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Mathematical models of highly interconnected and multivariate signalling networks provide
useful tools to understand these complex systems. However, effective approaches to
extracting multivariate regulation information from these models are still lacking. In this
study, we propose a data-driven modelling framework to analyse large-scale multivariate
datasets generated from mathematical models. We used an ordinary differential equation
based model for the Fas apoptotic pathway as an example. The first step in our approach was
to cluster simulation outputs generated from models with varied protein initial
concentrations. Subsequently, decision tree analysis was applied, in which we used protein
concentrations to predict the simulation outcomes. Our results suggest that no single subset
of proteins can determine the pathway behaviour. Instead, different subsets of proteins with
different concentrations ranges can be important. We also used the resulting decision tree to
identify the minimal number of perturbations needed to change pathway behaviours. In
conclusion, our framework provides a novel approach to understand the multivariate
dependencies among molecules in complex networks, and can potentially be used to identify
combinatorial targets for therapeutic interventions.
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1. INTRODUCTION

Despite decades of efforts, therapeutical approaches for
complex diseases, such as cancers and autoimmune
diseases, remain less effective broadly and more
susceptible to detrimental side effects than desired.
One of the key reasons hindering the discovery of
effective treatments is the daunting complexity of the
molecular networks governing cell functional beha-
viour. Mathematical models are becoming proposed as
a powerful new tool to help understand such complexity
(Ma’ayan et al. 2005). Among a wide array of
prospective modelling approaches, knowledge-driven
mechanistic modelling using differential equations are
in most popular use. In recent years, mechanistic
models have provided insights concerning operation of
a variety of signalling pathways, such as those featuring
NF-kB (Hoffmann et al. 2002), the EGF receptor
(Kholodenko et al. 1999; Schoeberl et al. 2002; Wiley
et al. 2003) and apoptotic caspases (Bentele et al. 2004;
Hua et al. 2005). However, these models, generally
c supplementary material is available at http://dx.doi.
rsif.2005.0109 or via http://www.journals.royalsoc.ac.

orrespondence (sampsa@mit.edu).
authors contributed equally to this work.

ovember 2005
ecember 2005 515
formulated as differential equations, are most easily
used to study limited facets of the network of interest,
especially when attempting to produce conceptual
insights concerning how multiple variables work
together to yield overall system behaviour. A major
reason for the inherent difficulty in going from
mechanistic models to network ‘logic’ is that these
models often have tens to hundreds of differential
equations and become too large to yield to analytical
examination. Commonly used analysis techniques such
as sensitivity analysis are typically pursued in uni-
variate mode, where the value of only a single
parameter is varied at once. Conclusions drawn from
such analyses are hence limited to a particular set of
parameter values, to which the model has been fit.

In this study, we propose a framework to facilitate
the understanding of the signalling pathway regulations
with variations in multiple parameter values, specifi-
cally non-zero initial conditions (subsequently referred
to as only ‘initial conditions’) representing molecular
component levels. Since signalling molecules are highly
interconnected and signal transduction kinetics are
nonlinear, the regulation of signalling pathways is
inherently multivariate. Moreover, diverse cell types,
as well as cells of the same type from different
individuals, can differ in expression levels of multiple
molecules. Therefore, it is important to study how
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Figure 1. Schematic representation of the Fas pathway used in the mechanistic model. Molecules in blue are directly involved in
Fas signalling; molecules in red are inhibitors of the pathway; intermediate reaction complexes are in black. The triggering
molecule, FasL, is shaded in green. The output molecule is shaded in blue. Two green coloured reaction arrows represent
transport type reactions. Numbers on the arrow indicate the corresponding reactions in electronic supplementary material.
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multiple components integrate to regulate the signal-
ling pathways in order to appreciate different responses
to the same stimuli among different cells. Our proposed
framework meets this challenge by applying a data-
driven modelling approach to analyse the multivariate
dataset generated from a mechanistic model.

Mechanistic models are knowledge-driven in nature,
requiring considerable amount of knowledge about the
biological process to be specified, including the pathway
connectivity, initial conditions and reaction rate con-
stants. A central advantage of this approach is to offer
quantitative and temporal (and even spatial in cases)
information of the signalling network in silico. These
models have the potential to allow studies of multi-
variate regulations by running a large number of
simulations with combinations of varied initial con-
ditions. However, we are not aware of any effort to date
for extracting useful regulation information from a
‘library’ of multivariate simulations.

