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Rock-scissors-paper and the survival of the weakest
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In the children’s game of rock—scissors—paper, players each choose one of three strategies. A rock beats a
pair of scissors, scissors beat a sheet of paper and paper beats a rock, so the strategies form a competitive
cycle. Although cycles in competitive ability appear to be reasonably rare among terrestrial plants, they
are common among marine sessile organisms and have been reported in other contexts. Here we consider
a system with three species in a competitive loop and show that this simple ecology exhibits two counter-
intuitive phenomena. First, the species that is least competitive is expected to have the largest population
and, where there are oscillations in a finite population, to be the least likely to die out. As a consequence
an apparent weakening of a species leads to an increase in its population. Second, evolution favours the
most competitive individuals within a species, which leads to a decline in its population. This is analogous
to the tragedy of the commons, but here, rather than leading to a collapse, the ‘tragedy’ acts to maintain

diversity.
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1. INTRODUCTION

The principle of competitive exclusion states that, at equi-
librium, the number of competing species that can coexist
is no greater than the number of limiting resources
(Hardin 1960). This raises the question of how biological
diversity is maintained. Environmental disturbance may
prevent an ecosystem from reaching equilibrium, with
intermediate disturbance levels promoting high diversity
(Connell 1978). If external influences are unimportant,
then the intrinsic dynamics of the ecosystem may keep it
away from equilibrium, thereby allowing the coexistence
of more species than expected (Huisman & Weissing
1999). Here we consider competition for space. Many
previous studies of this problem have focused on two
species, with the result that, if they differ only in their
competitive ability, one species will eventually displace
the other (Durrett 1988). In most ecosystems there are
many interacting species and these will have complex
networks of competitive relations (Buss & Jackson 1979;
Buss 1980, 1986; Kay & Keough 1981; Russ 1982
Rinkevich et al. 1992; Shipley 1993; Tanner et al. 1994;
Goldberg 1997; Burrows & Hawkins 1998). The simplest
non-trivial cyclic network 1s three species that have rela-
tionships analogous to the game of rock—scissors—paper,
with the first outcompeting the second, the second
outcompeting the third and the third outcompeting the
first. This is the system that we explore here. Although we
use the term species throughout, the same analysis applies
to any replicators with a similar cyclic competitive struc-
ture. One of the best-described biological examples is the
mating strategies of side-blotched lizards (Sinervo &
Lively 1996). Others include overgrowths by marine
sessile organisms (Buss 1980; Burrows & Hawkins 1998),
competition between mutant strains of yeast (Paquin &
Adams 1983) and the possible cyclic competition amongst
outlaw genes (Sigmund 1993). Successional systems such
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as space—grass—trees may also have similar dynamics
(Durrett & Levin 1998). It has previously been shown
that cyclic competition may be dynamically stable
(Gilpin 1975, May & Leonard 1975; Weissing 1991;
Durrett & Levin 1994; Johnson 1997). Here we consider
the effect of evolution on cyclic competition for space.

2. THE MEAN-FIELD MODEL

We consider a model world that has N available sites
(Silvertown et al. 1992). The sites are occupied by three
species, namely species r (rock), s (scissors) and p (paper),
which occur in the proportions n,, ng and n,, (with 7, +n -+
n,=1). Two sites are chosen at each time-step. The occu-
pant of the first replicates into the second with a given
probability—an individual of species r can invade a species
s with probability P,, a species s invades a species p with
probability P, a species p invades a species r with prob-
ability P, and all other invasion probabilities are zero. If
the two competing individuals are chosen randomly at
each time-step (corresponding to long-range dispersal),
then encounters between the different species occur with
probabilities proportional to their overall densities. In the
limit of large N, the rate of change of each population
density is then given by the mean-field equation (Durrett
& Levin 1994). For species r this is

dnr/dt:nr(nSPr—inp), (1)

with similar equations for species s and p being obtained
by substitution. Here a unit of time ¢ is JV individual time-
steps, which we refer to as an epoch. Note that the
dynamics 1s invariant under a simultaneous rescaling of
the invasion rates and of ¢ The population densities form
closed orbits around the non-trivial fixed point of the
mean-field equations, which is obtained by setting the
rates of change to zero (figure la). Oscillations of exactly
this type have been seen in both empirical and modelling
studies of the mating strategies of side-blotched lizards
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Figure 1. Dynamics of rock-scissors-paper with long-range
dispersal. (a) In the limit that the total number of sites is large
the populations satisty equation (1), moving along periodic
orbits around a non-trivial fixed point (equations 2—4). The
figure shows several such orbits for the invasion rates P, =0.2,
P;=0.5 and P,=0.3. Here n, ranges linearly from zero along
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(Sinervo & Lively 1996). If R is the population density of
species r at the fixed point, it follows that

