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Recently, the mesoscale of cortical bone has been given particular attention in association
with novel experimental techniques such as nanoindentation, micro-computed X-ray
tomography and quantitative scanning acoustic microscopy (SAM). A need has emerged
for reliable mathematical models to interpret the related microscopic and mesoscopic data in
terms of effective elastic properties. In this work, a new model of cortical bone elasticity is
developed and used to assess the influence of mesoscale porosity on the induced anisotropy of
the material. Only the largest pores (Haversian canals and resorption cavities), characteristic
of the mesoscale, are considered. The input parameters of the model are derived from
typical mesoscale experimental data (e.g. SAM data). We use the method of asymptotic
homogenization to determine the local effective elastic properties by modelling the
propagation of low-frequency elastic waves through an idealized material that models
the local mesostructure. We use a novel solution of the cell problem developed by Parnell &
Abrahams. This solution is stable for the physiological range of variation of mesoscopic
porosity and elasticity found in bone. Results are computed efficiently (in seconds) and the
solutions can be implemented easily by other workers. Parametric studies are performed in
order to assess the influence of mesoscopic porosity, the assumptions regarding the material
inside the mesoscale pores (drained or undrained bone) and the shape of pores. Results are
shown to be in good qualitative agreement with existing schemes and we describe the
potential of the scheme for future use in modelling more complex microstructures for cortical
bone. In particular, the scheme is shown to be a useful tool with which to predict the
qualitative changes in anisotropy due to variations in the structure at the mesoscale.
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1. INTRODUCTION

Cortical bone is a highly organized hard tissue that
represents approximately 80% of the skeletal mass in
the human adult. It can be conveniently described as a
two-phase composite material: a soft phase, i.e. pores,
containing fluid and soft tissues such as cells, blood
vessels and nerves distributed inside a complex dense
matrix phase. Porosity is distributed over several length
scales: the diameter of pores ranges from a few micro-
metres to several hundreds of micrometres (Martin
et al. 1998). Only the two largest pore types, resorption
cavities (approx. 50–200 mm) and Haversian canals
(approx. 50 mm), contribute to the so-called mesoscale
structure (ormesostructure) andhencemesoscale porosity
that is characteristic of the higher level of organization
in bone. Mesoscopic pores are roughly aligned with the
longitudinal direction of the bone (Currey 2002; Cooper
et al. 2007). The cross section of Haversian pores is
orrespondence (william.parnell@manchester.ac.uk).
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roughly circular, while that of the resorption cavities is
often of a complex shape due to the association with
bone remodelling activity.

Themesoscale porosity is embedded in a bonymatrix,
which is a mixture of the smaller pores such as
Volkmann’s canals, osteocyte lacunae, etc. (at least
one order of magnitude smaller than the mesoscopic
pores) and mineralized collagen fibrils. With standard
techniques (micro-computed tomography, acoustic
microscopy, microradiographs, etc.), given a typical
resolution of approximately 10–20 mm, the smaller pores
cannot be distinguished from the mineralized collagen
matrix. Accordingly, the local mesoscale porosity in
samples taken from cortical bone cross sections is that
which is effectively assessed with standard techniques. It
is defined as that due to the Haversian canals and
resorption cavities and lies in the range of 5–15 per cent
(Bousson et al. 2001; Dong & Guo 2004; Baron et al.
2007). However, note that the macroscopic porosity
defined as an average of the mesoscopic porosity over
local representative volume element (RVE) locations
J. R. Soc. Interface (2009) 6, 97–109
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varies much less and is usually in the range of 7–9
per cent. In this paper, we consider the influence of
mesoscopic porosity (i.e. that due to Haversian canals
and resorption cavities) so that, in fact, the lower level
porosity associated with smaller pores contributes to the
overall (homogenized) elastic properties of the bony
matrix phase.

Recently, the mesoscale of cortical bone has been
given particular attention (Hoc et al. 2006; Verhulp
et al. 2006; Grimal et al. 2008), in association with novel
experimental techniques such as nanoindentation
(Zysset et al. 1999) and quantitative scanning acoustic
microscopy (SAM; Raum et al. 2003). These techniques
give access to the elastic properties of the bony matrix
mentioned above. Furthermore, SAM and various
microscopic imaging techniques give access to the
structural distribution of mesoscopic porosity.

There is a need for reliable methods to interpret
SAM and nanoindentation data in terms of macroscopic
elasticity. In particular, phenotyping, the investigation
of structure–function relationships and remodelling,
and numerical modelling of bone response to mechan-
ical loads at various scales would all benefit from such
methods. One of the main difficulties here is to account
properly for the material anisotropy. This arises from
two sources: the mesoscopic porosity and the anisotropy
of the matrix itself, mainly due to the orientation of the
collagen fibrils (Weiner et al. 1999). The respective
contributions of the two sources of anisotropy have thus
far not been made clear. Evidently, it is difficult to
design experiments for this purpose, although there are
particular bone tissues with specific organization, which
can provide some information with regard to this issue
(Currey & Zioupos 2001). Mathematical models using
homogenization techniques and micromechanical
methods can give excellent insight since they explicitly
relate the effective properties to the meso/micro-
structural properties and in the final instance they give
relatively accurate predictions of effective moduli.

The purpose of this paper is to introduce a new
model of cortical bone elasticity and investigate the
relationships between the mesoscale information and
the homogenized local elastic properties. The mesoscale
information of interest here is the porosity, the pore
shape and the distribution and elasticity of the
mineralized matrix. Specific attention will be given to
the sources of overall anisotropy. Pathologies and drugs
produce effects that may in some cases independently
alter the anisotropy of the matrix (e.g. due to
modifications in the collagen and mineral properties)
and the mesoscopic porosity due to perturbations of
remodelling activity. For this reason and for the sake of
clarity, it is proposed that anisotropy be investigated in
two stages. In this paper, we shall consider the influence
of the porosity when the matrix is considered to be
isotropic. The influence of matrix anisotropy will be
discussed in a forthcoming paper.

Strictly speaking, bone is a poroelastic material and
therefore a relevant framework with which to study the
effective behaviour of the medium is that presented by
Cowin (1999) who applied the classical Biot poroelas-
ticity theory to study deformation driven fluid motion.
However, in many situations where the focus is on the
J. R. Soc. Interface (2009)
effective elastic behaviour and not on the fluid motion
or distribution of stresses inside the pores, the fluid can
be considered to be static. Thus, we treat the fluid as a
static phase within the elastic medium; alternatively,
this is equivalent to considering closed pores within
the material.

