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A numerical study of oblique-shock-wave 

reflections with exp~rimental comparisons 

By H. M. Glaz'*, P. Colella+. J. I. Glass• and R. L. Deschambault+ 

*Applied Mathematics Branch, Naval Surface Weapons Centre, 
t White Oak, Silver Spring, MD 20910, U.S.A. 
Mathematics Department, Lawrence Berkeley Laboratory 

+ Berkeley, CA 94720, U.S.A. . 
Institute for Aerospace Studies, University of Toronto, 

Toronto, Canada. 

A direct comparison is made for several cases 
of oblique-shock-wave reflections between inter
ferometric results obtained at the University of 
Toronto, Institute for Aerospace Studies {UTIAS) 
10 x 18 em Hypervelocity Shock Tube and numerical 
results obtained using a state-of-the-art 
computational method for solving the Euler equations. 
Very good qualitative agreement is obtained for 
equilibrium ·and frozen flowfields except in small 
regions for which the experiments were dominated 
by viscous flow. The quantitative agreement is 
very close in some cases but can be off by 10-15% 
in cases with nonequilibrium flow and/or viscous 
structures. Additional parametrized sequences of 
cal~ulations are presented in order to assess the 
utility of the present numerical method in 
constructing the various reflection - transition
lines for perfect inviscid flows in the shock-
wave Mach-number, wedge-angle (Ms.ew)-plane, and 
the validity of the "boundary-layer defect" 
'theory. 

1. Introduction 
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In the past several years, substantial advances have been made in the 

numerical analysis of hyperbolic equations of motion, especially the 

equations of nonstationary gasdynamics. It is now possible to routinely 

apply the resulting computer codes on problems which involve complex 

physical phenomena such as flows with multiple shock waves and slipstreams. 

Several questions arise from such work. First, how accurate are 

the numerical results in reproducing solutions of the Euler equations? . 



In particular, to what extent does the truncation error inherent in a 

numerical method alter the system of equations being solved? For 

example, large amounts of artificial viscosity can effectively produce 

a solution to a parabolic approximation of the Euler equations, but not 

a solution to the Navier-Stokes equations, and completely miss the fine 

structure of wave interactions. Second, how well do such results compare 

with·experimental data (which deals with real flows, including viscous 

effects) in the event that such data are available? 

Reliable numerical results are needed for a wide variety of non

stationary compressible-flow problems in shock-wave dynamics, explosion-, 

implosion 'dynamics and elsewhere; in some cases, there are virtually no 

experimental data available for analysis. This creates the requirement 

for a benchmark problem which contains sufficiently complex nonlinear 

wave interactions to truly validate a computer code and yet is amenable 

to accurate experimental measurement. The problem of nonstationary 

oblique-shock-wave reflections from a compressive corner in various gases 

is currently the strongest candidate to play this role. The complex wave 

structure in the Mach-stem region of such flowfields closely resembles 

the flowfield phenomenology in typical applications {e.g., a spherical 

explosion reflecting off an ideal surface). During the past five years, 

extensive experimental and analytical data were obtained for these 

problems {Ben-Dor and Glass 1979, Ben-Dor and Glass 1980, Ando and Glass 

1981, Lee and Glass 1982, Shirouzu and Glass 1982, Deschambault and 
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Glass 1983, Deschambault 1984, Hu and Glass 1984, Hu 1984, Hu and Shirouzu 

1984, Wheeler and Glass 1984, Wheeler 1984). Additionally, analytic and 

experimental work has been ongoing in this area since Mach 1878, and 

especially since the work of von Neumann 1943 on shock-wave theory for gases. 

In their comparison of experimental and computational results for · 

this problem, Ben-Dor and Glass 1978, and Deschambault and Glass 1983 concluded 

that advances in 

I 
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numerical technique would be required before numetical results could be 

viewed with the same confidence as experimental data. In particular. 

they found that computer codes were able to correctly obtain the overall 

reflection pattern but gave poor agreement with interferometric data 

concerning the detailed structure of the isopycnics (lines of constant 

den~ity) of the disturbed flowfield behind the reflected shock. Many of these 

computational results were underresolved due to the constraints of the 

then existing computer technology, where the results presented here are 

fully resolved because they were obtained with a state-of-the-art. 

low diffusion scheme on a modern computer, taking full advantage of the 

computer's vector processor. The main objective of this paper is to 

change this assessment and place the numerical analysis of perfect 

inviscid compressible flow on an equal footing with experimental methods. 

The present study will demonstrate this by comparison of the numerical with the. 

experimental results for argon and air. 

Such comparisons are complicated by the fact that the flowfields 

under investigation are not ideal due to the following phenomena. 

