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The identification and production of recombinant morphogens and growth factors that play
key roles in tissue regeneration have generated much enthusiasm and numerous clinical trials,
but the results of many of these trials have been largely disappointing. Interestingly, the trials
that have shown benefit all contain a common denominator, the presence of a material
carrier, suggesting strongly that spatio-temporal control over the location and bioactivity
of factors after introduction into the body is crucial to achieve tangible therapeutic effect.
Sophisticated materials systems that regulate the biological presentation of growth factors
represent an attractive new generation of therapeutic agents for the treatment of a wide var-
iety of diseases. This review provides an overview of growth factor delivery in tissue
engineering. Certain fundamental issues and design strategies relevant to the material car-
riers that are being actively pursued to address specific technical objectives are discussed.
Recent progress highlights the importance of materials science and engineering in growth
factor delivery approaches to regenerative medicine.
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1. INTRODUCTION

Regenerative medicine, which is a term often used inter-
changeably with tissue engineering, merges the fields of
life sciences and engineering and aims to orchestrate
body regeneration by specifically controlling the biolo-
gical environment [1]. Regeneration in the adult often
represents a recapitulation of developmental processes,
and strives to maintain and/or restore tissue integrity
and functionality. Regenerative medicine provides
alternatives to organ transplantation, which is limited
in applicability owing to immune responses against allo-
grafts and the large disparity between the need for
organs and tissues and the number available for trans-
plantation. Inspiration for regenerative medicine
strategies commonly derive from our increasing under-
standing of how cells and biological systems decipher
cues, and aims to replicate biological concepts and
instructions expressed during embryonic development,
including signal transduction pathways, transcription
factor instructions and protein regulation. Growth fac-
tors are critical signalling molecules that instruct cells
during development, and one may achieve tissue regen-
eration in the adult by enabling control over growth
factor delivery.
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Tissue-regeneration strategies are often broken down
into three categories: (i) direct injection of bolus cells
into the tissue of interest or the systematic circulation,
(ii) implantation of cells after they have been combined
to form a three-dimensional tissue structure, often
within a bioreactor, and (iii) scaffold-based delivery of
signalling molecules such as low-molecular-weight
drugs, proteins and oligonucleotides that stimulate
cell migration, growth and differentiation. These signal-
ling molecules, which are the focus of this review, are
broadly grouped into the overlapping categories of
mitogens (stimulate cell division), growth factors (orig-
inally identified by their proliferation-inducing effects,
but have multiple functions) and morphogens (control
generation of tissue form). Precise control over the sig-
nalling of these factors in a local area may potentially
allow control over a regenerative process. As is typical
in this field, the term growth factor will be broadly
used in this review for proteins, which affects cell
migration, proliferation and cellular differentiation. In
this review, we will discuss general approaches to the
strategic use of these factors and specific applications
in regenerative medicine. This review is focused on the
materials science and chemistry aspects of this topic,
not the polymer physics. In particular, we first will dis-
cuss the types of growth factors, their mechanisms of
This journal is # 2010 The Royal Society
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Table 1. Popular growth factors in tissue regeneration. Ang, angiopoietin; bFGF, basic fibroblast growth factor; BMP, bone
morphogenetic protein; EGF, epidermal growth factor; FGF, fibroblast growth factor; HGF, hepatocyte growth factor; IGF,
insulin-like growth factor; NGF, nerve growth factor, PDGF, platelet-derived growth factor; TFG, transforming growth factor;
VEGF, vascular endothelial growth factor.

abbreviation tissues treated representative function

Ang-1 blood vessel, heart, muscle blood vessel maturation and stability
Ang-2 blood vessel destabilize, regress and disassociate endothelial cells from

surrounding tissues
FGF-2 blood vessel, bone, skin, nerve, spine,

muscle
migration, proliferation and survival of endothelial cells,

inhibition of differentiation of embryonic stem cells
BMP-2 bone, cartilage differentiation and migration of osteoblasts
BMP-7 bone, cartilage, kidney differentiation and migration of osteoblasts, renal development
EGF skin, nerve regulation of epithelial cell growth, proliferation and

differentiation
EPO nerve, spine, wound healing promoting the survival of red blood cells and development of

precursors to red blood cells.
HGF bone, liver, muscle proliferation, migration and differentiation of mesenchymal stem

cells
IGF-1 muscle, bone, cartilage, bone liver,

lung, kidney, nerve, skin
cell proliferation and inhibition of cell apoptosis

NGF nerve, spine, brain survival and proliferation of neural cells
PDGF-AB (or -BB) blood vessel, muscle, bone,

cartilage, skin
embryonic development, proliferation, migration, growth of

endothelial cells
TGF-a brain, skin proliferation of basal cells or neural cells
TGF-b bone, cartilage proliferation and differentiation of bone-forming cells, anti-

proliferative factor for epithelial cells
VEGF blood vessel migration, proliferation and survival of endothelial cells.
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action and variables affecting growth factor delivery.
Section 2 summarizes strategies for biomaterial
presentation of growth factors including: (i) chemical
immobilization and (ii) physical encapsulation. The
former will discuss not only covalent conjugation of
growth factors, but also growth factor incorporation
through secondary interactions between growth
factors and the biomaterials. The latter section
will cover a variety of physical encapsulation strat-
egies aimed at pre-programmed release and diffusion
of growth factors into surrounding tissues. Section 3
of this review covers release on demand of growth
factors.
2. GROWTH FACTOR INTERACTIONS
WITH NATURAL AND SYNTHETIC
EXTRACELLULAR MATRICES