Mechanical models proposed in the past two decades
have provided a great deal of insight into the micro–
meso–macro relationships. Among others, Crolet et al.
(1993) and Aoubiza et al. (1996) considered periodic
microstructure in the framework of the asymptotic
theory of homogenization; Sevostianov & Kachanov
(2000) and Hellmich & Ulm (2004) proposed models in
the spirit of micromechanics, based on the Eshelby
tensor (Eshelby 1957), using Mori–Tanaka (Benveniste
1987) and self-consistent schemes (Sabina & Willis
1988; Kanaun & Levin 2003). All these models consider
elementary shapes for the pores and simple mesostruc-
ture. Recently, Baron et al. (2007) and Grimal et al.
(2008) have developed numerical models to compute
the effective properties of cortical bone with realistic
mesoscale structures derived from images. However,
these latter models are not appropriate to use when
performing systematic parametric studies due to their
high computational cost. It appears that existing
models do not readily lend themselves to a fast and
reliable computation of macroscopic properties based
on experimental mesoscale information. Furthermore,
it appears that the following two fundamental points
should be revisited and explored in greater depth.

—Existing models assume very specific constitutive
behaviour of the material inside the pores. For
example, Aoubiza et al. (1996) and Sevostianov &
Kachanov (2000) considered empty pores (drained
bone), which do not possess stiffness. On the other
hand, for example, Hellmich & Ulm (2004) stated
that because fluids saturate the pores, they must
possess significant stiffness and should therefore be
considered as hard pores (undrained bone). The
influence of these hypotheses on the overall aniso-
tropy is not clear. We note that in vitro measure-
ments of bone properties have been performed on
both undrained and also dried samples (e.g. Lang
1970; Yoon & Katz 1976b), where some of the fluids
have been removed. Models of both undrained and
drained bones are therefore relevant to interpret
such data. Furthermore, pores are often considered
to be of circular cross section but how does a non-
circular shape affect predictions?

—The level of approximation of a modelling scheme is
very often unclear and there is a great need for a
comparison between the predictions given by
alternative schemes. At present, it is unknown
which of the schemes (Mori–Tanaka, self-consistent,
asymptotic homogenization, numerical models, etc.)
is most appropriate. Furthermore, the accuracy of
the prediction may often depend on the level
of porosity and the phase contrast. In particular,
it is important that the model be stable when
porosity and phase contrast vary within their
physiological range.
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Figure 1. The hexagonal periodic cell.
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In the present paper, we use the method of
asymptotic homogenization (AS to denote asymptotic
scheme), assuming that the pores in the local region of
interest are periodically distributed within the matrix
material, specifically on a hexagonal lattice, which
leads to a transversely isotropic material for pores with
circular cross section. This symmetry is thought to be a
reasonable approximation of the effective behaviour of
cortical bone (Yoon & Katz 1976a,b). Asymptotic
homogenization is one of the most successful schemes
for determining the effective moduli of periodic media
(Bakhvalov & Panasenko 1989; Parton & Kudryavtsev
1993). The approach exploits the separation of scales
within the composite material and uses the method of
multiple scales in order to derive a homogenized
equation governing the effective behaviour of the
material in question. Some of the advantages of
the scheme are as follows.

(i) Given the meso/microstructure within the peri-
odic cell, the resulting (induced) anisotropy arises
naturally in the governing homogenized equation.

(ii) Asymptotic expansions ofdisplacementsallow the
nature of meso/microstructural fields (stresses,
etc.) to be understood.

(iii) It provides an algorithmic, rather than an ad hoc,
scheme with which one can determine effec-
tive properties.

(iv) Effective properties are defined in terms of a
solution to the so-called cell problem; solutions to
this are, in general, found numerically but semi-
analytical solutions can be derived in the case
of two-dimensional fibre-reinforced composites
(Sabina et al. 2002; Parnell & Abrahams
2006, 2008).

The current approach is novel and unique due to the
solution scheme of the periodic cell problem. It is based
on the work developed by Parnell & Abrahams (2006,
2008) and was applied successfully in the context of
industrial fibre-reinforced composites. In particular,
the method appears to be stable even for high porosities
and high-contrast phases as in the limiting cases of rigid
fibres and voids. We note that since solutions are found
in terms of asymptotic expansions, we are aware of the
order of error made by assuming a leading-order
solution. Furthermore, the scheme does not introduce
any ad hoc assumptions, which are required in many
other methods.

In §2, we present the assumptions of our model. In
particular, we introduce the idea of a periodic cell,
which defines the local structure of the cross section
of cortical bone. Next, in §3 we describe the method
of asymptotic homogenization with reference to the
works of Parnell & Abrahams (2006, 2008), in particu-
lar focusing on the cell problem and the form of effective
elastic moduli. Sections 4 and 5 focus on analysing
the two fundamental points mentioned above, i.e.
comparing the effect of pore properties and shape on
effective elastic properties and assessing the efficacy of
current modelling schemes in predicting the effective
moduli of cortical bone. Specifically, a comparison
between the results obtained by the proposed AS and
J. R. Soc. Interface (2009)
extant methods is presented in §4 in which we assess
the influence of the pore properties, i.e. whether the
bone is drained or undrained and also their shape, in
particular by describing the situation when the pore
cross section is elliptical rather than circular. We
close with a discussion in §5 and conclusions and plans
for future work in §6.
2. ASSUMPTIONS OF THE MODEL

We shall now discuss how we model cortical bone as a
two-phase composite material. Let us employ Cartesian
coordinates where the x3 axis runs parallel to the long
axis of the bone. As a first model, the mesoscale pores
(Haversian canals and resorption cavities) are modelled
as identical cylinders of infinite extent in the x3
direction and we assume that they are distributed on
a hexagonal lattice in the x1x2 plane. Note that in this
paper we consider pores of circular and elliptical cross
section. These pores represent Haversian canals or
resorption cavities that are roughly aligned in cortical
bone (Cooper et al. 2007). Resorption cavities tend to
be less circular and therefore the analysis of elliptical
cross sections is intended to simulate this effect.
Furthermore, resorption cavities tend to possess a
conical shape, but since the important notion is the
local property (small length in the longitudinal direc-
tion) the cylindrical assumption should be reasonable.
This kind of local analysis is required in any case since
samples change porosity, for example, in different
regions of the bone shaft. Although here the method
is presented for only one pore inside the periodic cell, it
can, in fact, deal with many pores inside the cell
(Parnell & Abrahams 2006, 2008), which would be ideal
when dealing with complex microstructure. The
motivation behind this work is to maintain simplicity,
however, and thus the restriction to a single pore.