A boundary layer is induced behind the shock-wave system on the wedge 

surface. This not only alters the interaction of the slipstreams with 

the wall but the transition boundary between regular and Mach reflection 

due to von Neumann 1943. The slipstream is not an ideal contact surface 

between thermodynamically different states; it spreads and thickens 

and undergoes transition from a laminar to a turbulent state. In addition, 

the second shock wave in double-Mach reflection is non-uniform in strength 

from the second triple point to the first slipstream (Fig. 1). The 

interaction between this shock wave and the slipstream is also not well 

understood. The shock becomes a compression wave as it interacts 

with the slipstream, which remains stable despite the pressure gradient 



imposed on it. No reflected expansion waves are observed that might 

neutralize this, gradient as in a steady supersonic jet outflow. No 

waves can directly enter from the slipstream into the uniform region 

behind the Mach stem since the flow there is subsonic. Finally, the 

perfect (frozen) flows in air become excited and may be in nonequilibrium 

or equilibrium .states. This complicates the numerical analyses which 

now require complex equations of state for equilibrium flows or rate 

equ~tions for the excitation of the internal degrees of freedom such 

as dissociation and ionization for nonequilibrium flows at high initial 

shock-wave Mach numbers. 

2. Oblique-shock-wave reflections 

The four types of pseudo-stationary oblique-shock-wave reflection 

patterns are shown in Figure 1 and consist of (a) regular reflection-RR, 

(b) single Mach reflection-SMR, (c) complex r~ach reflection-CMR, and 

(d) double Mach reflection-DMR. Fi~ure 1 illustrates the definitions of 
'.· 

wedge angle ew• triple-point trajectory angles, x.x'. various shock waves 

I,R,R',M,M', slip surfaces S,S' and the flow regions (1) - (5) produced 

by RR, SMR, CMR and DMR reflections. The angle 6 between the incident I 

and reflected R shock waves is also shown as well as the angle w' between 
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R and the wall or R and the triple-point trajectory x. The bow shock stand

off distance s,and the length L, between the wedge corner and the reflection 

point or Mach stem are also indicated. Such quantities can be measured 

experimentally and predicted numerically and provide important information 

on the state of the gas (frozen, nonequilibrium or equilibrium), (Shirouzu 

and Glass 1982, Hu 1984, and Hu and Glass 1984). 

If real~gas and viscous effects can be ignored, the problem has no 

intrinsic length~scale, suggesting the use of the self-similar or 

pseudo-stationary coordinate system (t ,n) = {{x-xo)/(t-t0 ), (y-y0 )/(t-t
0

)) 

where (x0 ,y0 ) are the coordinates of the wedge corner and t 0 is the time 

at which the incident shock wave reaches the corner. Jones et al. 1951 
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show that the nonstationary Euler ·equations referred to this coordinate 

system transform into the steady Euler equations with the additon of 

source terms. We remark that the ratio s/L is constant for self-similar 

solut;ons of the nonstationary equations, just as s is constant for 

steady supersonic flow. In this and other ways a chanQe of pseudo-

stationary coordinates is very useful in the analysis of these flowfields 

and ·will be used in this study. 

In particular, the type of reflection pattern is a function of the 

incident shock-wave Mach-number Ms, the wedge angle ew, and the gas 

equation-of-state. The transition boundaries in the (Ms,e~)-plane for 

oblique-shock-wave reflection are reproduced from Lee and Glass 1982 in 

Figure 2, for real air and a polytropic equation-of-state with y=l.40. 

The analogous f~gure for argon (y=S/3) may be found in this reference. 

The construction of the transition lines is based on various (heuristic) 

transition criteria and the numerical calculation of the jump-conditions 

at reflection and triple points. These criteria, which have been the 

subject of extensive investigation in the literature, are summarized in 

Lee and Glass 1982 and Shirouzu and Glass 1983. In Section 5, the 

numerical results will be used to partially assess the validity of some 

of these criteria as well as the overall accuracy of the transition 

diagram, Figure 2. 

The fourfold partition of the (Ms,ew)-plane illustrated in Figure 

2 is quite coarse relative to the rich phenomenology present in these 

flowfields •. Some other features which may be similarly partitioned 

(see Ben-Dor and Glass 1979) are (a) whether or not the reflected shock 

is detached or attached to the wedge corner, (b) in the attached case, 

whether'the flow at the corner is subsonic or supersonic, (c) for RR, 
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whether the flow is subsonic or supersonic, in pseudo-stationary coordinates, 



at the reflection point, and (d) for CMR and DMR, whether or not M 

"toes-out" or "toes-in". 

A comprehensive study of these issues is beyond t~e scope of 

of this paper, but they will be discussed as appropriate in the comparison 

of experimental and numerical results in Section 5. 

3. Experimental techniques 

. The experiments for this study were performed in the University of 

Toronto, Institute for Aerospace Studies (UTIAS) 10 x 18cm Hypervelocity . 

Shock Tube. Background on the perfonmance and operation of the shock tube 

can be found in Boyer 1964, with the details of the experiments in 

Deschambault 1984. The facility includes specialized instrumentation 

used to observe density and pressure in the complex flow fields generated 

in the present experiments. 

The shock tube test section is equipped with large high-quality· 

interferometric windows. To study the density distributions of the flow 

fields a 23-cm dia. field ·of view Mach-Zehnder interferometer was employed. 

