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SUMMARY

We show how ideas and models which were originally introduced to gain an understanding of critical
phenomena can be used to interpret the dynamics of epidemics of communicable disease in real popula-
tions. Specifically, we present an analysis of the dynamics of disease outbreaks for three common
communicable infections from a small isolated island population. The strongly fluctuating nature of the
temporal incidence of disease is captured by the model, and comparisons between exponents calculated
from the data and from simulations are made. A forest-fire model with sparks is used to classify the
observed scaling dynamics of the epidemics and provides a unified picture of the epidemiology which
conventional epidemiological analysis is unable to reproduce. This study suggests that power-law scaling
can emerge in natural systems when they are driven on widely separated time-scales, in accordance with

recent analytic renormalization group calculations.

1. INTRODUCTION

The behaviour of spatially extended, perturbatively
driven dissipative systems can often be characterized
by simple power laws which emerge from an analysis
of the ‘avalanches’ of activity that propagate through
such systems (Bak et al. 1988). Attention has focused
particularly on the dynamics of sandpile models (Bak
et al. 1988), forest-fire models (Bak et al. 1990;
Grassberger & Kantz 1991; Drossel & Schwabl 1992,
Mossner et al. 1992; Christensen et al. 1993; Drossel &
Schwabl 1993; Grassberger 1993; Henley 1993; Clar et
al. 1994; Drossel & Schwabl 1994; Clar et al. 1996) and
spring-block models (Chen et al. 1991; Olami et al.
1992). Much analytic and computational effort has
been expended in order to gain insight into the emer-
gence of robust spatio-temporal scale-free dynamics
which are so often a feature of these systems. In addi-
tion, experimental work has begun to test the
generality and applicability of some of the models to
the phenomena they purport to represent (Held et al.
1990; Trette et al. 1996).

A remarkable distinguishing feature that some of
these highly non-equilibrate systems exhibit is an
ability to evolve towards the same scale-free fixed
point behaviour irrespective of the choice of initial
conditions and without the need to adjust model
parameters to specific values. Such behaviour, termed
self-organized criticality (SOC), has been promoted as
a concept of central importance in understanding the
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dynamical origin of the abundance of scale-free
(fractal) phenomena observed in the natural world.

SOC is an appealing and potentially very powerful
hypothesis, but its very generality has ensured a long-
running and on-going debate on how it actually comes
about, though recently Flyvberg (1996) has sought to
calm these turbulent waters by stating the minimum
criterion for SOC to be possible. However, lack of
consensus need not serve as an obstacle to the
application of these ideas to natural phenomena in the
wider world.

Biological processes may well prove to be a fertile
area in which to apply the SOC concept, as we require
models that give robust dynamical behaviour without
the need to adjust parameters to exact values (Solé &
Manrubia 1995). Tor example, recent discussions
concerning evolution and the ‘punctuated equilibrium’
hypothesis have been informed by results from Bak &
Sneppen (1993) who introduced a simple (possibly
oversimplified) model, which has subsequently been
elaborated somewhat (De Boer et al. 1994; Sneppen
1995; Sneppen et al. 1995; Newman & Roberts 1995;
Roberts & Newman 1996; Solé & Bascompte 1996),
describing an ecology of interacting and evolving
species which  exhibits punctuated equilibrium
behaviour. It has been proposed that evidence from
the fossil record indicates that evolution occurs in an
intermittent way, with occasional rapid bursts of
evolutionary activity separated by longer episodes of
relative stability.