The mesoscale pores are surrounded by bony matrix
tissue which we assume to be isotropic. In reality, the
matrix material is an inhomogeneous, anisotropic
material, but the focus here is on the anisotropy due
to the mesostructure and not due to the tissue itself.
The hexagonal periodic cell shown in figure 1 contains a
single pore and defines the mesoscale structure in the
x1x2 plane and (for circular cross sections) ensures
transverse isotropy, which is the material symmetry
commonly observed in human bone (Yoon & Katz
1976a,b). This periodic model material of infinite
extent is thus intended to give a snapshot of the
(local) effective elastic properties of bone at a specific
RVE location at some point in the cortical bone
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Figure 2. The notion of determining local effective properties.
Here, we have shown the mesostructure as a collection of
Haversian canals (circles) and resorption cavities (slightly
larger, less circular regions). The local region in the cortical
bone cross section is analysed and then replaced by an
idealized mesostructure. This region is then homogenized by
treating the medium as periodic and of infinite extent. The
resulting effective properties then define the elastic behaviour
of this local region.
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cross section, where the RVE is defined by its porosity.
This is illustrated in figure 2 where we show how the
mesostructure within the local region of the cortical
bone cross section is first replaced by an idealized
hexagonal structure and then homogenized by using the
concept of an infinite periodicmedium as described above.

The two phases are assumed to be purely elastic and
isotropic and are defined by their respective Lamé
constants m0, l0 and m1, l1, where m is the shear modulus
and lZkK2m/3, where k is the bulk modulus. The
subscript 0 refers to the matrix material while 1 refers
to the pore. Note that fluid fills the pore in the
undrained case. We discuss how we describe this case
later on. Furthermore, we define the length scale of the
mesoscale (for example, distance between pores) as q.
Within the periodic cell, the domain of the fibre
is denoted by D1 and the matrix by D0, their respec-
tive areas being denoted by jD1j and jD0j and we define
jDjZ jD0jC jD1j as the total cell area. The interface
between matrix and pore is defined as vD1.
3. ASYMPTOTIC HOMOGENIZATION AND THE
CELL PROBLEM

We choose to use the theory developed by Parnell &
Abrahams (2006, 2008) in order to determine the
effective elastic properties by modelling the propa-
gation of low-frequency elastic waves through the
material. We shall summarize the findings of the theory
here, but we refer the reader to these papers for more
in-depth findings and details, particularly with regard
to the solution of the cell problem. Neglecting body
J. R. Soc. Interface (2009)
forces and on defining xZðx1; x2; x3Þ, Navier’s
equations for time harmonic waves of frequency u and
for x;vD1 are given by (Graff 1991)

ðlðxÞCmðxÞÞ
v2uj

vxi vxj
CmðxÞ v2ui

vxj vxj
Cu2rðxÞui Z 0;

ð3:1Þ
where we adopt Einstein’s convention of summation
over repeated subscripts. Dividing by the matrix shear
modulus m0 and non-dimensionalizing length scales on q,
(3.1) becomes

ðpðxÞCmðxÞÞ
v2uj

vxi vxj
CmðxÞ v2ui

vxj vxj
Ce2dðxÞui Z 0;

ð3:2Þ
for x;vD1, where

mðxÞZ
m1 Zm1=m0; x2D1;

m0 Z 1; x2D0;

(
ð3:3Þ

pðxÞZ
p1 Z l1=m0; x2D1;

p0 Z l0=m0; x2D0

(
ð3:4Þ

and

dðxÞZ
d1 Z r1=r0; x2D1;

d 0 Z 1; x2D0:

(
ð3:5Þ

In (3.2), we have defined the non-dimensional par-
ameter eZqk0, where k 2

0Zu2r0=m0 is the shear wave-
number in the matrix material. Since we assume that we
are in the low-frequency regime, where the wavelength of
the propagating waves is much larger than the mesoscale
q, we can assume that e/1. Therefore, a so-called
separation of scales exists andwe can perform an analysis
based on asymptotic homogenization. Note that we can
always rescale on some other wavenumber, for example,
k0 defined by k20Zu2r0=ðl0C2m0Þ associated with
longitudinal waves in the matrix, but the important
notion is that the newly defined non-dimensional
parameter êZqk0 still satisfies ê/1. We assume
boundary conditions on the pore/matrix interface vD1

of continuity of displacement and traction, i.e.

½ui�CK Z 0; ½sijnj �CK Z 0; ð3:6Þ

where sij is the Cauchy stress tensor; nj is the jth
component of the normal to vD1 (pointing into the
matrix); and where we have used the notation ½ f ðzÞ�CK to
denote the jump in the function f(z) across vD1.

Asymptotic homogenization proceeds by defining
the multiple scale variables,

xa;Z xa; aZ 1; 2; ð3:7Þ

xj ;Z
1

LðeÞ zj ; j Z 1; 2; 3; ð3:8Þ

where LðeÞZeCL2e
2C/ is some expansion in e and

L22R. On introducing xZðx1; x2Þ and zZðz 1; z2; z3Þ
we note from (3.7) and (3.8) that these are short and
long length scales, respectively. We see that no
mesovariable is required in the long bone axis direction
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and thus (3.7) and (3.8) imply that

v

vxa
Z

v

vxa
CLðeÞ v

vza
; aZ 1; 2; ð3:9Þ

v

vx3
ZLðeÞ v

vz3
: ð3:10Þ

Note that in the following, Greek indices can run from
1 to 2 whereas Latin indices run from 1 to 3.

An expansion in e is performed for the displacements

ukðx; zÞZ uk 0ðx; zÞCeuk1ðx; zÞCOðe2Þ; ð3:11Þ

and since the material is doubly periodic (with
hexagonal symmetry) with respect to x, we insist that
each ukj is doubly periodic in x on the hexagonal lattice.