The specifications and operating instructions for this instrument can 

be found in Hall 1954. The interferometer was used in the infinite-

fringe mode which allows the direct observation of isopycnics (lines of 

constant density) in the two-dimensional flow field. The light source 

employed was a giant-pulse ruby laser which enabled the recording of 

dual-wavelength (694.3 nm and 347.2 nm) infinite-fringe interferograms~ 

with an exposure time of 30 ns. The test gases used in the present work 

were argon and medical-grade air. 

The reflect·1on patter·ns were produced by the impingement of a 

normal shock wave with steel wedges. Both cold-gas (C02 driver) and 

combustion-driver techniques were used to produce the incident shock waves 

into the test gases· used in the present study. For further discussion . 

of the facility and error of measurement associGted with the instrumentation 

see Deschambault 1984 and G1az et al. 1984. 

6 
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For some of the experimental results presented here, it was necessary 

to use test gases with very low densities and pressures relative to atmospheric 

conditions. As a result, vibrational nonequilibrtum effects must be taken 

into account in analyzing the corresponding tnterferograms. We note here 

that it is easy to check for a relaxation zone behind the incident shock 

wave because such a zone will produce extra fringes parallel to the shock 

in the post-shock flowfield. Behind the reflected shock wave, the characteristi• 

signature of a relaxing gas is the degree of tangential incidence of the 

isopycnics with the reflected shock wave. 

4. Numerical Method 

The numerical results presented in this paper have been calculated 

with a version of the Eulerian second-order Godunov scheme for nonstationary 

gasdynamics of a type considered by Colella and Woodward 1984. The version 

.of the scheme used here is presented in Colella and Glaz 1982, 1983, 

including the modifications required for nonpolytropic gases. 

The method is a finite-difference scheme for systems of hyperbolic 

conservation laws in one spacelike dimension; for multidimensional 

applications such as the shock-on-wedge problem, we employ operator 

splitting. Differencing is in conservation form and the numerical fluxes 

are computed by solving zone interface Riemann problems whose time

centered left and right states are computed from the characteristic form 

of the equations. This technique leads to second-ord~r accuracy in 

smooth flow and insures that the method is upstream-centered. In practice, 

the method is very stable and robust.· In the iiTITlediate vicinity of a 

strong shock~ some dissipation is required; this has been accomplished 

by smoothly dearadina the sche~ to the first-order Godunov schemp in such renion 

The degree of degradation is a function of the shock width and strenoth. 

For the argon cases, we have used a perfect (frozen) gas equation-of

state with y=S/3. If the shock tube test gas was real air, the equation-



of·state was chosen to be either a perfect. (frozen) ,gas with ya7/S or 

the Hansen 1959 real air equation-of-state as modified by Deschambault 

1984 for the present application. The efficient solution of the Riemann 
' . ~ - ' 

problem in the conte~xt of our second-order Godunov_ ~ethod for an arbitrary 

equation·of·state is treated in Colella_and Glaz 1982, 1983. Also, these 

papers demonstrate that the choice of equation-of-state has a substantial 

influence on the quantitative nur:nerical results, as might be expected • 
. , '· ... 

As noted in the preceding section, vibrational 

nonequilibrium (which is only temperature dependent) can be significant 

for moderate to high Mach numbers when the test gas is air (at high 

Mach numbers dissociation effects are also density dependent); for 

the argon cases considered here, we expect the gas to remain frozen. 

· The choice of an appropriate equation-of·state for the air calculations 

de-pends mainly on the vibrational relaxation length, £v, behind the 

shock-waves I ,R,M of Figure 1. If R.v~r (wher·e r is a characteristic 

flow length arising in the problem), then the gas is frozen and the 
' perfect gas equation-of-state is correct. If £>>£y, then the gas is 

in equilibrium and the Hansen equation-of-state for real air is used. 

Finally, if ly~r. then neither the frozen nor the·equilibrium hypothesis 

is appropriate, and the flow is said to be in·nonequilibrium. We 

have numerically treated such cases as equilibrium flowfiel ds using 

the Hansen equation-of-state, although the only correct procedure would 
1 

be to solve an additional partial-differential equation representing a 

rate equation for vibrational relaxation (and for dissociation at 

high Mach numberi). This decision will be an important issue in 

our discussion of these cases in Section 5. 

The computational mesh and our problem initialization procedure 

is illustrated in Figure 3. Note that these figures are drawn from 

right to left so as to conform with the experimental interferograms. 

We have used a square (i.e., Ax= Ay =constant) mesh for all of the 

8 



computations in Section S. Since the flow is pseudo-stationary, the 

choice of ~xis immaterial• however, in those cases for which a 

comparison of pressure-gauge records was desirable (see Glaz et al. 

1984), the total length should be chosen appropriately. 
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The initial data h ~· M5 where g c (r ,p,u,v)1 ;s the state vector 

and Ms is the initial !;hock-wave Mach-number. From thestdata and the 

~iven equation-of-state, the post-shock state g1 may be calculated. 