2.1. Types of growth factors and their
mechanism of action

Growth factors are soluble-secreted signalling polypep-
tides capable of instructing specific cellular responses
in a biological environment ([2]; table 1). The specific
cellular response trigged by growth factor signalling
can result in a very wide range of cell actions, including
cell survival, and control over migration, differentiation
or proliferation of a specific subset of cells. Prior to
addressing strategic delivery of growth factors, under-
standing the biological functions and roles of these
proteins in the extracellular matrix is first of all required
because the extracellular matrix contain numerous
components such as adhesive molecules, notch signal-
ling molecules, traction-enabling adhesion molecules
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and proteoglycan molecules to bind and modulate the
activity of a number of growth factors [3–5]. The
signal transmission mechanism initiates with growth
factor secretion by the producer cell. The growth
factor instructs cell behaviour through binding to
specific transmembrane receptors on the target cells
(figure 1). The machinery that transduces the growth
factor-binding signal to the cell nucleus involves a com-
plex array of events involving cytoskeleton protein
phosphorylation, ion fluxes, changes in metabolism,
gene expression, protein synthesis and ultimately an
integrated biological response [6].

Growth factors differ from other oligo-/polypeptide
molecules, such as insulin and hormones, in the mode
of delivery and response elicited. Typically, growth fac-
tors do not act in an endocrine fashion; they exhibit
short-range diffusion through the extracellular matrix
and act locally owing to their short half-lives and slow
diffusion. The ability of a growth factor to deliver a par-
ticular message to a distinct subpopulation of cells is
not exclusively determined by the identity of the
growth factor and its ability to diffuse through the
extracellular matrices (ECMs); it is also determined
by the target cell number, type of receptors and the
intracellular signal transduction subsequent to factor
binding. The same growth factor can convey different
instructions depending on the receptor type to which
it binds, and on the cell type to which it binds. More-
over, the same receptor can translate different
messages depending on the intracellular transduction
pathways, which can differ from one cell type to
another. The ultimate response of a target cell to a par-
ticular soluble growth factor can also be governed by
external factors, including the ability of the factors to
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Figure 1. Cross talk between cells mediated by growth factors and ECM. The producer cell secretes soluble growth factors that
bind to target cell receptors. The instructions are translated into the cell through complex signal transduction networks resulting
in a specific biological cellular response. Insert illustrates how ECM can control growth factor presentation in a temporal and
spatial fashion. Cell migration towards gradients of growth factors, bonded to ECM, can also be ECM mediated, whereas
cells will use integrin machinery to follow growth factor gradients. Upon degradation, ECM growth factors become available
for cell binding via cell membrane growth factor receptors and will ultimately induce a specific biological cellular response.
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bind to ECM, ECM degradation and growth factor con-
centration and cell target location [7].
2.2. Variables affecting growth factor interaction
with ECM

2.2.1. ECM-mimicking polymer carriers. The insoluble
matrix cues presented by the ECM are also critical to
govern tissue formation and regeneration in spite of
the emphasis on growth factor signalling in mediating
cellular fate. The ECM can regulate the spatial presen-
tation of growth factors by controlling the extent of
binding of these factors to the matrix. For example,
the presence of heparin-binding domains in certain
growth factor molecules is crucial to mediate specific
interactions with the ECM. Growth factors that exhibit
ECM-binding domains frequently are present in spatio-
temporal gradients that provide essential cues to elicit
specific cellular responses [8]. In contrast, growth fac-
tors lacking ECM binding capabilities are much more
highly diffusible in tissues. The ECM, although not
the focus of this review, also plays critical roles in med-
iating cellular migration and maintaining cells in a
quiescent state, by the local presentation of physical
and structural cues allowing the anchorage of the cellu-
lar motility machinery (e.g. actin fibres, integrins; [7]).
For example, integrins, a large family of cell surface
ECM receptors, are active in regulating angiogenic
J. R. Soc. Interface (2011)
signalling and endothelial cell behaviour in physiological
and pathological events [9,10].

Control over the overall growth factor regulatory
system is critical to instruct specific cellular decisions.
The response of cells to growth factors can be regulated
by cell–cell signalling, and together these processes
affect cell proliferation, differentiation and stem cell
fate decisions. One recent report suggests that the
local concentration of growth factors influences cad-
herin-mediated cell–cell contact, which suppresses cell
proliferation only when a specific growth factor recedes
below a threshold level [11]. Similarly, angiogenesis pro-
moted via vascular endothelial growth factor (VEGF)
was effectively controlled by notch signalling, which is
known to suppress the uptake of VEGF. Moreover,
local notch inhibition by a small molecule (DAPT,
N-[N-(3,5-difluorophenacetyl-L-alanyl)]-S-phenylglycine-
t-butyl ester, g-secretase inhibitor IX) assists the
effective uptake of VEGF by endothelial cells, resulting
in the promotion of regional angiogenesis [3].

Owing to the critical role of growth factors in con-
trolling basic cellular functions, and their ability to
directly elicit and orchestrate tissue regeneration, a
wide range of growth factors has been tested for distinct
therapeutic applications, including bone regeneration
and neovascularization of ischaemic tissues. The ability
of angiogenic factors to treat ischaemic diseases was
first examined by intracoronary injections of fibroblast
growth factor (FGF), and animal studies demonstrated



Table 2. Results of some clinical studies using different growth factor strategies for therapeutic applications. n.a., not
applicable.

study
no. of
patients

growth
factor administration clinical target result commercially available

VIVA [23] 178 VEGF165 infusions (intravenous
and intracoronary)

cardiovascular
diseases

neutral n.a.

FIRST
[19,24]

337 FGF-2 infusions
(intracoronary)

cardiovascular
diseases

neutral n.a.

‘Polymer’
[181,182]

24 FGF-2 alginate microcapsules cardiovascular
diseases

positive n.a.