Pursuing this theme, it is our aim to use ideas and
models developed in a statistical, mechanical context
to gain insight into biological phenomena and, in
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particular, to explain the observed patterns of
epidemics of communicable diseases. As epidemio-
logical models frequently act as templates for models
in the wider field of population biology the conclusions
we reach can have implications beyond the issues
relating to the spread of disease. In this paper we
make extensive use of a model initially introduced by
Bak et al. (1990), in the context of turbulence, and later
modified by Drossel & Schwabl (1992) in order to
discuss SOC phenomena. This model, and its variants,
are traditionally discussed in terms of forest fires but
they are, of course, closely related to models of excitable
media and therefore lend themselves quite naturally to
interpretion as epidemic models; i.e. trees are
equivalent to susceptibles, and fires are equivalent to
infectives. In epidemiological language, the forest fire
corresponds to the simplest possible spatially explicit
susceptible infective (SI) model. Below, we show how
the dynamical behaviour of the Drossel & Schwabl
(1992) model (forest fire with sparks) can be used to
explain the observed patterns of epidemics in small
1solated populations. Specifically we describe how,
under certain circumstances, epidemiological dynamics
appear to exhibit (power-law)
phenomena, implying that there is structure present in
data sets which were, hitherto, thought to be dominated
by largely stochastic effects. We suggest that it might be
possible to classify certain highly transmissible diseases
using distinct exponents which can, in turn, be
calculated from the lattice model. Additionally, we
believe that we can explain why less transmissible
diseases have different exponents which can take a
number of different values according to the location of
the epidemic. Our analysis, in terms of scaling and the
results of the lattice-based models, presents a unified
picture which conventional epidemiological analysis 1s
unable to match. Previous research has established the
possibility of scaling dynamics in epidemiological
systems (Rhodes & Anderson 1996q4,). Here we
extend those studies to other diseases, showing scaling
to be general phenomenon than first
appreciated, and further, we demonstrate that lattice
models exhibiting critical behaviour can be used to
explain the observed patterns of infection in several
situations.

In § 2 we recall the definition of the forest fire model
and discuss how it can be used to interpret Type III
epidemics (defined below) of a number of diseases in
small populations. In §3 we present the analysis of the
scaling dynamics observed in the epidemiological data
sets, and these are interpreted with the aid of results
from lattice simulations in §4. We conclude in § 5 with
a discussion and suggestions for further research.

scale-invariant

a more

2. THE FOREST-FIRE MODEL

The forest-fire model was first introduced by Bak et
al. (1990) in an attempt to introduce a new meta-
model for turbulent phenomena, scaling and criticality.
It is an extremely simple lattice-based model. The sites
of the lattice can be in any one of three states; empty,
occupied by a tree, or occupied by a burning tree. The
system 1s updated in parallel with periodic boundary
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conditions using the following rules: (i) Trees grow at
empty lattice sites with a probability p. (ii) Trees on
nearest-neighbour sites to burning trees catch fire. (ii1)
Burning trees become empty sites on the next time-step.
However, it turns out that on large lattices the model
becomes increasingly deterministic in the limits that
were expected to show critical behaviour, with the
emergence of spiral fire-fronts. Extensive computa-
have established that no self-
organized critical behaviour occurs in this model.
Johansen (1994, 1996) has used the model, and variants
of it, as an instrument to illustrate dynamical processes
in epidemiology. Principally he demonstrated that a
simple spatially explicit epidemic model can exhibit
sustained oscillations without the need for additional
seasonal forcing.

This model is the latest in a number of lattice-based
models which have been introduced in order to investi-
gate disease dynamics in spatially distributed host
populations. One of the earliest was formulated by
Bailey (1965, 1975) in connection with percolation
theory. This approach was developed by Mollison
(1977) and Mollison & Kuulasmaa (1985) who
proposed that the lattice technique could be used as a
general framework within which to describe spatial
heterogeneity in epidemic models. More recently Cox
& Durrett (1988) and Durrett & Neuhauser (1991)
have developed the spatial contact model for
individual-based spatial models. A detailed summary
of this work and how it compares with other
approaches to modelling spatial heterogeneity can be
found in Durrett & Levin (19944,b) and Durrett
(1995). Perhaps closer in spirit to the forest-fire models
and the emergence of scale-free phenomena, which we
discuss in this paper, are the early studies of Durrett &
Cox (1988), Grassberger (1983), Cardy & Grassberger
(1985) and Cardy (1983), who used scaling dynamics
to characterize disease spread through stationary
spatially ~ distributed host populations. In an
individual-based  lattice model including host
movement, Boccara & Cheong (1992, 1993) and
Rhodes & Anderson (1996¢) demonstrated the
importance of host mobility on the rate of epidemic
spread. In a similar fashion to Bocarra & Cheong
(1993) we have also investigated the emergence of
scaling dynamics in mobile host populations (Rhodes
& Anderson 1996d). Lattice models of processes in
population biology have also been extensively
investigated in host—parasitoid systems, where spatial
heterogeneity can  stabilize otherwise unstable
dynamics and generate coherent pattern formation
(Hassell et al. 1991; Rand et al. 1995 Rohani &
Miramontes 1995).