In contrast, data-driven models are derived directly
from measurements (or calculations) describing input
and/or output characteristics of a system. Such
approaches enable extraction of general and abstract
rules governing biological processes from a large
amount of data. The data used in data-driven models
are mostly high-throughput experimental data, such as
microarray data and mass spectrometry data (Adam
et al. 2002; Segal et al. 2003; Basso et al. 2005). In the
present work, we apply a data-driven modelling
approach to the simulated data from a mathematical
model.

Our proposed data-driven modelling approach con-
sists of two steps: clustering of mechanistic model
simulation outputs and subsequent classification of the
clustered outputs based on initial conditions. The goal
J. R. Soc. Interface (2006)
of the clustering step is to group simulation outputs
into discrete subsets (i.e. clusters) and these clusters are
then used as outcomes in the classification step. The
clustering step is essential since classification requires
discrete outputs. Moreover, clustering reduces the
dimensionality of the output space, which facilitates
extraction of generalized relationships between inputs
and outputs. In the classification step, we use a decision
tree algorithm to identify the molecules that together
are able to predict different outcomes (Breiman et al.
1984). Initial conditions for each simulation are the
inputs of the decision tree algorithm and the clusters
based on the simulation outputs are the outcomes (the
leaf nodes of the tree). The decision tree algorithm
repeatedly splits the dataset based on selected input
values—in this case, molecule concentrations—to
maximize outcome purity of resulting data subsets.
Consequently, the algorithm generates a tree graph,
which illustrates propositional (Boolean) rules leading
to a certain cluster. The rules are composed of a set of
initial condition ranges. According to the tree graph,
the set of key molecules and their concentration ranges
that lead to certain pathway behaviour can be clearly
read out by following a path from the root of the tree to
a leaf.

Decision tree analysis has been applied to many
different areas of biomedical decision making processes
(Adam et al. 2002; Podgorelec et al. 2002; Hautaniemi
et al. 2005). In this study, we take a step further by
using the decision tree model to predict manipulations
needed to change cellular responses to the activation of
the pathway. Since molecules and their concentration
ranges are given for each path of the decision tree, we
are able to identify the molecules that have different
values on two paths leading to two different behaviours.
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Figure 2. Model fitting with experimental data. Separated symbols are experimental data and smoothed curves are model
simulations. (a) Model fitting for full-length caspase-8 decrease in the presence of 100 ng mlK1 FasL in control Jurkat cells. (b, c)
Model fitting for total active caspase-3 generation time-course in the presence of 1, 10, 100 and 1000 ng mlK1 FasL in control
Jurkat cells (b) or Bcl-2 overexpressed Jurkat cells (c). (d) Model simulation shows slow down of caspase-3 activation with 10
times increased XIAP or Flip in the presence of 100 ng mlK1 FasL.
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These are the predicted molecules that need to be
perturbed to switch a cell from one path to the other.
This approach offers the potential for identifying
combination of perturbations required to change
cellular responses.

We study here the Fas apoptotic pathway as an
example system for our integrated analysis. Fas is a
member of death receptor family, which transduces the
extracellular cue Fas ligand (FasL) in governance of
programmed cell death. Fas-induced apoptosis plays an
important role in many cellular processes, dysregula-
tion of which can lead to various diseases such as cancer
and autoimmune diseases (Landowski et al. 1997;
Krammer 2000). As a tightly controlled cell suicide
process, the signalling molecules downstream of Fas
and FasL binding have been well characterized in
isolated pieces (Nagata 1999; Igney & Krammer 2002;
Lavrik et al. 2005) and several mechanistic models for
this pathway have also been developed (Fussenegger
et al. 2000; Bentele et al. 2004; Hua et al. 2005).
Nonetheless, it remains unclear how this network is
regulated under different combinations of relevant
protein expression levels. By applying our integrated
data-driven modelling with mechanistic modelling
J. R. Soc. Interface (2006)
framework to this pathway, we observe that whether
varying the concentration of a single molecule affects
the pathway output is strongly dependent on the
concentrations of other molecules in the pathway.
Similar network outputs or cellular responses can result
from different subsets of components exhibiting diverse
combinations of expression levels. Consequently,
manipulations of different protein(s) might be required
to alter similar responses with different underlying
mechanisms.
2. RESULTS