R= OZPS, (2>
S§=aP,, (3)
and

P=ap, 4)

where a:(Pr+PS+Pp)_1. The populations are not
controlled by their own invasion rates, but by the rates of
the species they invade. As a consequence, the most
aggressive species never has the highest fixed-point popu-
lation. Moreover, if the invasion probabilities of two
species are held steady, then a decrease in the competitive
ability of the third leads to an increase in its fixed-point
population. This result can be understood as a conse-
quence of the cyclic nature of the system. Because there is
an odd number of species in the competitive loop, a
lowered invasion rate by one species leads to a decrease in
the population of the species that invades it. It follows
that lowering the invasion rate of a species promotes the
growth of its population.

In a finite population the trajectory of the population
densities will tend to overshoot the orbit, eventually
leading to a species becoming extinct (Weissing 1991)
(figure 1b). The quantity A= (n,/R)*(n/S)%n,/P)" is
invariant along each orbit, with A=1 when the popula-
tions are at the fixed point and 4=0 when one or more of
the species become extinct. It can be shown that, if r_;, 1is
the minimum value of , along an orbit, then

armin/aRLl >0 (5)

=constant

and so the species that has the smallest fixed-point
density also has the lowest population along any orbit. If
the invasion rates are unequal, then the species with the
lowest fixed-point population is the one most likely to
become extinct. The species that survives is then the one
that has the lowest invasion rate (figure l¢). In this competi-
tive system there is a paradoxical survival of the weakest.

3. THE LATTICE MODEL

If dispersal is local rather than being long range then
the dynamics is changed. While a species may become
locally extinct, distantly separated subpopulations oscillate

the base of the triangle to unity at its peak; similarly », and #,
increase to unity at their respective corners. (5) In a finite
world the populations move from orbit to orbit, with two
species eventually becoming extinct. The figure shows a
simulation with N'=1000 and invasion rates as in (&), which
was initialized with population densities close to the fixed
point. After 1000 epochs species r is the sole remaining species
(filled circle). (¢) The weakest competitor is most likely to
survive. This plot shows the surviving species from 19 701
model runs with N'=1000 for a range of invasion probabilities
chosen to sum to unity. The simulations were initiated with
population densities close to the fixed point. A red dot shows a
simulation in which species r displaced the other two species;
similarly a blue dot denotes the survival of species s alone and
a yellow dot denotes the survival of species p alone.
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Figure 2. Dynamics of rock—scissors-paper with local dispersal. (¢) An example of the dynamics with P,=0.2, P, =0.5, P,=0.3
(as in figure la,b) and N'=>500 x 500. The simulation was initialized with each site being randomly assigned to one of the three
species (at the point shown by the star). The dynamics is stabilized and the population densities spiral in towards the fixed point.
(b—d) Rock-scissors—paper on a 500 x 500 grid. The simulation was initialized with the sites being randomly assigned to each of
the three species in fixed-point proportions. The figures show snapshots taken after 10 000 epochs (with species r being red,
species s being blue and species p being yellow) for (b) P,=0.33, P;=0.33 and P,=0.33, (¢) ,=0.1, P;=0.1 and P,=0.8 and
(d) P,=0.05, P;=0.475 and P,=0.475. Note that the invasion rates do not have to sum to unity but are chosen that way in
order to facilitate comparison with other figures. (¢) The population densities remain close to the mean-field fixed point over
much of the parameter space of invasion probabilities. The contours summarize the results of 253 simulations that are each 4000
epochs long and show the mean value of n; over the final 1000 epochs of each model run. Data are only shown for the region that
had all its invasion probabilities greater than 0.08, as outside this region the 500 x 500 grid was too small to stabilize fluctuations
in the population densities. The value of n, at the mean-field fixed point varies linearly from the base of the triangle to the top,
which is shown by the tick marks on the right. Deviations from the mean-field approximation are seen toward the corners of the
triangle, but ng still rises with decreasing P..
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with an unrelated phase and, on a large enough domain,
global extinctions are unlikely to occur (Johnson 1997;
Durrett & Levin 1998). Here the WV sites of the model are
taken to be sites in a periodic, square lattice and, at each
time-step, the second individual is randomly chosen to be
one of the eight neighbours of the first. The population
fluctuations are stabilized (figure 2a4), with the spatial
distribution depending on the invasion rates. If the rates
are equal then the populations form clumps that have a
maximum size of ca. 100—1000 individuals (figure 2b). For
unequal rates there is a variety of spatial structures. If
one of the invasion rates becomes much larger than the
other two, then two species form disconnected islands
amongst the third (figure 2¢). If one invasion rate is much
smaller than the other two, then two species have similar
patchy distributions, with the third persisting in fast-
moving thin fronts (figure 2d). Despite the large clumps
that may develop when the invasion rates are unequal,
the population densities remain close to the fixed point of
the mean-field equations over much of the parameter
space of the invasion probabilities (figure 2¢) and the
paradox, that the most aggressive species does not have
the largest population, still holds. On a small model grid,
a decrease in the invasion rate of one species eventually
leads to the other two becoming extinct and the weakest
1s left as the only survivor.