tional simulations

(a) Critical dynamics

A simple modification of the forest-fire model can
have dramatic consequences to the spatio-temporal
development of the system. The ‘lightning” mechanism
allows the forest-fire model to exhibit critical dynamics,
and was introduced by Drossel & Schwabl (1992). The
rules of the model (i)—(iil) are retained, as stated
above, only now an extra rule is added which allows
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any tree which has no nearest-neighbour burning trees
to spontancously catch fire with a probability f. With
the addition of lightning, the dynamical behaviour of
the forest-fire model is radically different to the basic
model of Bak et al.(1990). In the next section we show
how this type of model can, under certain circum-
stances, account for the observed
behaviour of communicable diseases in human popula-
tions. Specifically, we will be investigating Type III
epidemics. These are epidemics triggered by the
arrival of an infected individual in a largely susceptible
community. The epidemics are of a relatively short
duration and the disease eventually dies out in the
population only for it to be possibly introduced again
at a later date from outside.

The forest-fire model with sparks was primarily
intended to provide an example of a self-organized
critical system. Analysis in this model is done in terms
of looking at the numbers of event sizes and durations.
Each forest cluster burning event has a size, s, defined
as the total number of trees burned during the fire and
a duration, { defined as the number of time-steps
between the initiation of the fire and the time when
the fire i1s completely extinguished. The critical
dynamics of this model, characterized by various
scaling exponents, are now well known but there still
remains a question of interpretation as to whether it is
a true example of SOC. There are two parameters in
the model; the tree growth rate, p, and the lightning
rate f. Critical behaviour occurs when the following
condition is met;

successfully

T (spas) < p~' S (1)

where 7 (s;,.¢) 1s the time taken for a ‘large’ (i.e. of the
order of the lattice size) forest cluster to burn down.
Thus, we are dealing with a series of well defined tree-
cluster burning episodes which are separated by epochs
of straightforward tree growth (Drossel & Schwabl
1992; Mossner et al 1992; Christensen et al. 1993;
Drossel & Schwabl 1993; Grassberger 1993; Henley
1993). SOC behaviour occurs when, as the condition
in equation (1) states, there is considerable separation
of time-scale between the rate of tree growth and the
rate of lightning strikes. It is argued that this is SOC
because all that is specified is a separation of time-
scales rather than a tuning of f/p to some precise value.

The central quantity of interest in our work is the
size distribution of the burning clusters (i.e. the
number, JV, of burning clusters of size s), conventionally
denoted by the scaling exponent 7, such that

N(5) 0577 C(5/5max) (2)

where C'(x) is a monotonically decreasing function with
C(x) being unity at x < 1 and C(x) — 0 for x — oo.
Other exponents are also defined, but it is not our
purpose to provide an exhaustive review here. Simula-
tion results satisfying equation (I) show that in two
7=2.1440.03 (Grassberger 1993;
Henley 1993; Clar et al. 1994) irrespective of precise
choices of particular values of /" and p.

Recent work on a real-space renormalization scheme
for the forest-fire system has demonstrated how good

dimensions
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approximations to the exponents can be calculated
analytically (Rohani & Miramontes 1995; Loreto et al.
1995). However, from an analysis of the transforma-
tion’s fixed point behaviour, this type of calculation
indicates that the forest-fire model is more like a
conventional critical system, with f/p (the measure of
the separation of time-scales) acting as the tuning
parameter. Similar calculations using this framework
for other dynamical systems indicate that SOC can
arise whenever phenomena are driven on very different
time-scales (Loreto et al. 1995).