2.1. Generation of a simple mechanistic model
for the Fas signalling network in Jurkat cells

We created a simplified mechanistic model describing
the dynamic signal propagation for the Fas pathway
derived from a previously published model (Hua et al.
2005). To keep the number of parameters in the model
small, the previous model was simplified by aggregating
several molecules in a linear pathway into a single
surrogate molecule at several locations in the network
while the basic structure of the network, including both
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Figure 3. The centroids of free cleaved caspase-3 production
curve for each cluster.
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the direct and mitochondria-involved pathways, was
maintained. Figure 1 shows the network structure
described by the simplified model. The pathway is
triggered by adding FasL and ends at the activation of
caspase-3. Since the active caspase-3 can be sequestered
by free X-linked inhibitor of apoptosis protein (XIAP)
and become inactivated, the kinetics of free (i.e. XIAP
unbound) cleaved caspase-3 production was used as
the model output. An extensive experimental dataset
was measured for parameter fitting, including a time-
course for caspase-8 cleavage in control Jurkat cells
stimulated with 100 ng mlK1 FasL, and time-courses of
total active caspase-3 production in control and Bcl-2
overexpressed Jurkat cells stimulated with 1, 10, 100
and 1000 ng mlK1 FasL. Figure 2a–c shows model
simulation results after parameter fitting. In addition
to fitting the model with experimental data, the model
also predicted delayed caspase-3 activation when the
concentration of Flip or XIAP is increased (figure 2d),
which are consistent with literature data (Irmler et al.
1997; Bratton et al. 2002). All the biochemical
reactions, reaction rate constants and non-zero initial
conditions (concentrations of the molecules before
adding FasL excluding transient complexes and mol-
ecules) used in the model are listed in electronic
supplementary material.
2.2. Generation of multivariate simulation
dataset

In order to understand the regulation of the Fas
pathway with different concentrations of the molecules
in the pathway, it is desirable to run simulations with
combinations of varied initial conditions for multiple
molecules. Depending on how many potential values
are given to each initial condition, covering all the
possible combinations leads to an exponential increase
of the number of simulations. To overcome the
challenge of computational complexity, we performed
Monte Carlo simulation with randomly chosen values
for 9 out of 11 initial conditions; the excluded molecules
were FasL and caspase-3. The initial condition for FasL
was kept the same throughout the simulations because
it is an external signal added to the cell, therefore, the
regulation of the Fas pathway by a cell itself does not
include controlling FasL concentration. The initial
condition of caspase-3 was kept constant because it is
the proenzyme of the output product, therefore,
changing it obviously will have a dramatic effect on
the model output.

All the varying initial conditions exhibit a log-
uniform distribution within a range of 10 fold higher or
lower than the baseline values, which are the values in
the model fitted to Jurkat cells. Taking the log-
transformation ensures that the number of possible
states with values less than the baseline value is the
same as the number of states with values greater than
the baseline. A total of one million simulations were run
using MATLAB. Each simulation represents a single in
silico cell with an independent set of initial conditions.
All initial conditions are expressed as fold changes with
respect to the baseline values.
J. R. Soc. Interface (2006)
2.3. Data clustering

The model outputs from one million simulations varied
widely from very fast with free caspase-3 concentration
reaching the highest concentration in 30 min to almost
no free caspase-3 generation during the length of
simulation. In order to explore this large dataset, we
first transformed the dataset into discrete clusters using
the k-means clustering algorithm (Duda et al. 2001).
The clustering was based on the model output, i.e. time-
courses of free cleaved caspase-3 production. Since free
cleaved caspase-3 cleaves many important cellular
substrates leading to morphological changes that are
typically associated with apoptosis, we used this model
output to indicate the cellular response to Fas-induced
apoptosis. A fast increase in free cleaved caspase-3
concentration and/or a large steady state concentration
implies that the cell is sensitive to Fas-induced
apoptosis and vice versa. We chose three clusters for
the clustering algorithm to represent insensitive,
medium sensitive and sensitive cellular responses to
Fas-induced apoptosis. Figure 3 shows the resulting
centroids of the free cleaved caspase-3 production curve
for each cluster.
2.4. Decision tree analysis of multivariate
regulations of the Fas pathway

To extract and visualize the complex relationships
among all the molecules in the Fas pathway, we applied
the decision tree analysis to the clustered simulation
dataset as described in §4. The resulting decision tree
graph is illustrated in figure 4. The top node splits the
whole dataset depending on whether the initial
condition for XIAP in each cell is less than 3.1 fold
change from the baseline value. At each internal node,
the left edge is taken if the initial condition of the
denoted molecule is within the given range; otherwise,
the right edge is taken. Each leaf node is the predicted
outcome according to the decision tree model, which is
one of the three clusters of the cellular sensitivity to
FasL stimulation. A path from the top node to a leaf
node comprises a set of rules, which are the value ranges
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of multiple initial conditions. The components shown
on the path are defined as important (key) molecules for
the outcome of the path because their concentrations
are pertinent. For example, for the fourth leaf from
right (labelled with I2), the decision tree predicts that if
a cell has XIAP level between 3.1 and 5.2 times its
baseline value and Fas level below 0.9 times its baseline
value, the cell belongs to the insensitive-response
cluster. Therefore, XIAP and Fas are key components
in determining the insensitive-response behaviour,
while the concentrations of other molecules do not
matter significantly in this case.