It would appear that it is beneficial for a species to
have a lower invasion rate. The evolutionary dynamics of
the system may be explored by letting the invasion rates
of replicating individuals be subject to mutation (figure
3). Individuals with higher invasion rates colonize the
available territory more rapidly. If the invasion rates of
two species are held constant while the third is allowed to
evolve, the fastest individuals of the evolving species win
a higher share of territory than the slower individuals.
Because the population becomes more aggressive on
average, the total population of the evolving species
decreases. In our case the invasion rates are held to be
unity or below, so the system keeps evolving until all indi-
viduals of the mutating species have an invasion rate
close to unity.

4. DISCUSSION

A scenario can be envisaged in which a disease infects
one specles, thereby weakening its competitive ability.
Bizarrely, in the system studied here, this would lead to
an increase in its population. A similar paradox has been
seen in a related model in which members of species r
spontaneously change into species s, with the odd result
that the proportion of species r increases (Tainaka 1993,
1995). In these systems, a naive attempt to control one
species may have exactly the opposite effect to that
intended.

The rock—scissors—paper model is an example of a
many-player Prisoner’s Dilemma, with the more aggres-
sive strategy winning a greater share of a smaller total
population. A recent ecological example of a Prisoner’s
Dilemma effect is the case of Argentine ants (Queller
2000; Tsutsui et al. 2000), the population of which is
smaller when there is intraspecific competition. If all
three species in the rock—scissors—paper system evolve,
then the invasion rates all rise to unity, with the species
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Figure 3. Evolution of species r. The model was run on a
500 x 500 grid and initially the populations had the invasion
rates P,=0.05, P;=0.5 and P,=0.3. After an initial 1000
epochs (not shown), the invasion rate P, was evolved by
adding a random number to the invasion rate of a species r
individual whenever it replicated onto a new site (the random
number was uniformly distributed between &1 x 1072 and
the new invasion rate was accepted if it was in the range

0 < P, < 1). The figure shows the increase in the average
invasion rate and the corresponding decrease in the
population density of species r. Ongoing mutation prevents
the average P, from reaching unity.

achieving an equal share of the resources through
maximal aggression. The Prisoner’s Dilemma is usually
associated with the tragedy of the commons (Hardin
1968) where intraspecific competition leads to an eco-
logical collapse. Instead, the Prisoner’s Dilemma here
results in a balance being maintained between the three
populations.

Darwin (1873) used the metaphor of the tangled bank
in order to illustrate the complexity of the relationships
amongst living organisms. The bank studied here has
only three species, but is stable in both a dynamic and an
evolutionary sense, with no species able to displace the
other two. The evolutionary stability is created by the
paradox that a dominance of the system is achieved by
weakening the invasion rate, an option that is not
explored by evolution. This paradox is due to the self-
referential nature of the competitive loop. In a real
ecosystem, with its tangled web of interrelationships, self-
referential effects will be common. Perturbations of the
system may then have counter-intuitive results.

The authors acknowledge the financial support of the Marsden
Fund, which is administered by the New Zealand Royal Society.
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