BESTT
[183,184]

450 BMP-2 collagen sponge bone fractures positive yes (https://www.
infusebonegraft.com/)

OP-1 Putty
[185,186]

336 BMP-7 collagen matrix bone defects positive yes (http://www.stryker.com/en-
us/products/Orthobiologicals/
index.htm)
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improvement of cardiac systolic function and reduction
in the infarcted area [12]. A number of growth factors
have been tested in clinical trials using a similar deliv-
ery approach, including VEGF [13–16]. Phase I trials
typically have reported promising results [17,18]. How-
ever, the results obtained in the larger phase II trials
have not shown the expected benefit to patients ([19];
table 2). These disappointing clinical results with
angiogenic factors demonstrate the need for the devel-
opment of alternative strategies capable of inducing a
sustainable and physiologically meaningful
neovascularization.

The relatively unsuccessful experience with the phase
II angiogenesis clinical trials could be attributable to
several causes, including the formulation of the
growth factor used, the dose used, the route of adminis-
tration and/or inappropriate clinical trial design (e.g.
selection of patients). Although largely neglected by
the clinical community, one particular limitation is
probably the mode of delivery. Large doses of potent
growth factors, formulated in solution form, were
directly injected into the body. This administration of
supraphysiological concentrations of growth factors
may lead to severe side effects owing to the extremely
high initial concentration, and conversely may not
allow sufficient levels of the factors to be sensed by
target tissue for the necessary time frame owing to
their rapid degradation and cleaving. Degradation of
growth factors in vivo can occur via several distinct
pathways, including denaturation, oxidation or proteo-
lysis [20,21]. For example, VEGF presents a biological
half-life of less than 30 min when infused intravenously
[22], resulting in the need for massive doses and mul-
tiple injections [19,23,24]. However, the use of large
quantities of VEGF should be avoided because it
could lead to catastrophic pathological vessel formation
at non-target sites (e.g. dormant tumours). The classi-
cal delivery strategies that use infusions of factor
cocktails intrinsically lack targeting of specific cell
populations, and probably result in a transient and
inadequate biological response.

To improve unsatisfactory outcomes in classical
delivery of growth factors, polymer matrices with rel-
evant modifications for the presentation of growth
factors could be good platforms as delivery substrates.
J. R. Soc. Interface (2011)
Bioactive factors can be chemically immobilized or
physically encapsulated into polymer matrices, prevent-
ing their denaturation, and their release can be
controlled by the degradation rate of the polymer
matrices, their diffusion through the polymer construct
or external triggers [25,26]. During polymer/growth
factor complex preparation, features such as chemical
modification of polymer matrices (e.g. adhesion cues)
and physical encapsulation of growth factors with sec-
ondary polymer carriers may be critical to increase
the therapeutic efficiency. Elaborate engineering of
delivery matrices composed of polymers showing dis-
tinct physical properties can also provide a dramatic
enhancement of therapeutic efficiency. The degradation
kinetics of polymer-based delivery systems enable one to
control the release profile of growth factors, resulting in
optimized concentrations of growth factors, which is a
main goal of these systems.

The design and control of extracellular matrix-
mimicking scaffolds for effective growth factor-relating
treatments have attracted wide attention in tissue
engineering. From a biophysical perspective, polymer
matrices used for growth factor delivery substrate
must also be considered to be a biological compartment
in tissue development because the matrices will affect
not only the factor’s efficiency but also cell fate. In addition
to designing polymer structures to control chemo-
tactic responses of cells with growth factor delivery, the
physical properties of the scaffolds may influence sub-
sequent cellular growth factor secretion and related cell
signalling [27]. There are many reports that physical par-
ameters, such as shape, elasticity, hardness, stiffness,
pore size, elastic reversibility and degradation rate of
matrices, can alter cellular processes [28,29]. For example,
short filaments showed higher persistence in vivo than
spherical counterparts, and cellular uptake was one
order of magnitude higher than longer filaments [30]. A
further example is the finding that increasing the degree
of cross-linking of three-dimensional polymer networks
incorporating bone morphogenetic protein-2 (BMP-2)
used in the healing of critical-sized defects in rat calvaria
caused a decrease in the cell migration rate [31–33].

2.2.2. Spatio-temporal control over the multiple growth
factors. In addition to localized delivery of a single
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Figure 2. Illustration displays spatio-temporal delivery of distinct factors. A material system loaded with different bioactive fac-
tors can be tailored to display a sequential delivery of these factors over time, resulting in controlled sequential waves of factor
delivery over extended periods of time.
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component or factor, simultaneous or sequential deliv-
ery of multiple growth factors has also been exploited
to enhance the therapeutic efficiency. The complex pro-
cesses of cell migration, differentiation and proliferation
are typically dependent on both the presence of specific
growth factors, and their time-dependent and spatial
distributions. Composite polymer systems can be
designed to induce the spatio-temporal delivery of mul-
tiple growth factors. Complex polymer systems showing
distinct release kinetics for growth factors may be criti-
cal to control biological processes. For example, the first
step of angiogenesis requires VEGF, FGF and
angiopoietin-2 (Ang-2) to disrupt the structure of pre-
existing blood vessels, and to promote the proliferation
and migration of new cells to form new immature
vessels. Next, angiopoietin-1 and PDGF-BB stabilize
these newly formed blood vessels [34–36]. Sequential
and simultaneous delivery of these growth factors has
been shown to enhance vascularization ([27,37,38];
figure 2). Degradable alginate hydrogel-based delivery
systems have also provided the simultaneous delivery
of an osteogenic growth factor and other morphogens
and showed enhanced effects [39,40]. In a similar
manner, sequential delivery of BMP-2 and
BMP-7 encapsulated in (poly(lactide-co-glycolide)
(PLG) acid-based nanoparticles through chitosan-
based three-dimensional fibre scaffolds was also recently
reported [41–43]. Different combinations of sequential
delivery with BMP-2 and insulin-like growth factor
(IGF-1) from a layered structure, BMP-2 and trans-
forming growth factor-b3 (TGF-b3) from alginate
hydrogels and VEGF and BMP-2 from gelatin micro-
particles have recently shown enhanced healing effects
compared with single growth factor delivery
[40,44,45]. Also, sequential delivery of three factors
J. R. Soc. Interface (2011)
from alginate scaffolds, VEGF, PDGF-BB and TGF-
b1, showed superior vascularization to only basic
fibroblast growth factor (bFGF). Each protein has a
different association with alginate, and the difference
in affinity governs the release rate [46,47].
3. STRATEGIES FOR BIOMATERIAL
PRESENTATION OF GROWTH FACTORS