Whether or not this particular version of the forest-
fire model is strictly within the class of SOC systems,
from a biological perspective it is an extremely useful
model. In many biological systems it is simply not
possible to measure accurately the necessary rate para-
meters. However, it is usually possible to estimate the
relative magnitudes of those rate parameters. Clearly,
if we can identify a biological system whose dynamics
is dominated by widely different time-scales we might
have a chance of observing the non-trivial critical
behaviour predicted by the forest-fire model. Then, as
in models of other critical phenomena, it would be
possible to use a simplified model of the epidemiology
containing the most essential biological factors, which
would then act, in turn, as a concise statement of the
origins of the observed dynamics.

3. TYPE III EPIDEMICS

In epidemiological terms the lightning mechanism
has an appealing interpretation. It represents the
occasional immigration of an infective individual into
a population. Such an individual is referred to as an
index case. Providing that immigration of index cases
occurs sufficiently infrequently it permits the possibility
to realise the condition for the separation of time-
scales. In a population of constant size, births are conti-
nually taking place. For example, in a population of N
individuals with an average life expectancy of around
T vyears, there will be roughly N/T(365) births per
day. For populations of around 30 000 individuals with
a life expectancy of around 70 years there would be
approximately one new birth per day. If, in addition,
this population is geographically isolated, then contact
with the rest of the world will be limited, providing
restricted opportunities for infectious agents to enter
the population. So an index case may arrive in the
community on average only once per year. Thus, there
is a clear separation of time-scales for the rate of
appearance of susceptibles (births) and the rate of
appearance of index cases, and the consequent poten-
tial to observe critical dynamics. However, equation
(1) is not fully satisfied in that births do occur whilst an
epidemic is in progress. Despite this, the arrival of
susceptibles is sufficiently low so as not to disrupt the
scaling pattern, and each epidemic outbreak remains a
well defined event without the arrival of susceptibles
significantly fuelling the epidemic whilst it is in
progress.

To test whether critical dynamics can occur in an
epidemiological system the following conditions need
to be fulfilled:
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(1) The host population must be ‘small this is to
ensure that when disease does arrive in the popu-
lation it does not maintain itself indefinitely, so the
population must be well below the endemicity
threshold for the disease we are considering (i.e.
Type IIT epidemics occur). Also, from equation
(1), to observe critical dynamics we need to ensure
that during the progress of an epidemic new births
of susceptibles are not so great as to fuel the persis-
tence of that epidemic. This condition ensures that
p is small.

(i1) The host population must be isolated: this is

necessary to ensure that we can clearly understand

by what routes infection can enter the population.

An island population would be ideal since we

would be dealing with a well defined population

and isolation would ensure that infection arrives
only infrequently. This condition means that f is

small, and that f/p < 1.

The population we consider must have historically

long running and accurate time series for various

communicable diseases, so that we have a chance
of measuring the distribution of epidemic sizes
and durations.

(iii

~

Surprisingly there is one particularly good example
of a population that meets all the above conditions.
The people of the Faroe Islands are a small geographic-
ally isolated population of around 25000 individuals
situated in the North Atlantic, midway between
Scotland and Iceland, and for which, fortuitously,
there exists long-running and detailed epidemiological
data sets. Historically, as a part of the Kingdom of
Denmark, the Faroese adopted the Danish system of
maintaining accurate records of the presence of disease
in their community (CLfI et al. 1993). From these
epidemiological records, from the pre-mass-vaccina-
tion era, we have established the total number of cases
per month for three communicable diseases and under-
taken an analysis to investigate whether scaling
dynamics occurs.

(a) Measles

The monthly incidence of measles virus infection in
the Faroe Islands is shown in figure lg, for a time span
of 100 years from 1870 to 1970. Data from 1866—1869 is
entirely null; it is used in our analysis, but not shown on
the graph for ease of presentation. Data from 1940 to
1943 is not recorded. Measles is an easily diagnosed,
communicable disease with distinctive symptoms, so
this time-series is believed to be very accurate. There
are 1200 months of data with measles present for 291
(1.e. 24%) of those months. The time-series is made up
of 60 distinct epidemics ranging in size from one case
up to 4456 cases. For a population of the size of these
islands’, there will be approximately one birth per day
(p~" = 1), and given that there are 60 epidemics in 97
years f~! =365 x 97/60 = 590. This gives a lower limit
on f/p of ca. 1/600.

