on simulation with credible agricultural–climate
models (e.g. through use of crop simulation models
such as ‘APSIM’ (McCown et al. 1996; Keating et al.
Phil. Trans. R. Soc. B (2005)
2003) or its derivative ‘Whopper Cropper’ as a valuable
aspect of the learning process for farmers and the
cropping industry. Figure 5 provides an example of
output tailored to local soil and climate conditions,
where the output describes forecasts of potential yield
for a sorghum crop associated with a particular ‘phase’
of the SOI (‘consistently negative’) and outcomes
associated with differing planting dates.

Operational seasonal forecasts of crop production
facilitated through use of decision/discussion-support
systems (such as the above system) are capable of
forecasting potential farm-level production before the
crop is planted. This allows the farmer to use the
forecast potential crop yield scenarios to adjust inputs
to achieve optimal yields. Additionally, forecasts of
crop performance may be derived during the crop-
growing period allowing the farmer, miller, or grain
trader to assess final yield or grain quality levels for
marketing purposes. In applying seasonal forecasts of
crop production operationally, the development of
associated decision-support tools (as described above)
may be very important in order to provide evaluation of
the consequences of alternative farm management
decisions. Decision-support tools may be valuable
and made available to farmers and, importantly, to
their advisors. (Nelson et al. 2002).

It is important to point out that examples of
successful integration of seasonal climate forecast
systems with agricultural modelling systems to provide
forecasts of crop performance are not restricted to
developed countries. Selvaraju et al. (2004) provide an
example for India, where an integrated, interdisciplin-
ary, participatory systems approach for application of
an ENSO-based climate forecast systems approach is
being used with smallholder farmers and their
agricultural production systems. In particular, they
show case study results that demonstrate use of
integrated climate–crop simulation forecast systems
for application in crop choice management involving
cotton and peanut cropping. Figure 6 provides an
example of output of simulated cotton yield for an early
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sowing in Tamil Nadu, India. Such output is useful in
farm management decisions where, in this example,
choice needs to be made between cotton and peanuts in
terms of the likely most profitable crop for the coming
season. Thus, there are, to some extent, parallel
developments of such integrated approaches in seaso-
nal forecasting taking place in both developed and
developing countries that may help overcome some of
the issues highlighted in, for example, Zimbabwe,
where considerable constraints currently exist in
effective application of seasonal climate forecasting in
crop management (Patt & Gwata 2002). Such
approaches may have even more uptake in developing
countries, where it can be shown that simulation
modelling outcomes match farmers’ local rules of
thumb (Selvaraju et al. 2004).

To facilitate uptake of operational seasonal forecasts
of crop performance by users it may be beneficial to
regard ‘decision-support systems’ that incorporate crop
forecast systems as an integral component as ‘discus-
sion-support’ systems where users can engage in
discussions regarding climate, potential crop yield
and crop management scenarios but maintain owner-
ship of the processes and final decision making. In this
way, discussion-support systems move beyond tra-
ditional notions of supply driven decision-support
systems and can compliment the participative action
research process. The critical role of dialogue among
the key participants (farmers, advisors, crop modellers
and climate scientists) is paramount (Nelson et al.
2002; Podesta et al. 2002) Additionally, in order to aid
the decision-making process, use of operational crop
forecast systems must reduce complexity rather than
proliferate choices for users. Cox (1996) argued that
these types of crop management decision-support
systems usually impose structure on-farm management
decisions that correspond poorly to the decision style
of farmers and the context in which they operate.
However, the research, development and extension
programmes associated with delivering these pro-
grammes have facilitated social interaction between
climate/crop modelling researchers, extension officers
and farmers so that simulation-aided discussions
about crop management incorporating seasonal fore-
casting has underpinned advances in farming systems
Phil. Trans. R. Soc. B (2005)
analysis as a vehicle for improved farmer management
(Keating & McCown 2001; McCown et al. 2002;
Nelson et al. 2002).

It is suggested cross-disciplinary teams containing
experts from each of the key scientific areas using
mature simulation platforms usually achieve the most
rigorous and successful climate applications. It should
not be expected that agronomists should develop and
run GCMs, nor should it be expected that climate
scientists should become experts in biological model
development and applications. Not only must the
degree of detail considered in a model be congruent
with the intended application, but it must also be
ensured that the level of attention given to the climatic
component of an application is of similar resolution
and quality as the effort that goes into the agricultural
modelling (Meinke & Stone 2005).

Furthermore, as chaos plays a large role in climate
systems and the atmosphere frequently acts like a
random number generator, deterministic statements in
seasonal forecasting cannot justifiably be made. Only if
uncertainties are clearly quantified can improved risk
management practices be developed. Murphy (1993)
pointed out the need for uncertainties inherent in
judgments to be properly reflected in forecasts. He
stated that the widespread practice of ignoring
uncertainties when developing and communicating
forecasts represents an extreme form of inconsistency
and generally results in the largest possible reductions
in quality and value. Probabilistic forecasts are more
valuable than deterministic forecasts (Moss & Schnei-
der 2000). This applies for events that are rare (e.g.
extreme events) and which have considerable uncer-
tainty associated with them. The likely future introduc-
tion of predictions based on output from GCMs may
allow more versatility in climate prediction than is
currently the case, including better opportunities to
predict extremes. Palmer & Ratsanen (2002) have
quantified the additional value of probabilistic forecasts
over a single, deterministic projection in their study of
greenhouse scenarios and found that the economic
value of probabilistic seasonal forecasts was signifi-
cantly greater and never less than for the deterministic
case (Meinke & Stone 2005).
5. CONCLUSIONS
Both empirical and numerical climate forecast systems
offer remarkable opportunity to improve crop perform-
ance worldwide. Both process-based and hybrid
‘agroclimatic’ crop simulation models are capable of
providing very useful outputs of likely yield before
the crop is planted or during crop growth stages.
A somewhat pragmatic approach in some countries,
notably Australia, has led to the development of
systems that incorporate empirical climate forecast
models integrated with crop simulation models. These
systems can be used as a benchmark from which to
determine relative increase (or otherwise) in forecast
capability and value of numerical GCM-based inte-
grated crop forecast systems. Further improvements in
seasonal climate forecast capability, especially those
from numerical systems that include important aspects
of long-term climate change, combined with significant
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developments in crop simulation models offer the
opportunity for major advances to be made in
improving operational management of crop pro-
duction. However, we strongly suggest a core commit-
ment to an interdisciplinary approach in the development
of seasonal forecasting systems of crop performance is
needed, where climate scientists, agricultural scientists,
systems modellers, economists and farm management
specialists are intimately linked. Although, improve-
ments are taking place in the development of numerical
climate–crop production prediction systems, these
improvements will have no value unless they are
capable of changing management decisions. This
requirement especially applies to agricultural systems,
including crop management systems, where climate
variability accounts for a significant amount of yield
variability and resultant profitability. For subsistence
farmers in developing countries seasonal forecasting of
crop production offers enormous potential to improve
production in the potentially favourable seasons and to
reduce risks in the potentially poorer seasons. Pro-
duction of appropriate decision/discussion-support
systems promotes the output of scenario analyses of
crop production at a farm or shire level, which
facilitates appropriate tactical and strategic decision
making by the farmer, grain trader, miller and exporter.
Indeed, considerable benefits apply when seasonal
forecasting of crop performance is applied across the
whole value chain in crop production.
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