Two distinct strategies for biomaterial presentation of
growth factors in tissue engineering have been pursued:
(i) chemical immobilization of the growth factor into or
onto the matrix and (ii) physical encapsulation of
growth factors in the delivery system (figure 3). The
former approach typically involves chemical binding
or affinity interaction between the growth factor-con-
taining polymer substrate and a cell or a tissue. The
latter approach is achieved by the encapsulation, diffu-
sion and pre-programmed release of growth factor from
substrate into the surrounding tissue. The efficacy of
factor delivery can be significantly enhanced by three-
dimensional patterning of the growth factors on
scaffolds [48–50]. Both general concepts and recent
advances in these two strategies will be discussed in
this section. In addition, growth factor release on
demand by external/internal triggering provides
another level of control and will be discussed in the
diffusion-based growth factor release section.

3.1. Chemical conjugation of growth factors
or morphogens to scaffold materials

A variety of techniques to conjugate growth factors to
natural or synthetic biomaterials and chemicals have
been developed. These immobilized factors will be
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available to cells that come in contact with the matrix,
providing a highly localized signal to control cell fate
(e.g. stem cell differentiation; [51,52]). Growth factors
may be active in the bound state or be activated by
cleavage from the matrix. Site-specific tethering of
growth factors and other biological molecules enables
one to control multiple functions of growth factors
and their delivery. There are two main strategies for
direct presentation of growth factors on extracelluar
matrices: (i) physical adsorption owing to protein–
protein hydrogen bonding or hydrophobic interactions
with excipient molecules often acting as a molecular
chaperone (non-covalent approaches) and (ii) direct
covalent immobilization of the growth factor or
growth factor-mimicking molecules to the matrix
(covalent approach). Regardless of which technique is
used to immobilize growth factors, making the scaffolds
also adhesive to cells will aid in bringing the cells into
close contact. The potential benefit of this concept
has been further demonstrated by the finding that the
effects of growth factors such as VEGF-A and bFGF
(or FGF-2) are influenced by extracellular matrix recep-
tors as integrin binding can increase the activation of
growth factor receptors [53–56]. Based on these
J. R. Soc. Interface (2011)
findings, a ligand for avb3-integrin has been used to
increase growth factor receptor expression and cellular
response [57].
3.1.1. Non-covalent incorporation. Absorption of
growth factors typically exploits direct charge–charge
or other secondary interactions between growth factors
and matrices, or indirect interaction via intermediate
proteins or other biological molecules [58–60]. Proteins
such as heparin, fibronectin, gelatin and small oligopep-
tides mimicking large proteins can be chemically or
physically coated to provide specific biological sites to
immobilize the growth factors or morphogens. Small
molecules mimicking key fragments and functions of
these large proteins can also be used in their place to
immobilize growth factors.
3.1.1.1. Biopolymeric gels for immobilization of growth
factors. Biopolymeric gels containing fibronectin, lami-
nin, collagen, elastin or the glycosaminoglycans heparin
sulphate, chondroitin sulphate, hyaluronic acid or a var-
iety of synthetic hydrogels have been used as
extracellular matrix-mimicking materials to immobilize



Review. Polymeric growth factor delivery K. Lee et al. 159
growth factor-inducing moieties or growth factors
directly [61,62]. For example, fibrin, which plays an
important role in wound healing, has been used to
link and deliver peptides or growth factors into the
area of interest. Bioactive molecules have been
covalently coupled to fibrin using enzymes [63]. The
b-nerve growth factor (NGF) fusion protein immobi-
lized to fibrin in this manner is released by means of
the proteolytic activity of plasmin, and this mode of
delivery showed enhanced nerve regeneration [64].
Release of similarly coupled BMP-2 from fibrin gels
via cell-activated plasmin induced bone defect healing
[65]. Similarly, an engineered variant of VEGF bound
to a fibrin network was developed for induction of
local angiogenesis [48,50,66]. However, growth factor
coupling and release can show deleterious effects,
suggesting that delivery must be optimized for each
situation [67].