From the emerging decision tree model, we can see
that similar behaviour (i.e. the same cluster) can be
caused by different combinations of key molecules and
different initial concentration ranges for even the same
molecule in different sets. The decision tree model also
suggests that the importance of one molecule depends
on the relative concentrations of other molecules. For
instance, Smac is only important when XIAP is at an
intermediate high level (between 3.1 and 5.2 times
baseline level) and Fas is also high. When the XIAP
level is very high (greater than 5.2 times of the baseline
value), the cell is always insensitive to Fas killing
J. R. Soc. Interface (2006)
because XIAP level greatly exceeds the highest possible
level of Smac so that there are always plenty of Smac-
unbound XIAP to sequester newly generated cleaved
caspase-3. When the XIAP level is very low (less than
3.1 times the baseline value), Smac is not critical either.
This is because the sole function of Smac in this model is
to reduce the amount of available XIAP that sequesters
caspase-3 and -9, while the XIAP level is so low that it is
not sufficient to sequester caspases anyway. Another
example is Bcl-2. In the decision tree, Bcl-2 appears in
many paths, but not all. This suggests that the
importance of Bcl-2 in regulating cellular response to
FasL stimulation is highly dependent on the levels of
the other molecules. This gives a potential explanation
for the existence of cells that are either sensitive or
insensitive to Bcl-2 overexpression (Scaffidi et al. 1998).

We compared the decision tree graph to the
sensitivity analysis results (figure 5) from the mechan-
istic model with baseline initial conditions. The
sensitivities of the model output to individual initial
conditions were calculated in Jacobian (Numerica
Technology, LLC, Cambridge, MA), in which the
sensitivity to perturbations of each single initial
condition is calculated independently. The pathway
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output appears to be most sensitive to the changes of
initial conditions for Fas and Flip molecules given all
the initial conditions are at the baseline value. In
contrast, the decision tree algorithm is applied to the
dataset with simultaneous variation of concentrations
for multiple molecules. It identifies subsets of proteins
whose concentrations together are most predictive of
the pathway outcome. Fas and Flip, the most sensitive
molecules from the sensitivity analysis, are also present
on many paths, which suggest that their concentrations
are important with many different sets of initial
conditions. However, under some conditions (e.g.
paths leading to leaf nodes III1, III5 and II8), other
molecules such as caspase-8, Bcl-2 or mitochondria are
also important. Since our simulation dataset covers a
wide range of concentration for each molecule, we were
not only able to identify these key molecules, but also
specify ranges where the molecule concentrations need
to fall into.
2.5. Validation of the decision tree model

To validate the decision tree model (figure 4) we
created a second Monte Carlo dataset consisting of one
million new simulations. The distances between the
output of each simulation in this validation dataset and
all three previously determined k-means centroids were
calculated using the cityblock distance. The cluster
giving the closest distance was assigned to each
simulation. We then tested how well the decision tree
model can predict the cluster outcome according to the
initial conditions for each new simulation. Since there
are three possible clusters outcomes, we would expect
to achieve 33% average accuracy by randomly choosing
a cluster. The decision tree resulted in 71% prediction
accuracy for this independent testing dataset, which is
more than twice as good as randomly choosing the
cluster.

For training and validation Monte Carlo simu-
lations, we set the sampling interval for each initial
condition to be 100.025. Given the fold-change from the
J. R. Soc. Interface (2006)
baseline value with a range from 10K1 to 101, each
initial condition has 81 potential values. To test
whether the sampling interval for each molecule
concentration is small enough, we generated a third
Monte Carlo dataset with a larger sampling interval of
100.25, while keeping the ranges of the initial conditions
the same resulting in nine potential values for each
molecule. Using this lower resolution dataset of one
million simulations as the testing dataset, the decision
tree model in figure 4 still resulted in 71% prediction
accuracy, which suggests that the original higher
resolution dataset is sufficient to capture the essential
characteristics of the space of all variable combinations.
2.6. Identification of minimal perturbations to
switch the behaviour of the Fas pathway