To initialize the two-dimensional calculation, theS(data .. ,.~ placed on 

the grid far upstream (~60-75 zones) of the corner, as illustrated in· 

Figure 3a; interpolation of conserved quantities [i.e .• Qc" 

(p,pU,pv,oE)1J is used for zones which straddle the incident shock. 

However, this is a very poor representation of the numerical 

shock since any shock car,>turing scheme will 

diffuse a shock wave over two or more zones •n the computational 

mesh •. The resulting structure is referred to· as a discrete travelling 

wave (i.e., a mesh function which depends only on ~-yt, where y is 

the vector velocity of the wave and equals the shock speed in magnitude 

for a discrete shock wave). Starting with any initial data (e.g •• the 

one zone~ - g1 jump described above) satisfying the Rankine-Hugoniot 

conditi9ns, the so1ution will tend as the number of times steps becomes 

large towards the appropriate discrete travelling wave. plus other 

low-amplitude waves which we refer to as "starting error", with the 

starting error separating trom the travelling wave. For the 

present application, it is very important to insure that the starting 

error is eliminated before the shock wave is allowed to reflect, and 

we proceed as follows. First, the computer code is allowed to run 

until the shock wave reaches the corner, and the situation in Figure 3b 

is reached. In this figure, the region immediately behind the shock 

and about 2-3 zones thick is the discrete travelling wave and the 

small (<5%) relative amplitude disturbances further downstream is the 



one-time starting error. The computer code then arbitrarily cha~ges 

the flowfield to that illustrated in ~igure 3c, i.e.·, the discrete .. 
' . 

travelling wave (arbitrarily set to 'xactly 4 zones hi the computer 

code) is retained but the starting error is replaced by the post

shock state ,g1. 

At this point, the flowfield becomes truly two-dimensional and 

the computer code is now run without further interruptiori untif the . 

end of the calculation is reached. 

T,he boundary conditions for this problem. which are standard, 

are discussed.in detail in Colella a~d Glaz 1983. We remark here that 

our treatment of the intersection of the incident shock with the upper 

and/or left-hand boundary is not entirely consistent with the 
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discrete travelling wave and leads to the introduction of a low relative 
. / 

amplitude <~lt) wave behind the incident shock at its intersection 

with the" ~oundary. This wave, which we refer to as a boundary error, 

may lead to a rather unaesthetic structure in the contour plots and 

it ,can impinge on the disturbed flowfield behind the reflected shock. 

Examples will be noted in Section 5. 

All calculations were performed on a CRAY I at los Alamos 

National laboratory, Los Alamos, New Mexico. The computer code was 

designed to take significant advantage of the machine's vector 

architecture. Each calculation in Section. 5 required 15-40 minutes CP 
·- ~-... 

time with most in the range.of 20-30 minutes. Much of this time 

is wasted on the extra grid points introduced to eliminate the 

starting error as well as grid points outside the reflected shock. 

Also, a fine mesh is only really needed in the Mach stem region.· Thus. 

an·-intelligent adaptive mesh structure could reduce these timings 

substantially. 

5. Computational results 

A direct comparison of experimental results and numerical calculat-

.. 

... 
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ions is presented in Part 1 of this section for five cases. 1n Part 11, 

the results of a parametrized sequence of calculations are 

presented in order to demonstrate the capability of our numerical method 

to compute transition boundaries in the (Ms,ew)-plane. An additional 

sequence is presented to demonstrate (upon comparison with experimental 

data) the effect of boundary-layer displacement on the RR:OMR transition. 

I. Comparison of Experiment with Calculation 

11 

The initial conditions for the five cases are listed in Table I ~~o~~ 

with the computational mesh (NX,NY) and the equation-of-state (EOS} selected 

for each calculation. All four wave configurations are represented in 

the range of (Ms,&w) considered. The following data are presented 

for each case: experimental isopycnics, computed isopycnics using 

the same density levels as were obtained in the experiment, computed 

isopycnics using 3D-contour levels equally spaced between the extreme 

flowfield densities, and a wall-density distribution plot (p/p
0 

vs. x/L) 

containing both the numerical and experimental results. Numerically 

generated contour plots (with 30 equally spaced contour levels) of other 

flowfield quantities will occasionally be included in the discussion. 

Of particular interest is the Mach number in pseudostationary coordinates, 

M, defined by M2(x,y,t) = [(u-J) 2 + (v-n) 2]/a2 where a = sound speed. 
'\, 

The quantity M-1 is plotted so that the zero-contour-level corresponds to 

the sonic line in this coordinate system. 

Case 1: RR, Ms = 2.05, ew = 60°, a.rgon. Comparison of the experimental 

~ and numerical hopycnics (Figs. 4a,b) show them to be in good agreement with an 

error of about one frinae at the start of the subsonic region. The w~ll density 

distribution (Fig. 4d) disagrees by about the same amount. It may be ... 

observed in Fig. 4.c that the contour levels curve sharply towards the 
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reflection point just above the wedge surface, an effect which is 

not present in the experimental results. This .numerical error is 

referred to as •well heating" and is conwnonly observed in shock capturing 

calculations as shown, for example, in Noh 1976.. Wall heating affects 

only the density, temperature, etc., but not the pressure (Fig. 4e). 