Substituting (3.7)–(3.11) into the governing equation
(3.2) and boundary condition (3.6) and equating orders
in e we obtain a hierarchy of problems, one associated
with each order in e (Bakhvalov & Panasenko 1989). As
is usual in the theory of homogenization for elastody-
namics, the O(1) problem shows that the leading-order
displacement field is (explicitly) independent of x,
so that

uk0ðx; zÞZUkðzÞ: ð3:12Þ
At O(e), it turns out that it is advantageous to write the
solution in the separable form

uk1ðx; zÞZN pm
k ðxÞ

vUpðzÞ
vzm

: ð3:13Þ

This form then gives rise to the resulting cell problem for
Npm

k ðxÞ. As we shall show in (3.18)–(3.24) below, since
the superscripts p and m merely alter the forcing in the
boundary conditions of the cell problem, it is useful to
employ the bold font notation NkZNpm

k . For isotropic
phases, on denoting the derivative of Nk with respect to
xa by Nk,a, it turns out that the governing equations for
the cell problems (in the rth phase) are of the form

ðpr CmrÞNr
a;1a CmrN

r
1;aa Z 0; ð3:14Þ

ðpr CmrÞNr
a;2a CmrN

r
2;aa Z 0 ð3:15Þ

and

mrN
r
3;aa Z 0; ð3:16Þ

for rZ0,1. Boundary conditions areh
Nr

k

iC
K
Z 0 ð3:17Þ

andh
ðpr C2mrÞNr

1;1 CprN
r
2;2

iC
K
n1

C
h
mrðNr

1;2 CNr
2;1Þ

iC
K
n2 ZAn1 CCn2; ð3:18Þ

h
ðpr C2mrÞNr

2;2 CprN
r
1;1

iC
K
n2

C
h
mrðNr

1;2 CNr
2;1Þ

iC
K
n1 ZCn1 CBn2 ð3:19Þ

and

½mrN
r
3;a�CKna ZDana: ð3:20Þ
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We have also defined

AZApm Z ðp1K p0Þdpm C2ðm1Km 0Þd1pd1m; ð3:21Þ

BZBpm Z ðp1K p0Þdpm C2ðm1Km 0Þd2pd2m; ð3:22Þ

CZCpm Z ðm1Km 0Þðd1pd2m Cd2pd1mÞ ð3:23Þ

and

Da ZDapm Z ðm1Km 0Þðdamd3p Cdapd3mÞ: ð3:24Þ

Note that the cell problem for N3 is decoupled from
that of N1 and N2. The former is associated with anti-
plane motion whereas the latter is associated with
in-plane motion.
3.1. The homogenized wave equation

The O(e2) problem is used to determine the effective
wave equation governing the leading-order displace-
ment Uk(z). This is achieved by integrating the
governing equation at O(e2) over the periodic cell,
employing Green’s theorem and imposing the necessary
boundary conditions and (hexagonal) double period-
icity in x. Restricting attention to circular pores, this
gives rise to the following effective wave equations
(Parnell & Abrahams 2006, 2008):

c�11U1;11 Cc�66U1;22 Cc�44U1;33 C
1

2
c�11 Cc�12ð ÞU2;12

C c�13 Cc�44ð ÞU3;13Cd�U1 Z 0; ð3:25Þ

c�66U2;11 Cc�11U2;22 Cc�44U2;33 C
1

2
c�11 Cc�12ð ÞU1;12

C c�13 Cc�44ð ÞU3;23Cd�U2 Z 0 ð3:26Þ
and

c�44ðU3;11CU3;22ÞC c�13Cc�44ð ÞðU1;13CU2;23ÞCd�U3Z0;

ð3:27Þ

where

c�66Z
1

2
c�11Kc�12ð Þ; ð3:28Þ

and where Uk, j denotes the derivative of Uk with
respect to zj. The form of the coefficients c�ij will be
given shortly.

The form of these effective wave equations, including
the relationship (3.28) between c�66; c

�
11 and c�12 is

identical to that which governs wave propagation in a
transversely isotropic homogeneous elastic medium
with elastic moduli c�ij (using the engineering notation

for c�ij ; see Sokolnikoff 1956). The coefficients therefore
define the corresponding five effective elastic moduli of
the transversely isotropic material. In order to
completely define all five coefficients, we require the
solution to the cell problem associated with only three
of the forcings in the boundary conditions above. These
are the in-plane problems with pZmZ1 and pZmZ3
and also the anti-plane problem with pZ3, mZ1.
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The five effective properties are defined as

c�11 Z ð1KfÞðp0 C2m 0ÞCfðp1 C2m1Þ

C ½ðp1K p0ÞC2ðm1Km 0Þ�M1 Cðp1K p0ÞM2;

ð3:29Þ

c�12 Z ð1KfÞp0 Cfp1 Cðp1K p0ÞM1 C ½ðp1K p0Þ

C2ðm1Km 0Þ�M2; ð3:30Þ

c�13 Z ð1KfÞp0 Cfp1 Cðp1K p0ÞðM1 CM2Þ; ð3:31Þ

c�33 Z ð1KfÞðp0 C2m0ÞCfðp1 C2m1ÞC ðp1Kp0ÞM3

ð3:32Þ
and

c�44 Z ð1KfÞm 0 Cfm1 Cðm1Km 0ÞM4; ð3:33Þ
where fZ jD1j=jDjZpR2=jDj is the mesoscopic poros-
ity of the bone (i.e. the porosity of the local region of
interest) or, alternatively, in the language of composite
materials, the volume fraction of the fibre phase. The
coefficients Mj are determined by line integrals of Npm

k
around the cylindrical fibre boundary vD1

M1 Z
1

jDj

ð2p
0

N 11
1 ðqÞn1ðqÞdq; ð3:34Þ

M2 Z
1

jDj

ð2p
0

N 11
2 ðqÞn2ðqÞdq; ð3:35Þ

M3 Z
1

jDj

ð2p
0
ðN 33

1 ðqÞn1ðqÞCN 33
2 ðqÞn2ðqÞÞdq ð3:36Þ

and

M4 Z
1

jDj

ð2p
0

N 31
3 ðqÞn1ðqÞdq; ð3:37Þ

where firstly we recall the notation Npm
k for the (p,m)

cell problem defined in (3.13) and we note that the local
polar coordinate system x1Zr cos q, x2Zr sin q

centred on the pore within the periodic cell has been
introduced. Finally, nZðn1;n2Þ is the normal to the
fibre boundary, and thus since here this boundary is
circular, we have n1Zcosq, n2Zsinq.
3.2. The solution to the cell problem

As described above, the effective properties for a
transversely isotropic material are defined completely
if we know the solution to the appropriate anti-plane
and in-plane cell problems. These were solved in the
papers by Parnell & Abrahams (2006, 2008). The
methods used are based on complex variable theory and
multipole expansions of doubly periodic functions,
specially constructed to enable complex meso/micro-
structure to be modelled. Local solution expansions are
posed inside the pore and in the matrix and we match
these on the pore boundary vD1 using the appropriate
boundary conditions for the cell problem. The system of
equations is closed using the extra conditions that arise
from imposing the condition of double periodicity in x.
This is achieved by constructing multipole expansions
in the matrix material, in terms of doubly periodic
J. R. Soc. Interface (2009)
basis functions. These are then matched to the local
solution expansions in the matrix, thus providing the
necessary extra equations required to close the system.