For example, the surface of extracellular matrix-
mimicking substrates can be chemically or physically
modified to immobilize heparin, in order to bind
growth factors via their affinity to the grafted heparin.
Heparin-based growth factor-delivery systems have
demonstrated the ability to provide sustained release
of growth factors [68]. The kinetics of release is depen-
dent not only on the constant association between the
electrostatically bound molecules, but also on the
environmental conditions (e.g. temperature, acidity
and hydrophobicity). There are several recent reports
showing affinity and release results of platelet-derived
growth factor (PDGF), basic FGF, VEGF, TGF-b
and bone morphogenetic proteins (BMPs) in heparin
or other materials-coated ECMs [58,69–75].
3.1.1.2. Small oligopeptides mimicking proteins. The
coupling of small oligopeptides mimicking the adhesion
properties of large matrix molecules to a delivery vehicle
can aid in obtaining effective responses to delivered
growth factors [76–80]. For example, arginine–
glycine–aspartic acid (RGD)-presenting macroporous
scaffolds have been used to transplant myoblasts to
muscle laceration sites as well as to provide a sustained
delivery of hepatocyte growth factor (HGF) and fibro-
blast growth factor-2 (FGF-2). Compared with blank
scaffold or delivery of only cells or growth factors, the
combined system enhanced the survival and migration
of the transplanted myoblasts, and overall muscle
regeneration [81]. Similarly, macroporous alginate scaf-
folds releasing VEGF and containing covalently linked
cell-adhesion peptides dramatically increased the survi-
val rate of endothelial progenitor cells delivered into the
body, and the return of blood perfusion to ischaemic
tissue [82]. This approach also provides a platform for
immune-modulating function. One recent example
involves the immobilization of a peptide (YCWS-
QYLCY) to a hydrogel, in order to mimic the tumour
necrosis factor-a (TNF-a) recognition loop to enhance
the survival and function of encapsulated cells [83].
The use of peptide amphiphile molecules to form self-
assembled factor delivery vehicles has also been
reported [84]. This strategy exploits self-assembling oli-
gopeptides composed of alternating hydrophilic and
J. R. Soc. Interface (2011)
hydrophobic amino acids (RARADADARARADADA)
as building blocks. The conjugation of biotin molecules
at the end of the peptides allows incorporation of tetra-
valent streptavidin molecules, and subsequent tethering
of a biotinylated IGF-1 has been used for prolonged
factor delivery and activity.

3.1.2. Covalent incorporation. Covalent bonding of
growth factors to material carriers can provide more
prolonged release than that achieved by physical immo-
bilization. There are other potential advantages in
presenting growth factors as matrix-tethered molecules
for applications in tissue engineering, as well. The fac-
tors remain competent to bind and activate the
growth factor receptors, but are more slowly degraded
and internalized. Factors can be conjugated to the poly-
mers via functional groups, which are incorporated by
copolymerization or chemical or physical treatment
[85]. For example, epidermal growth factor (EGF)
which was covalently coupled to amino-silane glass
via star poly(ethyleneoxide) (PEO), which allows the
ligand to retain better mobility, is more effective in pro-
moting cell-growth responses in primary rat
hepatocytes than physically adsorbed EGF [86]. Simi-
larly, TGF-b1 conjugated covalently to poly(ethylene
glycol) PEG hydrogels leads to increased matrix pro-
duction, and can counteract the effect of adhesive
RGD ligands bound to the same PEG, resulting in
enhanced matrix production [87]. However, there are
some limitations to this approach, as the specificity of
the coupling site on the conjugated protein can be diffi-
cult to assign selectively. Also, proteins may lose their
bioactivity during immobilization owing to screening
of the active pocket of the protein or damage to bio-
active functional groups.

In summary, chemical immobilization strategies for
factor delivery allow for localized and strong inter-
actions between growth factors delivered into tissues,
and the resident cells. Challenges in this approach
include finding the correct balance between the factor
dose and physical and chemical properties of the
scaffold, which can regulate cell behaviours.

3.2. Physical encapsulation of growth factors
with pre-programmed release, and diffusion
into surrounding tissues

3.2.1. Polymeric scaffold for physical encapsulation of
growth factors. Physical encapsulation of growth factors
for the purpose of their controlled release is a prominent
strategy for local growth factor delivery in tissue engin-
eering, and its simplicity can provide an appealing
alternative to chemical conjugation. Similar to chemical
conjugation methods, though, factor delivery can be
combined with other variables of scaffolds to provide
favourable tissue interactions and elicit a desirable cel-
lular response. Delivery materials that are injectable
or transplantable, with relevant mechanical strength,
porosity and degradation rates, can be readily fabri-
cated. Fabrication methods actively used for physical
encapsulation of growth factors include solvent casting
and particulate leaching, freeze drying, phase separ-
ation, melt moulding, phase emulsion, in situ



Table 3. Popular scaffold preparation techniques used for physical association of growth factors.

technique advantages potential disadvantages

solvent casting/particulate
leaching [118,187]

control over porosity, pore sizes and
crystallinity; high porosity

residual solvents and porogen materials;
limited mechanical properties

freeze drying [188,189] high porosity and interconnectivity limited pore sizes range (15–35 mm)
phase separation [190,191] high porosity limited pore sizes, residual solvents (1–

10 mm)
melt moulding [192] control over macrogeometry, porosity and pore

size; free of harsh organic solvents
high temperatures

high internal-phase emulsion
[193]

control over porosity, pore size and
interconnectivity

limited polymer types and mechanical
properties

in situ polymerization
[194,195]

injectable; control over mechanical properties residual monomers and cross-linking
agents, limited porosity

gas foaming [88,89] free of organic solvents; control over porosity pore interconnectivity
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polymerization and gas foaming [1]. A key issue is mini-
mizing exposure of factors to harsh conditions during
processing in order to protect the activity of the bio-
molecules. For example, gas-foaming processes have
been developed to avoid the exposure of growth factors
to hazardous solvents that is common in many other
techniques (both probably lead to protein denaturation;
[88–90]). CO2, when present at high pressure, will dis-
solve in an appropriate polymer, but, when the
pressure is decreased, nucleation and CO2 pore for-
mation will result in expansion of the polymer matrix
leading to factor encapsulation. Combining gas foaming
with a particle-leaching technique can lead to open-pore
networks, and has been used for the delivery of growth
factors in vivo in a bioactive form, resulting in sustain-
able release of intact growth factors that can lead to
new tissue formation [91]. The various scaffold fabrica-
tion techniques used for physical incorporation of
growth factors into scaffold materials have advantages
and disadvantages (table 3).