It may be seen to account for part of the observed error in this case, 

including the slight error- in the value of the reflected shock wave 

density P2 on the wall. In addition, the error in the stand-off distance 

of the bow shock ~,relative to the experimental distance from the reflection 

point P to the corner l, is about 6.2%. 

Case. 2: SMR, Ms = 2.03, ew = 27°, ai.r. ·The agreement for this case 

is extr~~ely strong in all respects (Figs. Sa,b,c,d). Quantitatively, 

the isopycnics are off by about one fringe (Figs. 5.a,b), and the 

wall-den_,sity plot (Fig. 5d) shows similar agreement for'its entire length. 

Note that the contact discontinuity spreads out in the experiment and, 

consequently, does not roll up as much as in the calculation. 

Case 3: CMR, Ms = 10.37, 6w = 20°, air. The experimental results (Fig. 

6a) show very strong nonequilibrium effects in the disturbed flowfield behind 

the reflected shock, with an almost equilibrium incident shock. The we.c:l~e. 

surface does not ·appear straight owing to-diffraction effects indicating 

that the sidewall boundary layer is significant. We get reasonably good 

qualitative agreement in the isopycnic patterns (Figs. 6a,c) although 

the tangential incidence at the shock in Fig. 6a cannot appear in Fig. ic. 

Also, the numerical wall heating is substantial. The quantitative 

agreement is equally good (Figs. 6e,b). In evaluating the wall-density 

plot (Fig. 6d), we note that the data points were evaluated assuming 

frozen-triple~point conditions. Also, we measure x =·12.5°- 13.25°, 

15.3° and the attachment angle= 20°- 21°, 25.5° for the experiment 
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and calculation, respectively. The latter difference explains the disagree

ment 1n F1g. 6d near x/L • 1.0. If the vortex roll up patterns could be 

lined up and the Hansen equation-of-state used in evaluating the data, 

it seems that quite good quantitative agreement could be obtained for x/L 

small despite the wall heating error. The dip in Fig. 6d at x/l ~ 

0.25 is due to the boundary error. 

Case 4: CMR/DMR, Ms c 7.19, ew c 20°, air. The experimental isopycnics 

(Fig. 7a) show clearly that this flowfield is neither frozen nor in equilibrium. 

Also, the isopycnics leave. the reflected shock almost tanqentiall.v which indicate 

that there are substantial nonequiHbrium effects across thiS wave as well. 

A more detailed discussion of equation-of-state and nonequilibr~um 

effects in the numerical analysis of this case is available in Colella and 

Glaz 198J. For the equation-of-state used here, the triple-point angle 

is in exact agreement. Note that P31Po is in very poor agreement 

(Fig. 7d) because the experimental data reduction used the frozen

triple-point conditions. The otherwise excellent agreement for x/L<0.15 

is surprising in view of the strong nonequilibrium and viscous effects in this 

region. The contours, including the vortex pattern, are in excellent qualitative 

and quantitative agreement (Figs. 7a,b,c). The attached corner is subsonic 

in the experiment (Fig. 7a) and supersonic in the calculation (Figs. 7·b,c). 
I 

This disagreement is caused by the nom!quUibrium effects as may be noted by 

comparing numerical results for different choices of equation-of-state, 
~ 

Colella and Glaz 1983. The M contours (Fig. 7e) show the sonic line 

approaching the kink which corresponds to this case lying on the 

CMR/DMR transition boundary; lee and Glass 1982 conjecture that this 

transition occurs when the sonic line reaches the kink. This case 

is an excellent example of the computational boundary error's effects on 

the disturbed flowfield (Figs. 7b,c and 7.d. x/l '\. 0.35). 
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Case S: OMR, M5 ", 8. 7, ew " 27°, air. Figure Sa exhibits substantial 

nonequilibrium effects. In particular,. 1v "'u.~ 1/1- for the 1nciaent shucil. 

and the isopycnics are at tangential incidence to the_ reflected shock. 

Also, the relaxing gas in the Mach stem region has obscured the slip-

stream and part of the roll-up pattern. Comparison of Figs. Ba,c show 

very good agreement. The roll-up pattern agrees very well, although the 

slipstream.normal to the wall at x/l rv 0.02 and the backward facing shock. 

normal to the wall at x/L rv 0.065 in Fig.Bc are either not resolved 

orare lost due to viscous effects in Fig. Sa .. Details of the calculated 

flowfield in the M~ch stem region are presented in Figs. 8e,f,g. The existence 

of an extra pseudostationary; stagnation point at the intersection of two slip~ · . . . . 
streams is noted in Fig. Be. WE have measured x = 9.6°, 7.0° and R (:ratio of th 

distance between the two triple points and L) = 0.1854, 0.1769 for the calculatio 

and experiment, respectively. The data points in Fig. Hd near x/L = 0.0 

were obtained using the triple-point conditions for y = 1.40 and x = 7.0°. 