In the case of the in-plane problem, the above
process results in a simple linear system, which must be
solved for vectors fa1; a2; a3; :::g; fb1; b2; b3; :::g2C

(bold fonts indicating the dependence on the (p,m)
cell problem) and the solution on the boundary of a
circular fibre of radius R takes the form

N1 Z
R

2m1

ðk1K1ÞReða1ÞKReðb1ÞK3R2 Reða3Þ
� �

cos q
�

C Kðk1C1ÞImða1ÞCImðb1ÞC3R2 Imða3Þ
� �

sin q

C.� ð3:38Þ
and

N2Z
R

2m1

ðk1C1ÞImða1ÞCImðb1ÞC3R2 Imða3Þ
� �

cosq
�

C ðk1K1ÞReða1ÞCReðb1ÞC3R2 Reða3Þ
� �

sinq

C.�; ð3:39Þ
where Re and Im define the real and imaginary parts,
respectively, andwherewehave defined k1Zðp1C3m1Þ=
ðp1Cm1Þ. The additional terms denoted by C. are
higher order terms associated with cos nq and sin nq,
but we see from the form of (3.34)–(3.36) that these do
not contribute to the expressions for the effective
moduli due to orthogonality. Note that this is only
the case for circular cylindrical fibres.

Similarly, in the anti-plane case we have to solve a
linear system for the vector fc1; c2; c3; :::g2R and we
obtain the simple form

N3 Z c1R cos qC/ ð3:40Þ

for the anti-plane displacement on the boundary of the
fibre vD1.

Programs to solve these problems and thus find the
necessary coefficients in N1, N2 and N3 above were
written by the authors in MATHEMATICA. This package
permits very simple and concise algorithms to be used.
3.3. Pores of elliptical cross section

If pores are no longer circular, the boundary vD1 being
described by, say,

RZRðqÞ; ð3:41Þ

then the induced anisotropy will in general no longer
be transversely isotropic. In particular, for the case of
elliptical cross sections, for example, the material
becomes orthotropic since now the expression (3.28)
does not hold and c11sc22, etc. (see Parnell &
Abrahams (2006, 2008) for more details). For ease of
exposition, let us focus on just a small number
of results. In particular, we note that in this ortho-
tropic case,

c�11 Zð1KfÞðp0 C2m 0ÞCfðp1 C2m1ÞC ½ðp1Kp0Þ
C2ðm1Km 0Þ�M

ð1Þ
5 Cðp1Kp0ÞM

ð1Þ
6 ð3:42Þ
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and

c�22 Z ð1KfÞðp0 C2m 0ÞCfðp1 C2m1ÞC ½ðp1K p0Þ

C2ðm1Km 0Þ�M
ð2Þ
6 Cðp1K p0ÞM

ð2Þ
5 ; ð3:43Þ

where

M
ðj Þ
5 Z

1

jDj

ð2p
0

Njj
1 ðqÞn1ðqÞdq ð3:44Þ

and

M
ðj Þ
6 Z

1

jDj

ð2p
0

Njj
2 ðqÞn2ðqÞdq; ð3:45Þ

where nZðn1;n2Þ is the normal to the fibre boundary
and note that there is no addition over the superscripts j
on the r.h.s. of (3.44) and (3.45). As such, for this more
complicated material, additional cell problems (in this
case, (p,m)Z(1, 1) and (2, 2) problems) must be solved
for the distinct elastic properties. Similar results follow
for the other elastic properties (Parnell & Abrahams
2006, 2008). Local expansions for the solutions inside
the pores may be posed in the same form as in §3.2 for
each of these individual cell problems as in (3.38)–
(3.40), but now with RZR(q) as in (3.41) and also note
that due to the more complicated normal in the line
integrals (3.44) and (3.45), all of the terms in these local
expansions now contribute to the effective properties
(3.42) and (3.43) via the line integrals (3.44) and (3.45).
4. RESULTS

Following experimental and numerical work (Kabel
et al. 1999; Zysset et al. 1999; Rho et al. 2002), we
choose n0Z0.3 for the Poisson ratio and E0Z22.5 GPa
for the Young modulus of the bone matrix. The value
for the Young modulus is consistent with experimental
data obtained by nanoindentation (Zysset et al. 1999).
Furthermore, this specific value was chosen here so that
we can compare results with those obtained previously
by Grimal et al. (2008). We shall consider the two
alternative cases of hard and soft pores, corresponding
to undrained and drained bone, respectively, as used in
the literature by, for example, Sevostianov &Kachanov
(2000) and Hellmich & Ulm (2004), respectively. In the
case of undrained bone, we assume the pore is filled
with static water. The properties of inviscid water are
conveniently described by its bulk modulus kZ2.2 GPa
and shear modulus mZ0 (Lide 1993). The values
E1Z0.13 GPa and n1Z0.49 correspond to an approxi-
mation of the above values for k and m for inviscid water
and are the same values as those used in Grimal et al.
(2008) with which we compare our results. For the case
of drained bone (empty or soft pores), we take the
limiting case of a cavity, i.e. E1; n1/0.

We shall compare the results from the following
three methods:

— the AS presented above;
— the Mori–Tanaka micromechanical estimates

(Eshelby 1957; Benveniste 1987; Zaoui 1997); and
— finite-element computations (Grimal et al. 2008):

effective properties were computed with prescribed
displacement boundary conditions on local bone
volumes (RVEs) with detailed real imaged
mesostructures.
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We also mention the results of Yoon & Katz
(1976a,b), Ashman et al. (1984) and Rho (1996),
which correspond to experiments on human cortical
bone with contact transmission ultrasonic methods.
Although we do not plot these directly (since their
spread is large and porosity uncertain), it has been seen
that they certainly lie within the range of the
predictions by the above homogenization and micro-
mechanical schemes.