Combining methods is also often pursued to bypass
limitations. For example, a high initial burst release of
growth factor results from several techniques, but
growth factors can first be encapsulated in the bulk of
a polymer using a technique such as solvent casting,
and subsequently incorporated into a scaffold using
gas foaming, leading to a sustained release of the
growth factor. The surface area of the material system
will typically influence growth factor release with phys-
ical encapsulation as release is controlled by diffusion.
For example, nanospheres (1–100 nm) or microparticles
(1–100 mm) as a carrier of individual or multiple
growth factors will lead to varying delivery times as
the size of the carrier particles controls the surface-to-
volume ratio. Further, the rate of intracellular uptake
is influenced by particle size [92,93]. Further control
over release with encapsulating strategies can be
achieved by altering various physical and chemical par-
ameters, including the polymer molecular weight
distribution, hydrophobicity and porocity.
3.2.2. Types of biomaterials for physical encapsulation.
3.2.2.1. Synthetic polymers. The selection of the specific
biomaterial used for encapsulation is a key variable in
the design and development of encapsulation systems.
J. R. Soc. Interface (2011)
A multiplicity of synthetic polymers, including
poly(a-hydroxy acids), poly (orthoesters), poly(anhy-
drides), poly(amino acids), dextrin, poly(glycoside)
(PGA), poly(L-lactide) (PLA) and their copolymers
(PLG acid) have been used for growth-factor encapsula-
tion [43,90,94–99]. These types of implantable
materials or nano-/microparticles may be particularly
advantageous for applications that require a very
well-defined physical space over time. For example,
PLG-based nano- or microcapsules containing growth
factors prepared by a double emulsion–solvent evapor-
ation technique are widely used in this field [99,100].
Sustained delivery of VEGF encapsulated in PLG
microspheres can upregulate angiogenesis [101]. The
degree of encapsulation and mechanism of growth
factor entrapment are dependent on hydrophobic–
hydrophobic or hydrophilic–hydrophilic interactions
among the molecules and polymers. Blending of
materials can allow more complex structures and pat-
terns of factor encapsulation. For example, a blend of
PLG and poly(3-hydroxybutyrate-co-3-hydroxyvale-
rate) (PHBV) microspheres prepared by an emulsion
technique showed a core-shell structure. PHBV mol-
ecules, which are more hydrophobic and less
degradable, were distributed within the shell. This
prevents the loss of growth factors during fabrication
and washing processes, and produced a better
encapsulating material than PLG- or PHBV-alone
microspheres [102].

Liposome-based particles represent another
approach to encapsulate growth factors [103–106].
Liposome-based delivery systems avoid the use of
harsh organic solvents during preparation, potentially
enhancing biocompatibility. One recent example
demonstrates that VEGF delivery from liposomes in a
myocardial infarction model can improve cardiac func-
tion [105]. One limitation of liposome-based delivery,
in contrast to cross-linked polymer systems, is the
relatively short duration of release.

Synthetic polymeric vehicles can also be used to
investigate the role of combinations of growth factors
in tissue formation, as synergistic effects between
different growth factors have been demonstrated in
several processes [38,107,108]. For example, a three-
dimensional PLG scaffold has been developed which
allows the sequential release of VEGF followed by
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PDGF, and this led both to a significant increase in the
local blood vessel density and to maturation of the newly
formed vessels [27]. The two growth factors were incor-
porated together into the same scaffolds by mixing
polymer microspheres containing pre-encapsulated
PDGF with lyophilized VEGF before processing into
scaffolds. Simultaneous delivery of the two factors
led to little or no revascularization. The systematic inte-
gration of quantitative biological measurements and
mathematical modelling provided a design principle for
the delivery vehicles through understanding of the
growth factor-driven process of angiogenesis. In addition,
quantitative information about spatio-temporal control
of VEGF presentation on microvascular endothelial
cells can be obtained by FRET or radio-labelling
assays [38,107]. Similarly, PEG-based hyrogel has also
been used to incorporate multiple neurotrophin family
members, and to release them at different rates [109].

Growth factors encapsulated in synthetic nanoporous/
macroporous materials can be exploited not only to deli-
ver factors to cells in the surrounding tissue, but also to
actively rearrange and recruit the cells and regulate
their proliferation and differentiation [110]. For example,
a recent report demonstrates how infection-mimicking
materials can be used to programme dendritic cells via
delivery of cytokines from scaffolds; the system recruits,
activates and homes the cells to the lymph nodes [111].
Granulocyte macrophage colony-stimulating factor
(GM–CSF) released from the scaffolds first recruits the
dendritic cells. The recruited cells are activated by
danger signals immobilized on the scaffold and sub-
sequently home to lymph nodes to activate T-cells.
These biomaterials can potentially be exploited as a
cancer vaccine or immune-modulating therapy.
3.2.2.2. Natural polymers. Naturally occurring materials
such as silk, keratin, collagen, gelatin, fibrinogen, elas-
tin, chitosan, hyaluronic acid, starch, carrageenan,
cellulose and alginate have also gained wide attention
as drug carriers [112–115]. The natural origin of these
materials allows one to design and engineer biomaterial
systems that function at the molecular level, and often
minimizes chronic inflammation. They are often soluble
in water, allowing mild fabrication conditions that are
relatively harmless to the bioactivity of the growth fac-
tors. Promoting cross-linking when the growth factor is
dispersed in the polymer solution represents one of the
most popular methods for encapsulation of factors in
these materials [93,116,117]. Gelatin microspheres and
combinations of glycidyl methacrylated dextran with
gelatin are examples that have successfully been used
to deliver distinct growth factors, including BMP-2
and IGF-1 [94]. These polymers can be formulated
into a variety of physical structures relevant to drug-
delivery using several processes [89,90,118], but a
common crucial issue is maintenance of the bioactivity
of the encapsulated growth factors [91].