In addition to showing the important multivariate
relationships among the molecules in the Fas pathway,
we used the decision tree model to make predictions
about manipulations needed to change the cellular
sensitivity to FasL stimulation. By following a path in
the decision tree, the sets of important molecules that
lead to certain cellular response cluster and their
concentration ranges can be clearly read out. Therefore,
we were able to identify the molecules with different
concentrations between two paths. These are the
molecules whose concentrations need to be modified
to change cellular responses. The total number of these
molecules is defined as COST and the detailed COST
calculation is given in §4. The calculation of COST is
direction-dependent, i.e. the COST from pathA to path
Bmay be different from the COST from path B to path
A. We computed COST values between all the
combinations of any two paths that do not belong to
the same cluster. Table 1 gives the COST matrix for
changing from the insensitive-response cluster to the
sensitive-response cluster. Five additional COST
matrix tables for other combinations are given in
electronic supplementary material.

Using the decision tree and the COSTmatrix, we can
suggest how to switch a cell response to FasL
stimulation with minimal number of perturbations.
First, we use the decision tree to identify which path the
cell follows. Second, we use the COST matrix to
identify which path to switch to in order to obtain the
minimal COST. For example, assume we would like
to switch a cell from insensitive to FasL stimulation to
sensitive. According to the decision tree, we need to
first find out the fold difference of XIAP concentration
in this cell relative to Jurkat cells (the fitted baseline
model). Depending on the XIAP concentration in the
cell, we either know the cell is in leaf node I1, or we need
to measure relative Fas concentration, and so forth.
Assuming we eventually find out that the cell follows
the path leading to leaf I5, we use the COST matrix in
table 1 to find out that the minimal COST value in the
column corresponding to I5 is one by switching to either
leaf node III1 or III6. Accordingly, we predict that only
one molecule needs to be perturbed which can either be
decreasing Flip level or increasing Fas level. As a
second example, if a cell also has insensitive response
and belongs to leaf I6, the best way to switch it into



Table 1. COST matrix for transition from insensitive-response cluster (I) to sensitive-response cluster (III).

I1 I2 I3 I4 I5 I6 I7 I8 I9

III1 2.18 2.67 1.92 1.67 1 1.77 1.92 1.94 1.95
III2 2.01 1.52 2.5 2.5 1.52 2.51 2.49 2.5 1.52
III3 2.98 2.49 2 1 2.5 1.87 1.92 1.88 2.99
III4 3.31 3.79 2.65 3.61 2.18 1.96 1.65 3.6 1
III5 3.07 3.55 3.07 2.61 1.95 2.61 2.6 2.48 1.46
III6 2.98 3.22 1.99 2.22 1 2.77 1.99 1.96 1.59
III7 3.39 3.23 2.16 2.67 2.76 2 2.17 3.17 3
III8 3.64 3.15 3.01 2.03 3.3 2.47 2.65 1.54 4.51
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a sensitive cell is to change to leaf III1 with COST of
1.77 by increasing Fas and possibly increasing caspase-
8 as well. Since the caspase-8 concentration range is
partially overlapping between two paths (less than 1.2
for leaf node I6 and R0.6 for leaf node III1), there is a
possibility that caspase-8 concentration needs to be
increased to be greater than 0.6. This possibility is
estimated as described in §4.

According to the COST matrix, a minimal COST
greater than one is not uncommon for switching
between insensitive-response cluster (I) and sensitive-
response cluster (III). This suggests that several
molecules need to be perturbed simultaneously to
obtain a sufficient large change in cellular responses,
while changing one molecule may be only capable of
switching between two adjacent clusters (e.g. from the
insensitive-response to the medium sensitive-response).
Taken together, the decision tree model exhibits a
promising capability to identify combinatorial pertur-
bations required to obtain a stronger effect.
3. DISCUSSION

In this study, we have developed a framework to study
multivariate regulation of cellular signalling pathways
in silico, summarized in figure 6. This framework
integrates a data-driven modelling approach with a
knowledge-driven modelling approach to identify the
J. R. Soc. Interface (2006)
complex relationships between signalling molecule
concentrations and the signalling pathway output
dynamics and to generate experimentally testable
predictions.

Our approach begins with the construction of a
knowledge-driven mechanistic model for the pathway,
followed by Monte Carlo simulation with varied initial
concentrations of signalling molecules. The simulated
data are then grouped into three clusters based on the
model output, followed by decision tree analysis. Using
the propositional rules emergent from the decision tree
model, the perturbations needed to switch from one
phenotype to another are predicted, and the minimal
number of perturbations needed is also identified.