We plot a selection of the local effective moduli of the
transversely isotropic material as a function of mesos-
cale porosity, denoting those associated with undrained
bone by c�ij and those for drained bone with a hat, i.e. ĉ�ij .
Note that each of the c�ij in the expressions (3.29)–(3.33)
are scaled on m0. However, in order to plot results, we
rescale the effective properties on their corresponding
value in the matrix material so that all effective
properties at fZ0 are unity. In §§4.1–4.4 we focus on
pores with circular cross section and then in §4.5 we
study the change in properties when the cross section
becomes elliptical.
4.1. Comparison of the asymptotic scheme,
finite-element computations and the
Mori–Tanaka method

The predicted effective moduli are plotted in figures
3–8, focusing, in particular, on c�11, c�33 and c*13.
Furthermore, c�66 is considered in §4.4 because it
corresponds physically to the plane–strain shear
modulus and therefore can be compared with the
Hashin–Rosen bounds. Without exception, it is seen
that the results of the AS coincide with the Mori–
Tanaka method. It is evident that these schemes also
agree relatively well with the finite-element compu-
tations, for both drained and undrained bone, especially
given the assumptions made regarding the distribution
of mesostructure.

We can provide a measure of the difference between
the two schemes by calculating the following percen-
tage difference:

Dc�ij Z 100

��c�asij Kc�feij

��
c�feij

; ð4:1Þ

where the superscripts ‘as’ and ‘fe’ denote AS and finite
elements, respectively, and we evaluate this at three
mesoscale porosity values, fZ0.05, 0.1 and 0.15. The
resulting data are given in tables 1 and 2 for the two
pore cases and we see that for the undrained case in
particular, the percentage difference between the two
schemes is small, except for c�44. The reason for this
latter point is known and is, in fact, related to the way
that the finite-element computations are calculated.
4.2. Deviation from the arithmetic mean
(the Voigt estimate )

The arithmetic mean approximation to the effective
elastic moduli, for example, cV11Zðp0C2m 0Þð1KfÞC
ðp1C2m1Þf corresponds to the well-known Voigt
(1889) estimation. In fact, this is also known as an
upper bound on the elastic moduli as shown by Paul
(1960). Note that the effective properties defined in
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Figure 3. Homogenization predictions for c�11 in the case of
undrained bone when compared with other methods. Solid
line, AS; stars, finite elements; crosses, Mori–Tanaka.
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Figure 4. Homogenization predictions for ĉ�11 in the case of
drained bone when compared with other methods. Symbols
are the same as given in figure 3.
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Figure 5. Homogenization predictions for c�33 in the case of
undrained bone when compared with other methods. Symbols
are the same as given in figure 3.
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Figure 6. Homogenization predictions for ĉ�33 in the case of
drained bone as compared with other methods. Symbols are
the same as given in figure 3.
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Figure 7. Homogenization predictions for c�13 in the case of
undrained bone as compared with other methods. Symbols are
the same as given in figure 3.
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Figure 8. Homogenization predictions for ĉ�13 in the case of
drained bone as compared with other methods. Symbols are
the same as given in figure 3.
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(3.29)–(3.33) are written as an arithmetic mean plus
an additional term. The magnitude of this additional
term is of interest, since it allows us to determine the
deviation of the effective property from its arithmetic
mean. Thus, on referring to (3.32), (3.29), (3.30) and
(3.28) and on defining

M3 Z ðp1K p0ÞM3 ð4:2Þ

and

M6 Z ðm1Km 0ÞðM1KM2Þ; ð4:3Þ
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we assess results in the two cases of c�33 and c�66Z
ðc�11Kc�12Þ=2 relating to longitudinal extension and
plain–strain shear, respectively, written as

c�33 Z ð1KfÞðp0 C2m 0ÞCfðp1 C2m1ÞCM3 ð4:4Þ

and

c�66 Z
1

2
c�11Kc�12ð ÞZ ð1KfÞm 0 Cfm1 CM6; ð4:5Þ

and we plot M3 and M6 in figures 9 and 10, respect-
ively. Note the similarity in discrepancy of the drained
and undrained cases for the in-plane shear modulus.



Table 1. The percentage difference given in (4.1) for the case
of undrained bone (c�ij).

f Dc�11 (%) Dc�12 (%) Dc�13 (%) Dc�33 (%) Dc�44 (%)

0.05 7.2 1.3 1.3 2.9 11.0
0.1 7.8 4.2 4.8 4.9 17.0
0.15 8.1 5.2 5.8 5.3 17.0

Table 2. The percentage difference given in (4.1) for the case
of drained bone (ĉ�ij).

f Dĉ�11 (%) Dĉ�12 (%) Dĉ�13 (%) Dĉ�33 (%) Dĉ�44 (%)

0.05 11.7 13.7 13.0 7.0 13.3
0.1 12.7 13.7 13.7 8.6 16.7
0.15 11.2 11.2 11.6 8.3 17.0

0.02 0.06 0.140.10

−0.02

−0.04

3

Figure 9. The deviation of c�33 and ĉ�33 from the Voigt result.
Solid line, undrained bone; dashed line, drained bone.

0.02 0.06 0.140.10

−0.005

−0.010

−0.015

−0.020

Figure 10. The deviation of c�66 and ĉ�66 from the Voigt result.
Symbols are the same as given in figure 9.
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Figure 11. The anisotropy parameter c�33=c
�
11 showing

qualitative agreement between the AS (solid line, undrained;
dashed line, drained) and finite-element computations
(crosses, undrained; stars, drained).