The measured corner-attach~ent angles are 33.5°, 23.0° for the calculation 

and experiment, respectively. This nonequilibrium effect (which apparently is 

p6orly modelled with the equilibrium Hansen equation-of-~tate) explains 

the disagreement near x/L = l.O in Fig. Sd. We note that the numerical 

thermal layer is a large effect for this problem. Overall, real-gas 

effects have an extensive impact on the flow dynamics for this case and 

the equilibrium calculation cannot reproduce these effects. 

II. Transition Sequences· 

We have calculated a sequence of cases for perfect air at ew = 45° 

for 1.3~~1ss2.6 in increments of t~Ms = 0.1. Due. to lack of space, only 

a small portion of the results \'Jill be presented here. The full study, 

as well as the calculations for other line segments in the.(Ms.~w)-plane 
-

are included in Glaz et al. 1984. The purpose of these calculations is 
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to demonstrate the feasibility of using the computer code to construct 

the inviscid transition lines in the (Ms,ew)-plane and to test transition 

theories based on inviscid arguments. 

The contours of constant density for the Ms • 1.70 case are shown 

in Figure 9a . The configuration can be seen to be near the SMR ~ CMR 

boundary, but is is difficult to precisely judge the shape of the 

r.eflected shock. Contours of constant self-similar Mach number in the 

vicinity of the triple point are shown for the case and forMs= 1.80 in 

Figure 9b,c. The sonic line (in pseudostationary coordinates) has moved 

into Region 2 for the Ms = 1 .80 case; the extent of the supersonic 

region increases with increasing shock-wave Mach number, Ms~1.80 (not 

shown). Assuming that the SMR ~CMR transition occurs when Region 2 

becomes supersonic at the triple point (see lee and Glass 1982), it 

follows that the Ms = 1.80 case is a CMR. Similarly, we find that the 

cases for 1.3~Ms~l.7 are SMR's, because Region 2 is entirely subsonic 

for these results (not shown). Therefore, the computer code predicts 

the 45°, perfect gas SMR CMR transition to lie in the range 1.70~Ms~1.80. 

We remark that the analogous calculations for 45°, imperfect air with 

the Hansen equation-of-state (not shown) predicts 1.60~Ms~l.70 for the 

same transition. Both results reasonably agree with Fig. 2, but the 

Hansen results are in better agreement. A more precise prediction would 

simply be a matter of choosing a smaller value of bMs and, perhaps, 

using more mesh points in the triple point region to improve resolution. 

The results for the weak DMR case, Ms = 2.30, are shown in Figure 

9d,e. One theory for the CMR ~ DMR transition (see lee and Glass 1982) 

is that the flow at the first triple point should be supersonic with 

respect to the motion of the kink. Since the flow inmediately beneath 

the reflected shock and between the two triple points is constant, this 

criterion is equivalent to requiring that the_ sonic line (in pseudo-



stationary coordinates) intersect the kink. Also. the sonic line should 

have the same tangent at the kink as the second Mach stem. because the 

flow is supersonic ahead and subsonic behind this discontinuity. Using 

thh criterion. the calcuiations show that the Ms • 2.30 case is a weak 

DMR but that the cases for which 1.70~Ms~2.20 are CMR's. in reasonable 

agreement with Figure 2. We remark that 45°• imperfect air calculations 

(not shown} are in somewhat better agreement. 

Another sequence of cas~for perfect argon with Ms = 7.10 ~as 

been calculated for verious choices of ew with 49°~ew~54°. The purpose 

of these calculations is to estimate the inviscid RR~DMR transition 

boundary and, by comparison with experimental results, to demonstrate 

and quantify the we 11-known disagreement beb;een theory and experiment 

for this issue (see, for example, Shirouzu and Glass 1982). 

The ex peri menta 1 and computa tiona 1 doub 1 e-Mach-refl ection con

figurations for ew = 49° are shown in Figures lOa,b. These results are 

in substantial disagreement concerning the extent of the Mach stem 

region relative to the entire flowfield. 

for ew = 53.2° are shown in
1 
Figure lOc; 

The computational results 
. 

this case is in much closer 

agreement with the ·~~periment at ew = 49° than is Figure lOb. The 

diffet·ence, bew"-4.0- 4.5°. may be viewed as the "boundary-layer 

defect" (see Taylo~rnung 1981, Shirouzu and Glass 1982. and ...____..... 
Wheeler and Glass 1984). We have attempted to calculate the precise 

RR::: Df·1R transition point by plotting the height of the Mach stem 

relative to L vs. ew for several computations in Figure lOd and 

extrapolating the curve to zero height. The result is eW"-53.85°. 

which disagrees moderately with the theoretical- result of ew"'54.4° in 

Lee and Glass 1982. We remark that this error may be caused by an 

unnoticed.bias in our measuring technique (simply using a ruler on 
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the computer-generated contour plots of the blow-up Mach stem region). 

lack of numerical resolution when the Mach stem is only 1-2 zones high, 

or a numerical error in the post-shock flowfield at the wall. In 

any case. the error is small relative to the viscous-inviscid difference 

and it is ·also possible that the theoret;cal inviscid predicHon. which 

is an infinitesimal result, of ew"'54.4° does not apply when the entire 

disturbed flowfield is taken into account. 