Factor release from degradable gels can be tuned by
controlling either factor diffusion or gel degradation.
Fast degradation will lead to rapid release of growth fac-
tors, while slowing degradation will retard factor release
[119]. A potential problem in the use of natural
J. R. Soc. Interface (2011)
polymers as delivery vehicles is that some physical prop-
erties, such as the degradation rate, can be challenging
to control. Chemical modifications of the polymer are
often performed to control the degradation rate. For
example, typical alginate hydrogels present a slow and
unpredictable degradation in vivo. Recent studies have
addressed this limitation by partially oxidizing the
polymer chains with sodium periodate to enable hydro-
lytic degradation [120] and modifying the polymer
molecular weight distribution [121]. Similarly, inject-
able hydrogels prepared by a blend of chitosan,
phopholipid and lauric aldehyde, and lauric chloride
show tunable degradation rates and biocompatibility
for factor delivery [122]. Blends of hyaluronan and
methylcellulose containing NGF, FGF-2 and EGF or
erythropoietin (EPO) have also been reported to pro-
vide local gradients of neurotrophic factors to injured
nervous tissue [123–127]. Biodegradable hydrogels con-
taining hydrophobic subunits such as cholesterol
provide new types of stable and monodisperse platforms
of gelation for incorporation of growth factors, and have
been used in clinical trials [128–132].

3.3. Growth factor release on demand

Matrix degradation and subsequent diffusion-based
delivery systems with pre-programmed kinetics are
appealing for growth factor/morphogen delivery, as
they can provide sustained release for tunable times
[8,91,112,133]. However, in many situations there is a
need for delivery systems that respond to local environ-
mental signals or externally applied cues in order to
control release, so-called ‘release on demand’. Release
on demand by external triggering can be offered by
the introduction of stimuli-responsive components into
delivery systems [134]. The most commonly used trig-
gering mechanisms involve changes in the local
environment, including (i) pH or temperature, (ii) pro-
teins such as enzymes that cleave a cross-linker used to
immobilize a growth factor, or (iii) drugs or ions that
trigger cleavage of an engineered substrate, resulting in
the release of encapsulated growth factors. Externally
applied light or electric or magnetic fields, and ultra-
sound can also modify the vehicle structure or factor
immobilization and regulate release.

3.3.1. pH and/or temperature-triggered release. One of
the most common triggers to activate release on
demand is local pH. This concept is based on the
varying pH found in different tissues or targets of
drug delivery (e.g. low pH in tumours). Hydrogels are
composed of a highly cross-linked polymer network
immersed in a solvent, and moieties that exhibit large
reversible volume transitions upon pH changes are
often used to provide control over release. Stimuli-sensi-
tive hydrogels or polymeric micelles triggered by pH
have been investigated for use in the gastrointestinal
tract and in cancer targeting [135–139]. These systems
show good stability at physiological pH, but proto-
nation of their functional groups triggered by
acidification reduces their stability, leading to release
of the drug. Also, the swelling ratio and swelling/
de-swelling kinetics are strongly dependent on
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environment signals such as pH or temperature, which
produce another means to regulate drug release.
Popular pH-sensitive materials include those containing
pH-sensitive moieties, such as sulphamethazine oligo-
mers (SMOs), sulphonamide and methacrylic acid,
and are often based on PEG [140,141], poly(1-caprolac-
tone)-based copolymers [139,140,142], poly(L-lactic
acid) (PLLA; [143]), polyHis [144–146], poly(glutamic
acid) [147] and their derivatives. Recently, pH-sensitive
poly(b amino ester)-containing hydrogels were also
developed for controlled DNA [148–150] or insulin
delivery [148]. An interesting recent report is based on
hydrogels that show pH sensitivity and degradation
in the presence of a specific bacterial (Pseudomonas
cepacia) lipase [151]. In addition, other types of
polymers that respond to pH change can be used to
initiate release on demand. pH-sensitive liposome-
mediated drug-delivery systems in vivo have been
developed to regulate the endocytotic transportation
of drugs or protein [152]. Also, vinyl-type macro-
molecule-based hydrogels containing acid-degradable
units can be incorporated to deliver and release
protein-based vaccines upon pH change [153]. Recently
cross-linked methacrylatated dextran-based hydrogels
showing pH stimulus behaviour and colon-specific
degradation were reported for the potential treatment
of pathological conditions such as inflammatory disease,
infection and carcinoma [154].