Table 3. The percentage difference given in (4.1) for the AR
for the cases of both undrained and drained bone.

f Dðc�33=c�11Þ (%) Dðĉ�33=ĉ�11Þ (%)

0.05 5.3 7.2
0.1 5.1 10.0
0.15 7.6 14.4
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By contrast, they are further apart in the case of longi-
tudinal extension, where the deviation from the arith-
metic mean is much greater in the case of drained bone.
4.3. Influence of pore properties on anisotropy

The usual parameter studied in order to assess the
change in anisotropy for transversely isotropic
materials is the anisotropy ratio (AR) c�33=c

�
11. We

plot this as a function of porosity in figure 11. This
figure shows qualitative agreement between the finite-
element results and the AS with particularly good
agreement in the undrained case, as is also seen in
J. R. Soc. Interface (2009)
table 3 where the percentage difference is evaluated.
The average (global) porosity in human cortical bone
has been determined as 8.26 and 9.72 per cent for males
and females, respectively (Bousson et al. 2001). For
these porosity values, the AS predicts ARs of 1.10 and
1.14 for undrained and drained male bones, respect-
ively, and 1.12 and 1.16 for female specimens. Note that
these predictions are in line with those of Crolet et al.
(2005). However, they are at odds with experimental
results that indicate that the AR is usually in the range
1.3–1.5. This discrepancy may be fully explained by the
fact that the anisotropy of the matrix material has been
neglected (Crolet et al. 2005; Grimal et al. 2008).
4.4. Comparison with the Hashin–Rosen bounds

The physical relevancy of the homogenization scheme
can be assessed upon comparison with the well-known
variational bounds on fibre-reinforced composites
found by Hashin & Rosen (1964). The closest bounds
are obtained on the engineering moduli such as Young’s
moduli, Poisson’s ratio, etc., rather than individual c�ij
themselves, due to the way that these bounds are
constructed via strain energy. We shall illustrate with
two examples relating to the in-plane deformation, the
plane–strain shear modulus m�

12Zc�66 and bulk modulus
k�12, defined by

m�
12 Z c�66 Z

1

2
c�11Kc�12ð Þ;

k�12 Z
1

2
c�11 Cc�12ð Þ:

9>>>>=
>>>>;

ð4:6Þ



0.05 0.10 0.20

0.4

0.5

0.6

0.7

0.8

0.9

0.15

Figure 12. The Hashin–Rosen bounds on m�
12 for a hexagonal

material corresponding to undrained bone. Note that the AS
remains inside these bounds for all porosities. Stars, finite
elements; long-dashed line, AS; dot-double-dashed line, upper
bound; solid line, lower bound.
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Figure 13. The Hashin–Rosen bounds on m�
12 for a hexagonal

material corresponding to drained bone. Note that the AS
remains inside these bounds for all porosities. Symbols are the
same as given in figure 12.
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Figure 14. The Hashin–Rosen bounds on k�12 for a hexagonal
material corresponding to undrained bone. Note that the AS
remains inside these bounds for all porosities. Symbols are the
same as given in figure 12.
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Figure 15. The Hashin–Rosen bounds on k�12 for a hexagonal
material corresponding to drained bone. Note that the AS
remains inside these bounds for all porosities. Symbols are the
same as given in figure 12.
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We plot the results for m�
12 in the cases of undrained and

drained bones in figures 12 and 13, respectively, and for
k�12 again in these cases in figures 14 and 15. It is clear
that the finite-element computations will not always lie
inside the bounds since these are calculations on local
samples that do not have the perfect hexagonal
periodicity. We see that the AS remains inside the
bounds for all porosities. This is important since this
means it gives physically valid predictions for a
material of this symmetry. Note that for k�12, since the
bounds are so close, the bounds themselves give
reasonable predictions of the effective properties. In
the case of m�

12, however, the distance between the upper
and lower bounds is much greater and thus the AS
becomes particularly useful as a predictive scheme.
4.5. Influence of pore shape; pores of elliptical
cross section

Real pores at the mesoscale level do not always have
perfectly circular cross sections, particularly in the case
of resorption cavities (as we indicated in figure 2).
Thus, let us consider a single pore of elliptical cross
section within a hexagonal periodic cell. We wish to
assess how much this change in pore shape affects the
J. R. Soc. Interface (2009)
local elastic properties. However, we must also mention
that this specific case considered here will lead to a
greater change in anisotropy than would be expected in
cortical bone since, in a true sample, several of these
non-circular cross-sectional pores would occur within a
RVE, each having its own orientation and thus the
induced orthotropy would then be fairly weak. Hence
we can consider the cases discussed here to be fairly
extreme situations and therefore we can usually assume
that the true local effect will be somewhere between
the case of circular pores and the elliptical case
considered in this section. Let us first consider the
results for c11sc22 before going on to assess the change
in the ARs c33=c11 and c33=c22. We analyse two specific
cases of ellipse at three different porosities, fZ0.05,
0.1 and 0.15. Ellipse A has aspect ratio 4/3 and
ellipse B has aspect ratio 2, where the semi-major axis
is in the x1 direction. Note that ellipse B leads to a
higher degree of anisotropy than ellipse A, as should
be expected by the higher eccentricity of the elliptical
pore shape. These results are tabulated in tables 4–7.

In the case of ellipse A, for the average porosity case
of 8.26 per cent for males, we obtain ARs of 1.07 and
1.13 for undrained bone (c�33=c

�
11 and c�33=c

�
22, respect-

ively) and 1.09 and 1.18 for drained bone. For female



Table 4. Comparisons of effective moduli for undrained bone
for the cases of circular and elliptical pores. Ellipse A has an
aspect ratio of 4/3 and ellipse B has an aspect ratio of 2.

f 0.05 0.1 0.15

circle (c11Zc22) 0.881 0.781 0.694
ellipse A (c11) 0.899 0.813 0.740

(c22) 0.868 0.762 0.673
ellipse B (c11) 0.915 0.840 0.775

(c22) 0.860 0.747 0.653

Table 5. Comparisons of effective moduli for drained bone for
the cases of circular and elliptical pores. Ellipse A has an
aspect ratio of 4/3 and ellipse B has an aspect ratio of 2.

f 0.05 0.1 0.15

circle ðĉ11Z ĉ22Þ 0.852 0.732 0.633
ellipse A ðĉ11Þ 0.874 0.772 0.687

ðĉ22Þ 0.831 0.703 0.601
ellipse B ðĉ11Þ 0.894 0.805 0.729

ðĉ22Þ 0.817 0.679 0.570

Table 6. Comparisons of ARs for undrained bone for the cases
of circular and elliptical pores. Ellipse A has an aspect ratio of
4/3 and ellipse B has an aspect ratio of 2.

f 0.05 0.1 0.15

circle (c33=c11) 1.064 1.127 1.189
ellipse A (c33=c11) 1.043 1.082 1.115

(c33=c22) 1.081 1.155 1.225
ellipse B (c33=c11) 1.026 1.048 1.065

(c33=c22) 1.091 1.178 1.265

Table 7. Comparisons of ARs for drained bone for the cases of
circular and elliptical pores. Ellipse A has an aspect ratio of
4/3 and ellipse B has an aspect ratio of 2.