Employing the Fas apoptotic signalling pathway as
our example system here, application of this aggregated
modelling approach suggests there is no single or fixed
subset of molecules that can determine the behaviour of
the Fas signalling pathway. Instead, concentrations of
different sets of molecules can be important in
determining the cellular responses to FasL stimulation,
depending on the concentrations of other molecules
involved in the Fas signalling. These dependencies are
described by the decision tree model. Consequently,
similar responses to FasL stimulation in different cells
might be due to combinations of different molecule
concentrations: thus, these cells require different
perturbations to change their behaviours.
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3.1. Generation of multivariate simulation
dataset with the mechanistic model

Mechanistic models are becoming more and more
common in biomedical studies aiming at identifying
therapeutical targets (Schoeberl et al. 2002; de Pillis
et al. 2005). Often, analyses of the pathway regu-
lation—such as sensitivity analysis—study the effect of
changing one single initial condition on the model
output at a time. This renders the analysis results
dependent on the other initial conditions chosen for the
simulation, and thus to a particular cell type that the
model has fit to. One potential approach to overcome
this limitation is to run many simulations with
combinations of different initial conditions. A major
challenge with this approach is an exponential
explosion of the possible combinations of initial
conditions when there are tens or even hundreds of
initial conditions in the model.

One of our strategies to minimize the problem of
combinatorial complexity is to use a simplified model to
reduce the number of initial conditions in the model.
The model is simplified by using functional modules,
such as the mitochondrial module and the apoptosome
module, based on the biological knowledge of the
pathway. Each module represents several molecules
whose functions are separable from those of other
molecules. This model reduction facilitates identifi-
cation of important modules and if the understanding of
individual molecules in a module is desired in the
future, we can generate an expanded model including
details for that particular module or apply separate
analysis to a particular module.

Our second strategy to overcome the combinatorial
complexity is to use Monte Carlo simulation. The
number of potential values for each molecule is another
factor contributing to combinatorial complexity. Since
the relationship between molecule concentrations and
model outputs is nonlinear, we would like to have as
many values for each molecule and thus smaller
intervals between values as possible to capture the
appropriate behaviour. However, even five values for
each of the nine varying molecules result in almost two
million (59) combinations. Therefore, we utilized Monte
Carlo simulation to randomly select combinations of
initial condition values with 81 potential values for each
initial condition. Two independent runs of Monte Carlo
simulation, with one million individual simulations for
each, resulted in very similar decision trees with equal
prediction accuracy (results not shown), which suggests
that although one million simulations only covers a
very small fraction (about 10K10%) of all the possible
combinations, the decision tree based on these simu-
lations is both representative and reproducible.

Our ordinary differential equation (ODE) model is a
greatly simplified depiction of the Fas-induced apopto-
sis process. It serves well the purpose of this study:
developing a machine-learning approach to analyse
large-scale dynamic dataset. For future, more dedi-
cated application efforts, the model for this process
could be expanded in depth and scope by disaggregat-
ing some of the components and including additional
events such as protein degradation and synthesis. It
J. R. Soc. Interface (2006)
would also be of great interest to use some systematic
mathematical approach for the model reduction.
However, these represent different topics that are
outside of the range of this study.
3.2. Data-driven modelling

Since data-driven models have the capability of
processing large amounts of data, they provided a
good solution to analyse our Monte Carlo dataset. The
data-driven modelling framework we have developed
consists of clustering and classification steps.

An essential step in our framework is to cluster
simulations according to the model output since the
clustering results are used as the outcomes in the
subsequent decision tree analysis, which requires
limited number of discrete outcomes. We chose the
k-means algorithm because it is computationally
efficient compared with other clustering algorithms,
such as hierarchical clustering. It would be an interest-
ing topic for further research to test how different
clustering algorithms may affect the decision tree
model. One particular clustering algorithm we would
like to test in the future is the fuzzy k-means clustering,
which computes the likelihood for a simulation belong-
ing to each cluster instead of strictly assigning each
simulation to one cluster. The use of fuzzy k-means
algorithm would, however, require significant modifi-
cations to the decision tree algorithm, which is beyond
the scope of this study.

We used the decision tree analysis in the classifi-
cation step to link the molecule concentrations to
simulation outputs. Among a number of standard
machine learning classification algorithms, such as
artificial neural networks or support vector machines,
decision trees possess several attractive properties for
extracting key molecules regulating multivariate sig-
nalling networks. These advantages include no need to
assume a linear relationship or pre-specified distri-
butions for the data. Moreover, the decision tree
analysis automatically recognizes the dependence of
one molecule on other molecules (i.e. context depen-
dence). Most importantly, the set of key molecules and
their value ranges that lead to certain cluster can be
clearly read out from the tree. The tree graph illustrates
the multivariate relationships among signalling mol-
ecules. Regardless of the positions of the molecules in a
path (closer to the top or bottom), all the molecules in
one path are equally important and their concen-
trations together determine the outcome of the path.