We define an epidemic as having a duration ¢, where

t=M nd — Mslaru <3)

€
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Figure 1. (a) The monthly measles cases returns for the
Faroe Islands (population ca. 25000); an example of Type
IIT epidemic pattern. (4) Epidemic size probability distri-
bution for the Faroe Island measles data (log-log plot).
The best-fit line shown is calculated so as only to apply to
epidemics of up to 1000 cases. The gradient of the plot
gives —T + 2.

and M, 1s the first month when cases in an event first
appear, and M,,4 1s the next month when there are no
more cases present. An epidemic outbreak can have a
duration of one month up to any integer number of
months. An epidemic event has a size, s, where

Meng
s= Y C(M), (4)

M,

Mistart

and C'(M) is the number of recorded cases of measles in
the month M.

The distribution of cluster (i.e. epidemic event) sizes
is conventionally denoted by sz (s) and scales as

sn(s) oc s (5)

providing s < $,,,,
This leads to the probability distribution (Grass-
berger 1993) for observed epidemics

. . S (s o
P(s) = prob{epidemic > s} = ==~ o 577
Z:’:l 5,n<5,)

(6)

Plotting P(s) as a function of s on a log—log plot
should give a straight line of gradient —7 4 2.
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From the scaling plot in figure 15 of the measles
epidemic data we see that the measles epidemic events
do exhibit scaling dynamics for epidemics up to size
ca. 1000 and estimate that 7 =2.265+0.014 (95%
confidence interval). A corresponding calculation
shows that the epidemic event durations also exhibit
scaling too, but we confine our discussion to the size
distributions.

(b) Whooping cough

Whooping cough (pertussis) is a communicable viral
disease which causes very distinctive symptoms. It can be
easily diagnosed when the characteristic cough is
evident, and therefore not confused with other diseases.
Infection can occur and atypical symptoms exhibited.
The monthly case returns for whooping cough in the
Faroe Islands are shown in figure 2a. This too is a clear
example of aType III epidemic pattern with the infection
present in around 29% of months; 45 distinct epidemics
are recorded in just over one hundred years.Calculating
the epidemic distribution function, we find from figure
2b that 7 = 2.255 £ 0.029 (95% confidence interval).

(¢) Mumps

Finally, the case returns for mumps are shown in
figure 3a. There are 59 epidemic events with mumps
present in 24% of the recorded months; again a good
example of Type IIT dynamics. Mumps, whose aetiolo-
gical agent is also a virus, is a less contagious discase
than either measles or whooping cough, so much
closer contact between a susceptible and an infective is
required for transmission to occur. Consequently,
mumps epidemics tend to be correspondingly smaller
than the measles or whooping cough outbreaks.

The epidemic distribution function is shown in figure
3b. Again, there appears to be good scaling of the
epidemic distribution though the gradient is different.
We find that 7=2447+£0.056 (95% confidence
interval).

We have attempted to fit other forms of distribution
to these data, such as exponential (variance equals the
mean) or negative binomial (variance is greater than
mean), but these do not provide as good a fit as the
power-law distribution (Rhodes & Anderson 19965).
We also investigated whether power-law distributions
in epidemic sizes and durations can arise from conven-
tional SEIR models (Schenzle 1984; Olsen et al. 1988,
Olsen & Schaffer 1990; Anderson & May 1991; Grenfell
1992; Bolker & Grenfell 1993) which have, hitherto,
been used successfully to account for Type I dynamics.
Such models are based on the following dynamical
equations for the number of susceptibles (S), exposed
(E), infective (I) and recovered (R) individuals,

ds/dt = puN — pS — BSI, (7)
dE/dt = 3SI — uE — ~E, (8)
dl Jdt = ~E — pul — 81 + v, (9)
dR/dt = 61 — pR. (10)
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Figure 2. (a) The Faroe Island monthly whooping cough
case returns for the years 1881-1969 inclusive. () Epidemic
size probability distribution for the Faroe Island whooping
cough data (log—log plot). The best-fit line shown is calcu-
lated so as only to apply to epidemics of up to 1000 cases.