f 0.05 0.1 0.15

circle ðĉ33=ĉ11Þ 1.083 1.166 1.250
ellipse A ðĉ33=ĉ11Þ 1.054 1.105 1.149

ðĉ33=ĉ22Þ 1.109 1.213 1.312
ellipse B ðĉ33=ĉ11Þ 1.032 1.060 1.083

ðĉ33=ĉ22Þ 1.129 1.256 1.386
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samples, where the average porosity is 9.72 per cent, we
find 1.08 and 1.15 for undrained bone and 1.10 and 1.21
for drained bone.
5. DISCUSSION

Note firstly that the asymptotic and Mori–Tanaka
schemes coincide and therefore we conclude that these
are complementary methods with which we can describe
the effective properties of cortical bone. It is certainly
the case, however, that asymptotic homogenization
permits the incorporation of complex microstructure
which is not as easy to include via the Mori–Tanaka
scheme. For example, the local region indicated in
figure 2 could be used as a periodic cell in the AS
(Parnell & Abrahams 2006, 2008). Note also that these
schemes lie within the Hashin–Rosen bounds.

As has been seen for the case of circular pores, the
results obtained with the AS are in good quantitative
and qualitative agreement with the finite-element
results performed on real two-dimensional micro-
structures obtained from images. The relative
difference between finite-element computations and
the AS results (tables 1 and 2) is larger in the case of
drained bone. This may be due to the fact that the
AS is stable for a wide range of phase contrasts
while the finite-element computational homogenization
method may not be as stable since it depends on
boundary conditions.

As should be the case (due to an increase in phase
contrast), the AR is larger in the case of empty pores
(figure 11). What is most interesting to note from this
figure is that the increase of AR with porosity shows the
same trend for the AS and finite-element results in both
the undrained and drained bone cases.

We therefore conclude that the idealized pore model
considered here could be used as a reasonable esti-
mation of the local effective properties of cortical bone.
However, this conclusion should be balanced by the
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fact that the finite-element computations (Grimal
et al. 2008) have been performed with displacement
boundary conditions alone and it could not be formally
demonstrated that the size of the RVE used was large
enough to obtain well-defined effective properties. In
addition, Grimal et al. (2008) have questioned the
validity of their computations for the case of c44, which
may explain the lack of agreement between the various
methods in the case of c�44 and ĉ�44.

The study of the deviation from the arithmetic mean
exhibits the value of homogenization formulae for the
effective properties rather than using gross assumptions
such as the Voigt average. Furthermore, it can be
shown that this deviation is significantly larger (at least
one order of magnitude) for certain elastic moduli and
also depends strongly on the material inside the pores.

The AS lies inside the Hashin–Rosen bounds for the
effective properties m�

12 and k�12 (figures 12–15) and it is
seen from these figures that, in fact, the bounds
themselves can give reasonable predictions in the case
of k�12 here but not for m�

12.
For elliptical cross sections with high eccentricity,

corresponding to an aspect ratio of two (ellipse B
above), the ARs are 1.06 and 1.25 compared to 1.16
with circular pores (9.72% porosity, drained bone,
corresponding to the average porosity in female cortical
bone). This result and the others in tables 4–7 are, as far
as we know, the first direct quantification of the effect of
pore shape on the anisotropy of cortical bone. The overall
anisotropy in real bone (where pores have random
orientation) is expected to deviate from the circular
pore case less than our results for the elliptical cross
section indicate here, since this latter situation is an
extreme case where all pore cross sections are aligned.

The above analysis allows us to deduce the
magnitude of the contribution to the anisotropy of the
mesoscale porosity alone; the AR lies in the range 1–1.3,
which is consistent with the results in Crolet et al.
(2005) and Grimal et al. (2008). This approximate
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range of AR (1–1.3) was found for both drained and
undrained bone and also for pores of elliptical and
circular cross section.

Note that these ARs are lower than actual aniso-
tropy in cortical bone since in the present work the
bony matrix anisotropy has been neglected; the latter
has a significant influence on cortical bone anisotropy,
as was pointed out by Crolet et al. (2005) and Grimal
et al. (2008).
6. CONCLUSIONS

We have applied the method of asymptotic homogen-
ization in order to predict the local effective elastic
properties of cortical bone. In particular, we have used
the method developed by Parnell & Abrahams (2006,
2008), which is ideally suited to materials with high
phase contrast and complex microstructure. Further-
more, as far as the authors are aware, this is the first
time that comparisons have been made between
effective moduli obtained on idealized mesostructures
(using asymptotic homogenization) and on real images
of cortical bone (using finite element methods; Grimal
et al. 2008).

The benefits of the AS are numerous but most
importantly it provides fast, consistent predictions of
the effective properties of cortical bone that can be used
for the interpretation of measurements on drained or
undrained bone samples at all mesoscale porosities
within the physiological range.

The proposed method is semi-analytical and given
the correct expansions of the required doubly periodic
potential functions, the only numerical computation
involved is the solution of a linear system of equa-
tions. Hence, its implementation is straightforward
and it is hoped that the scheme will be easily
implemented by others. This is possible by down-
loading the appropriate MATHEMATICA codes available
online (Parnell 2008; www.maths.manchester.ac.uk/
wwparnell/research). The computation time for the
entire elastic coefficient matrix c�ij is of the order of a
second. As a consequence, the method is extremely
well suited to parametric studies.

Note that the matrix has been modelled as a
homogeneous material, whereas in reality the matrix
of cortical bone possesses properties that vary from
point to point, in particular, due to different degrees of
mineralization. However, our assumption of homogen-
eity is based on the hypothesis that the inhomogeneity
of matrix properties is expected to have a small effect on
the overall properties because the elastic contrast
between different regions in the matrix is small when
compared with the contrast between mean matrix
elasticity and the elasticity of the mesoscopic pores.
Results that tend to confirm this hypothesis have been
presented in Grimal et al. (2007). Note also that since
the local effective properties have been determined, this
means that the resulting homogenized material proper-
ties may vary within the cross section of the cortical
bone (as depicted in figure 2), depending upon the
mesoscale porosity within that local region.

The AS used in this work for a simple hexagonal
lattice where pores are described as cylinders can be
J. R. Soc. Interface (2009)
used straightforwardly to model matrix anisotropy and
complex microstructures that more closely resemble
that of cortical bone by considering patterns with
several cells including different pore shapes. This work
is underway and will be reported on in future articles.
This will lend itself to validation when compared with
experimental data at the meso- and macroscales.
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