Since the decision tree analysis illustrates the key
molecules in the pathway, it provides a guide as to
which and how many molecules we need to measure to
predict a cell’s response to the activation of the
pathway. For instance, instead of measuring all the
molecules on the pathway, according to the decision
tree, we should measure XIAP level in the cell first, if it
is medium high, we should measure Fas, and so forth.
At the same time, one should pay attention to how close
the concentration of the specified molecule in a cell is to
the splitting value. If the concentration of a molecule in
the sample to be classified is very close to the splitting
value, both branches are almost equally valid (because
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each splitting value is an estimate with some level of
uncertainty) but they may lead to different classes. As
an instance, the simulation for the baseline model, for
which all the initial conditions are at onefold change,
belongs to the sensitive-response cluster (III). However,
it was misclassified to the insensitive-response cluster
(I) by following the path leading to leaf node I3. The
reason for this misclassification is due to the partition at
the internal node for Fas (Fas!1.1, or more precisely
Fas!1.091). Since in the baseline simulation Fas has
the value one, both branches could be followed and
taking the right branch leads to the leaf node III1, which
is the correct class.

The decision treemodel for the Fas pathway shown in
figure 4 has an encouraging prediction accuracy of 71%.
The decision tree model was better at predicting cells
belonging to the insensitive-response (I) and the
sensitive-response (III) clusters than cells belonging to
the intermediate (II) one. For the sensitive and
insensitive leaves, there are only six cases in which the
prediction accuracy is under 66%, whereas for medium
sensitive-response cluster (II) all but one leaf have
prediction accuracies are below 66%. The overall mean
prediction accuracy for the leaves with equal to or
greater than 66% accuracy (marked with asterisks in
figure 4) is 78%, and for the leaves with less than 66%
accuracy is 48%. Thus, the majority of the rules for
leaves I and III are fairly accurate, such as leaf III1 with
92% prediction accuracy and leaf I3 with 90% prediction
accuracy.

The prediction accuracy can probably be improved
by using ensemble decision tree approaches such as the
random forest algorithm (Breiman 2001a). However,
these new approaches often lose effective graphic
representation of the relationships between the initial
conditions and the cellular responses. In general, there
is an counteracting relationship between the accuracy
and the interpretability of a model: a very high
prediction accuracy often requires a more complex
model, which is in turn more difficult to interpret
without extensive computational effort (Breiman
2001b). Accordingly, we chose our decision tree analysis
with a decent prediction accuracy and excellent
interpretability.
3.3. Predicting manipulations according
to the decision tree

Since the decision tree provides a convenient visualiza-
tion of the key molecules leading to certain behaviours,
we can directly compare two paths and identify which
components need to be changed and by how much in
order for the system behaviour to switch from one path
to another path. In this study, we have simply
calculated the minimal number of perturbations
required to switch the pathway behaviour. For
example, according to the decision tree (figure 4) and
the COST matrix (see electronic supplementary
material), the best way to switch Jurkat cells from
the sensitive-response cluster (III1) to an insensitive-
response cluster is to increase Flip level, and therefore,
switch Jurkat cells to leaf node I5. This is consistent
with literature which has shown overexpression of Flip
J. R. Soc. Interface (2006)
protects cells from Fas-induced apoptosis (Irmler et al.
1997); and also consistent with the ODE model
simulation which has shown that increasing Flip can
slow down caspase-3 activation in the model for Jurkat
cells (figure 2d).

In practice, it is much more complex to define the best
way to change the cellular behaviour. Possible consider-
ations include themagnitude of the concentration change,
how easy it is to manipulate the molecule(s) and whether
changing these molecules affects other signalling path-
ways leading to undesired side effects. The first two
criteria can be potentially incorporated into the COST
calculation by multiplying a coefficient to each changing
molecule indicating either the magnitude of the change or
the difficulty of themanipulation. The third consideration
is much more challenging. One approach could be to
construct separatemechanisticmodels forotherpathways
with cross-talk molecules to the Fas pathway and then
apply our developed framework described in figure 6 to
obtain a decision tree model for each new pathway. These
decision tree models can be used to check whether
changing a particular cross-talk molecule will affect
cellular responses to these pathways. Another more
challenging and interesting future direction is to build
multi-dimensional decision trees based ona largemechan-
istic model including several pathways with cross-talk to
eachother. In this case, the initial conditionswould still be
the input for the decision tree but the outcomes would be
the cellular responses to each pathway.
3.4. Significance of the study

Knowledge-based mechanistic models and data-driven
models are two types of computational approaches that
complement each other. By combining them to analyse
molecular signalling pathways, we have developed a
way to obtain multivariate regulatory information and
to predict combinatorial perturbations that modify the
pathway behaviour.