6. Conclusions 

A computer code has been developed for the inviscid, perfect-gas 

shock-on-wedge problem and the results have been compared with the best 

available experimental data. The code is based on state-of-the-art 

methodology and has only recently been available. 

Good to excellent qualitative agreement has been obtained in all 

cases, and this applies to structures beneath the reflected shock such 

17 

as the vortex roll-up as well as coarser criteria such as the reflection 

pattern. Nonequilibrium effects and viscous structures may at least be strongly 

suspected to cause any of the qualitative disagreements. Quantitatively, 

the results are very good for flow fields without observable nonequilibrium 

or viscous effects. When such effects are significant. errors of 10-15% 

are typical. A pervasive. but easily analyzable. numerical error present 

in most cases is the .. wall-heating" effect. 

Although the case has not been entirely proven, it appears that the 

computer code represents a substantial predictive capability for the 

shock-on-wedge problem restricted to inviscid, perfect gases. Even for 

viscous, real-gas flowfields, the computational results provide a 

significant amount of information. including highly resolved flowfield 

structures. 

Significant nonequilibrium and viscous effects have been demonstrated 
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in the shock-wave diffraction experiments. Much of this could be inferred 

Without the numerical Study, but the latter Cln provide I quantitative 

estimate of the various effects. In particular, vibrational relaxation 

is observed_ in the high shock-wave Mach~umber cases, and this can have 

large-scale effects on criteria such as th~ corner attac~ment angle and 

type (subsonic or supersonic) and·viscous effects are ~mportant in 

determining the vortex roll-up pattern and the wedge corner flowfield. 

Although_ these effects occur in thin layers or small regions, they may 

have an eff~ct on the quantitative results in the inviscid portion of 

the flowfield. 

The capability of the computer code to discriminate between very 

small increme~ts in problem parameters (Ms. ew• and the equation-of-state, 

although the latter has not been treated here} has been demonstrated. 

Using parametrized sequences of calculations, it would be possible 

to construct transition boundaries in the (Ms,ew)-plane. Of course, the 

transitions obtained would be dependent on the transition criteria used 

in their construction; our use of the sonic criterion in self-similar 

coordinates shows how the infinite amount of data potentially available 

from a calculation can be invaluable in evaluating one of the proposed· 

criteria. 

Also, we have been able to validate the conjecture that the RRtDMR 

transition is offset in experiments by a boundary-layer defect. 

In future work, we intend to modify our computer code and include 

an approximation for vibrational relaxation. We expect that this work 

will settle some of the questions raised in this paper. The results 

. presented here demonstrate, however, that a valid approximate solution 

method for the Navier-Stokes equations will be required if complete 

agreement between experiment and calculation is demanded. Despite these 

shortcomings, the comparison of the present numerical simulations with 



interferometric date from RR, SMR, CMR and DMR experiments are probably 

the best available to date. Additional results are available in Glaz 

et al. 1984. 
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Case Gas Type 

1 Argon· RR 

2 Air SMR 

3 Air CMR 

4 Air C/DMR 

5 Air DMR 

.. 

TABLE I. EXPERIMENTAL AND NUMERICAL INITIAL CONDITIONS 

Ow Ms P0 (kPa) o0 (kgtm3) EOS 

60° 2.05 20.0 3.23x10 -1 v=S/3 

27° 2.03 33.3 .3.87x10 -1 y=7/5 

10° 10.37 6.7 7.53x10-1 Hansen 

20° 7.19 8.0 9.29x1o-2 Hansen 

27° 8.70 4.1 4.76x1o-2 Hansen 

.~' 

NX 

355 

350 

400 

420 

440 

NY 

90 

130 

140 

220 

85 

~ ·~ 

N 
N 
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Figure Captions 

1. Schematic diagrams of types of oblique...;.shock-wave reflections; 
a) RR, b) SMR, c) CMR and d) DMR; aiso definitions of L and s. 

2. Regions of RR, SMR, CMR and DMR and their transition boundaries 
in the (M~, 8w)-plane for perfect (frozen) air and imperfect 
(equilibnum) air ------, p 0 = 2.00 kPa, T

0 
= 300K, y = 1.40. 

3. Numerical scheme for flow initialization; a) Starting procedure, 

4. 

5. 

6. 

7. 

b) Shock reaching corner, c) Elimination of small disturbances. 