A change in temperature is also often used to trigger
the release of drugs from polymeric carriers [155]. The
most commonly exploited materials include poly(N-iso-
propylacrylamide) (PNIPAAM), as it exhibits LCST
behaviours, or di-/triblock copolymer-based hydrogels
made of PLA/PEG showing sol-to-gel transition
under physiological conditions (378C, pH 7.4;
[139,156,157]). Exploration of PNIPAAM moieties for
targeted delivery offers the advantages of good sensi-
tivity, reversible transitions and low cytotoxicity
when compared with many cationic polymers. Drug
release can be readily tuned to vary with pH and
temperature [158,159]. The degradation of these poly-
mers can be altered by changing the hydrophilicity
through alteration of the chemical structure of the PNI-
PAAM. In addition, most pH-sensitive materials
mentioned above, including poly(propylene glycol)
[160], poly(propylene fumarate) [161], poly(organo-
phosphazenes) [162] and their derivatives, also show
temperature-dependent gelation behaviours.
3.3.2. Protease-triggered release. Protease action can
also be used as a triggering mechanism to initiate
release on demand. Most popular systems are based
on catalytic matrix metalloproteinase (MMP) inter-
actions [163]. A number of MMP inhibitor-containing
systems have been developed for cytostatic and
anti-angiogenic agents. Also, small oligopeptide
(GPLGVRG) molecules cleaved by MMP (specifically
MMP-2), a protease upregulated in angiogenesis, inva-
sion and metastasis, were developed and furthermore
conjugated to polymers for in vivo cancer imaging
[164]. Synthetic materials have also been used for the
coupling and local delivery of BMP-2. PEG-based
J. R. Soc. Interface (2011)
hydrogels containing pendant integrin-binding
oligopeptide molecules (arginine–glycine–aspartic
acid–serine–proline; RGD) can be formed using
amine-functionalized MMP ligands as a cross-linker.
Close proximity of cells to the gels was mediated by
the pendant RGD peptides, and a recombinant
human bone morphogenetic protein-2 (rhBMP-2)
bound to the matrix was delivered to the site of bone
defects [163]. The biodegradability of the synthetic
matrix and its biofunctional characteristics can be
tuned by chemical modification of the hydrogel net-
work, and modulation of proteases to increase the
efficiency of growth-factor delivery [33,49]. With a
similar concept, VEGF-conjugated, biofunctionalized
PEG-peptide hydrogels that release VEGF only upon
local cellular demand were formed for local, controlled
induction of angiogenesis [115]. Recently, iron oxide
nanoparticles containing both cell-internalizing
oligopeptides and PEG polymers tethered by an MMP-
2-cleavable peptide substrate have been reported [165].
Once activated upon cleavage by MMP-2, the unveiled
peptide domain associates with cell membranes, resulting
in the penetration of nanoparticles into cells. Similarly,
proteolytically degradable PEG hydrogel networks can
also be used to incorporate and release growth factor pro-
teins [49]. It has been recently demonstrated that a series
of enzyme-cleavable linker-containing hydrogel beads can
specifically respond to target enzymes for the controlled
release of growth factors [166]. Hydrogel formation can
also be triggered by enzyme-catalysed reactions. DNA
hydrogels, formed by ligase-mediated cross-linking, can
be easily moulded into desired shapes and sizes [167]. It
was also reported that similar hydrogels can be
constructed using DNA stem–loop structures [168].
3.3.3. Control over release with drugs, ions, light,
external magnetic or electric field. Exciting progress
has recently been made in release-on-demand drug-
delivery systems in which cleavage can be initiated by
small drugs, antigens [169] and antibiotics [165,170].
For example, antibiotic-detecting hydrogels have been
developed for the inducible release and spatio-temporal
control of entrapped human growth factors [170].
Hydrogels formed by the interaction between bacterial
gyrase subunit B coupled to a polymer chain, and a
coumermycin cross-linking unit changed to a sol state
upon adding novobiocin, which interrupts their inter-
action, resulting in the release of VEGF121. Similarly,
addition of calcium to hydrogels containing ion-binding
proteins also can initiate a sol-to-gel transition, and
change binding affinities for proteins [171].

There are elegant approaches for smart materials
in which triggering can be induced by changes in ion
concentration [171], light [172–174], electric fields
[135,175–177], magnetic fields [178] and polysacchar-
ides [169] that can be potentially applicable to growth
factor-delivery systems. PEG-based hydrogels can be
photodegradable, and channels formed by polymer
degradation triggered by light can be used for the
release of growth factors or migration of cells [179].
However, the majority of these systems to date are
only prototypes, because commonly applied wavelength
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ranges or electric fields used for triggering are not suit-
able for in vivo use. Finally, the dynamic mechanical
environment of the delivery site can also affect the
release rate of growth factors [180]. This concept can
be potentially used to design a triggering system to deli-
ver bioactive molecules to locations under mechanical
stress conditions (e.g. the heart).

In summary, these stimuli-sensitive delivery systems
hold great promise as smart materials for factor release.
The appropriate choice of triggering systems may
enable on–off switches with fast and precise responses
in tightly defined local areas. Applications of these
systems will be enhanced by developing triggering in
conditions applicable to in vivo use.
4. CONCLUSIONS AND FUTURE
DIRECTIONS

This review illustrates the utility of using material sys-
tems to obtain control over growth factor delivery,
and the importance that spatio-temporal control has
over these factors in tissue formation and regeneration.
Synthetic ECM supporting cells transplanted or
recruited to a target must provide an environment for
cell development to be regulated appropriately and
this function can be delicately tuned or engineered
through suitable delivery of growth factors/morpho-
gens. The polymer systems reviewed here tend to be
quite versatile, and could easily be used in the future
for more complex applications. For example, systems
that can recruit cells into a scaffold, programme the
cells appropriately and stimulate cells to leave the scaf-
folds may allow one to bypass the ex vivo culture and
manipulation common to current cell therapies
(figure 4). The polymer systems reviewed here also pro-
vide novel models to study and manipulate a
multiplicity of physiological events that rely on the
signalling of multiple growth factors.
J. R. Soc. Interface (2011)
Major advances have been made over recent years
in the construction of polymer-based growth factor-
delivery systems that allow the controlled release of
growth factors, but there remain a number of challenges
that will need to be addressed in the future. These
include enhancing the stability of encapsulated proteins
to allow release for extended times (e.g. weeks to
months), the difficulty in scaling up certain approaches,
determining the appropriate structure/compartmenta-
lization of delivery materials to allow multiple factors
to be released with distinct kinetics and the release of
certain factors owing to their hydrophobic nature or
strong charge–charge interactions between the poly-
mers and the growth factors. Also, a major challenge
is the adaptation of these approaches to clinical use.
The majority of work carried out to date has been
done with animal models and it is unclear how well
much of this work will translate to the use of human
recombinant growth factors in human patients. In a
broader perspective, further advances in the field will
rely on multi-disciplinary approaches that combine
medicine, chemistry, engineering and pathology to
develop effective strategies to treat complex wounds
and pathologies.
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