The total population S+ E + I + R = N. The average
life span of individuals is given by p~!, 3 is the contact
rate between susceptibles and infectives (which can be
age-structured or seasonal), ¥~! is the average incuba-
tion period and §~! is the average infectious period.
The term v is a small immigation factor representing
the occasional introduction of infectives into the
system from outside.

Monte-Carlo simulations using these equations, with
and without seasonal contact rates and age-structure,
were unable to reproduce the power-law distribution.
This is probably due to a breakdown in the mass-
action (BSI) assumption that is central to the SEIR
formulation because the populations we are dealing
with are quite small.

A common feature of the scaling graphs for each of the
diseases 1s a tail-off for the larger epidemics. This could
happen because for the largest epidemics the dynamics
are fundamentally different from those of the smaller
epidemics, leading to a breakdown of scaling. Another
possibility is that due to the infrequent occurrence of the
very largest epidemics, the time-series we are using is not
long enough to sample a representative number of larger
epidemics. It is not possible, at present, to distinguish
between these two hypotheses.
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Figure 3. (a) The Faroe Island monthly mumps case
returns for the years 1881-1969 inclusive. (4) Epidemic
size probability distribution for the Faroe Island mumps
data (log—log plot). The best-fit line shown is calculated so
as only to apply to epidemics of up to 850 cases.
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4. SCALING EXPONENTS AND
DIMENSIONALITY

Above we have shown that for three common
communicable diseases in the Faroe Islands there is
strong evidence for scaling dynamics in the recorded
epidemiological data. As we were motivated by the
forest-fire model it is interesting to compare the expo-
nents obtained from the data with the exponents from
the model.

In figure 4 we show the modulus of the exponents for
the three different diseases, with 95% error bars.
Measles and whooping cough have practically identical
exponents, whereas the exponent for the less transmis-
sible mumps infection is somewhat larger (i.e. more
negative). Also shown are the calculated exponents
(with errors) from forest-fire simulations (Clar et al.
1994).

We propose that the epidemiological scaling results
can be explained by the model simulations in three
and five dimensions. Interpreting the space of the
lattice as possibly representing social connections and
interactions  between individuals, rather than
corresponding directly to geographical space, it would
appear that the effective dimensionality of this space is
dependent on the transmissibility of the disease.
Specifically, the lower the transmissibility of the
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Figure 4. A plot of the absolute values of the scaling expo-
nents |7| for the three communicable diseases investigated in
the Faroe Island data set (clear bars). Also shown (solid
black bars) are the exponents derived from lattice-based
simulations in three dimensions and in five dimensions.
The error bars give the 95% confidence interval.

disease the higher the dimension of the social interac-
tion space. However, increasing the dimensionality of
the lattice lowers the number of available susceptibles
that can be infected rather than modelling a less trans-
missible disease. Hence, it 1s the effective reproductive
rate that is being reduced by this process. Given the
good agreement between the model and the data, how
this might relate to the specific epidemiology of diseases
on the islands remains to be fully understood.

In previous work we suggested that the two-dimen-
sional simulation provides a good explanation for the
measles scaling (Rhodes & Anderson 19964,5), but it
turns out that the three-dimensional simulation
provides closer quantitative agreement, a fact not
realised when the original analysis was done. Also, we
must stress that the above analysis, in terms of lattices
of different dimensionality, whilst being a useful
method of classifying the different exponents, need not
represent the only possible approach to explaining the
emergence of scaling in epidemiological systems.
Other lattice-based models (which incorporate host
movement) also yield scaling exponents for the distri-
bution of fluctuations of epidemic sizes and durations
(Rhodes & Anderson 1996¢). Interestingly, the expo-
nents found in this class of models are, broadly, of
similar magnitude to the ones found in the forest-fire
models. Work is ongoing to determine whether these
models can be used to provide a more general frame-
work in which the specific values of the exponents are
dependent on parameters that can be more directly
interpreted as being related to the transmissibility of
the infection when a susceptible is adjacent to an infec-
tive. Clearly, a general epidemiological model that can
reproduce the scaling relations (and the associated
exponents) which uses a variable parameter that could
be more intuitively associated with R, would be
welcomed.