Case 1, RR, M~ = 2.05, 8w = 60°, p 0 = 20.0 kPa, T0 = 297.6 K, argon, 
p0 = 0.323 kgtm 3

; a) Interferogram and experim~ntal isopycnics, 
b) Numerically simulated isopycnics shown in a), c) 30 numerical 
isopycnics, equally spaced between the minimum and maximum flowfield 
densities, d) Wall-density distribution; computational results, 
• experimental data, e) 30 equally spaced numerical isobars. 

Case 2, SMR, Ms = 2.03, Ow= 27°, Po= 33.3 kPa, T0 = 299.2 K, air, 
p 0 = 0.387 kg/m 3

; a) Interferogram and experimental isopycnics, 
b) Numerically simulated isopycnics shown in a), c) 30 equally 
spaced numerical isopycnics, d) Wall-density distribution; 
computational results, • experimental data. 

Case 3, CMR, Ms = 10.37, 8w = 10°, Po= 6.7 kPa, T0 = 299.0 K, air, 
p 0 = 0.753 kg/m 3

; a) Interferogram and experimental isopycnics, 
b) Numerically simulated isopycnics shown in a), c) 30 equally 
spaced isopycnics, d) Wall-density distribution; computational 
results, • experimental data. 

Case 4, C/DMR, M = 7.19, 8w = 20°, Po= 8.0 kPa, To= 298.5 K, air, 
p 0 = 0.0929 kg/~; a) Interferogram and experimental isopycnics, 
b) Numerically simulated isopycnics shown in a), c) 30 equally 
spaced isopycnics, d) Wall-density distribution; computational 
results, • experimental data, e) 30M contour levels (blowup frame); 
minimum,and maximum M values are relative to the frame. 

8. Case 5, DMR, Ms = 8.70, 8w = 27°, p 0 = 4.1 kPa, T0 = 299.2 K, air, 
p0 = 0.0476 kg/m 3 ; a) Interferogram and experimental isopycnics, 
b) Numerically simulated isopycnics shown in a), c) 30 equally 
spaced isopycnics, d) Wall-density distribution; computational 
results, • experimental data, e) Density contours (blowup frame), 
f) Pressure contours (blowup frame), g) (u, v)-vector plot (blowup 
frame plus overlay of wave system). 

9. Transition sequence for perfect (frozen) air, 8w = 45°; a) isopycnics, 
Ms = 1.70, 8w = 45°, b) M blowup forMs= 1.70, showing sonic line 
interior to the reflected shock, c) M blowup forMs = 1.80, showing 
region of supersonic flow beneath the reflected shock, d) isopycnics, 
Ms = 2.30, 8w = 45°, DMR, e) Blowup showing details of M for case d) 
above, where sonic line intersects the kink. 
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Figure Captions (continued) 

10. Transition sequence for argon, Ms = 7.1; a) Interferogram and 
experimental isopycnics, Ms = 7.1, 8w = 49.0°, Po= 2.0 kPa, T0 = 
296.3 K, p

0 
= 0.0329 kg/m 3 , b) 30 equally spaced isopycnics, 8w = 49.0°, 

c) 30 equally spaced isopycnics, 8w = 53.2°, d) Plot of DMR Mach stem 
height versus ew, extrapolated to zero height for RR (h/1 = 0 for 8w = 
53.85°), h/L = 0 for 8w = 54° is a numerical result. A experimental 
point, • numerical results. 
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r 
a 

b 

·-~----- . 

Region p/po Region p/po 

(0) 1.00 h 3.86 
(1) 2.33 1 3.80 
(2) 4.38 j 3.73 
a 4.32 k 3.67 
b 4.25 1 3.60 
c 4.19 m 3.54 
d 4.12 n 3.47 
e 4.06 0 3.41 
f 3.99 p 3.34 
g 3.93 q 3.28 

c 

Figure 4a,b,c 
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REGION P/Po REGION P/Po 

0 1.00 8 3.68 
1 2.71 f 3.75 
2 3.68 
3 3.33 

g 3.83 
h 3.91 

a 3.36 i 3.99 
b 3.44 
c 3.52 

j 4.06 
k 4.14 

I 
d 3.60 

I I 

Figure Sa,b 
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Figure 5c 
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(0) 1.00 
(1) 5.73 
(1 I) 6.33 
(2) 6.30 .. (3) 5. 77 
a 6.70 
b 7.10 
c 7.50 
d 7.90 
e 8.29 
f 8.69 
g 9.09 
h 9.49 
i 9.89 
j 10.29 

Figure 6a,b 
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Figure 7a.b 
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a 

b 

REGION P/Po- REGION P/Po 

(0) 1.00 g 13.32 
(1) 5.63 h 13.95 
(1') 6.89 i -14.58 
(2) 7.44 j 15.21 
(3) 5.74 k 15.84 
a 9.53 I 16.47 
b 10.16 m 17.10 
c 10.79 n 17.73 
d 11.42 0 18.36 
a 12.05 p 6.37 
f 12.68 q 8.07 

Figure 8a, b 
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Figure 8e 
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Figure 8f 
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