From these results we can make some general infer-
ences. Whenever scaling dynamics occurs in Type III
epidemics the size distribution exponent, 7, will take
on a value reflecting the reproductive rate of the
disease in that social context. Other diseases in the
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same context, will have a higher (less negative) or lower
(more negative) gradient depending upon whether they
are more or less transmissible. Thus, in a different social
context (for example, in a small isolated community on
continental mainland) measles may well have a more
negative gradient than that observed in the Faroes
because its basic reproductive rate is lower. In effect 7
can tell us about the relative transmissibilities (or basic
reproductive rates) of diseases in different situations.
Here the situation is quite clear-cut, but performing
estimations of transmissibility are usually difficult
when highly intermittent Type III dynamics are taking
place.

5. DISCUSSION

We have discussed the use of lattice-based models
and the application of ideas from a statistical mechan-
ical context to describe the dynamics of epidemics of
communicable disease. Our results on a scaling analysis
of some real medical case returns for an island popula-
tion suggests that an interpretation of the
epidemiological data in terms of power-law distribu-
tions 1s plausible. It places the dynamics of Type III
epidemics in the same class of phenomena as, for
example, earthquakes and may well be an example of
an SOC phenomenon. Over the range of validity of
the scaling relationship the same mechanism that
governs small epidemics governs big ones, and the
frequency of small epidemics tells us the expected
frequency of the big epidemics. Epidemic events can
therefore happen on all scales from one case up to the
whole island being affected. Interestingly, in 1846,
practically the entire population of the Faroes was
struck with measles. These results suggest that there 1s
real dynamical structure in data sets which were
thought to be largely dominated by stochastic effects.
Our conclusions are drawn from a study of three
diseases from one of the most accurate and long-
running epidemiological data sets known, and we
acknowledge that by the criteria usually employed in
simulations of critical phenomena the data sets are
short. Despite this we believe that our interpretation in
terms of scaling is a sound one.

We expect the forest-fire simulation to be able to
represent epidemiological dynamics because the model
can be interpreted quite naturally as a simple SI model.
Near a critical point the specific epidemiological details
that distinguish different diseases become irrelevant
and the dynamics will be dominated by nearest-neigh-
bour spread in some social interaction space of
arbitrary dimension. Attempts to reproduce the
observed scaling dynamics failed when a conventional
SEIR model was used. This is probably connected with
the breakdown of mass-action mixing assumption for
such small populations. The analysis proposed in this
study is completely general and can be carried out on
any data set that might exhibit Type IIT dynamics,
particularly when there is a clear separation of time-
scales for production of susceptibles and the arrival of
index cases from outside the community. One of the
strengths of this approach is that it uses every single
individual recorded disease case, rather than ignoring
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small epidemics and trying to account for only the
larger disease outbreaks. In future, we anticipate that
a scaling approach will be useful in understanding the
occasional outbreaks of communicable disease that
occur in otherwise highly vaccinated populations. For
instance, in urban centres in the United Kingdom,
despite major national initiatives on immunization,
pockets of susceptibles to measles infection still build
up due to lack of understanding of basic healthcare
information, resulting in ignorance of the possibility of
vaccination, as well as due to vaccine failure. In this
situation the arrival of an index case then usually trig-
gers an epidemic. Current mass-action based models do
not work so well in this post-mass-vaccination regime,
and the scaling analysis appears to provide a useful
insight (Rhodes et al. 1997).

Finally, we believe that this study illustrates how
ideas developed to understand critical phenomena in
the physical sciences can be used to gain insight into
the dynamics of real epidemic diseases. It illustrates
that biological systems can also exhibit critical
phenomena, that the conditions for critical behaviour
to occur can arise quite naturally and that simple
models which capture the essential interactions can
explain the dynamical behaviour of a number of
different diseases in a human population.
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