Due to the heterogeneity among individuals, the
protein expression levels in the same cell type may vary
considerably across different individuals. Furthermore,
when a drug is administered to a patient, it interacts
with many different cell types in the human body. These
different cell types often have different amounts of
protein expression levels as well. Therefore, under-
standing regulation of molecular signalling pathways
with varied signalling molecule concentrations would
help us understand different responses among different
cell types, as well as the same cell type among different
individuals. This knowledge may consequently facili-
tate personalized treatment and better drug design with
minimized side effects. There has been considerable
progress in genomic and proteomic research to rapidly
identify differences among cells at the RNA level and
the protein level (Rosenwald et al. 2002; Gunther et al.
2003; Kislinger et al. 2005). Investigations have been
mainly focused on identifying useful biomarkers to
predict the effectiveness of a drug treatment or to
classify diseased states. Our study provides a new
approach to facilitate the translation from the differ-
ences in the basic constituents of cells to the differences
in cellular responses based upon the knowledge of the
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signalling network. Furthermore, potential benefit of
targeting multiple targets for effective treatment of
diseases has been recognized increasingly (Roth et al.
2004; Frantz 2005; Mencher & Wang 2005). The
capability of identifying combinatorial targets for
effectively changing cellular responses can make the
proposed approach very useful in drug design.

This data-driven strategy to analyse and visualize
large-scale datasets is versatile and applicable to a wide
range of biomedical applications involving prediction,
such as diagnosis, prognosis or predicting cell decisions
based on intra- or extracellular conditions. Also, when
experimental data about different protein expression
levels and cellular responses among different cells
become available, our data-driven modelling approach
can also be applied to analyse these experimental data.
4. MATERIAL AND METHODS

4.1. Cells and reagents

A human tumour T cell line, Jurkat.E6, was purchased
from ATCC (Manassas, VA). Bcl-2 overexpressed
Jurkat.E6 cells were generated using retrovirus infec-
tion as described previously (Hua et al. 2005).
Recombinant human superFasL was purchased from
Alexis (San Diego, CA). Anti-cleaved caspase-3 mAb
(552 597) used for intracellular staining was purchased
from BD Pharmingen (San Diego, CA), and Alexa Fluo
647 donkey anti-rabbit IgG (A31573) was purchased
from Molecular Probe.
4.2. Intracellular staining of active caspase-3

Resting or stimulated cells were fixed with 4% para-
formaldehyde for 10 min at room temperature, followed
by permeabilization with 100% MeOH overnight at
K20 8C. Cells were washed twice with PBSC0.1%
Tween (PBST) before incubating with anti-cleaved
caspase-3 for 1 h. Cells were washed twice again with
PBST, followed by incubation with Alexa Fluo 647 anti-
rabbit at room temperature for 1 h in the dark. After two
more washes with PBST, cells were analysed on a FACS
Calibur machine (BD Biosciences, San Jose, CA). The
percentage of cells positive for cleaved caspase-3 was
normalized using following equation:

[(cleaved caspase-3)K(spontaneous cleavage)%]/
[1K(spontaneous cleavage)%], where (spontaneous
cleavage)% is the percentage of cells that are positive
for cleaved caspase-3 without adding FasL.
4.3. Mechanistic model for the Fas pathway

An ODE based mathematical model was constructed to
describe the signal transduction along the Fas pathway.
Figure 1 schematically illustrates the pathway topology
described in the model. The model starts with FasL
binding to Fas and ends at the activation of caspase-3.
Since the cleaved caspase-3 can be sequestered by
XIAP and become inactive, the free cleaved caspase-3
was used as the model output. In the model, the
pathway was simplified by aggregating several mol-
ecules on a linear pathway into a single surrogate
J. R. Soc. Interface (2006)
molecule, while still keeping the basic two-branched
pathway structure. The model reduction was subject-
ively determined based on the biological knowledge of
the pathway structure. Specifically, Fas molecule in the
model aggregates both Fas and FADD; the mitochon-
dria molecule in the model aggregates the signal from
Bid activation through mitochondrial membrane dis-
ruption, until cytochrome c release; the apoptosomes in
the model represent the complexes of released cyto-
chrome c, Apaf-1, caspase-9 and ATP. Three negative
regulatory molecules of the pathway, Flip, Bcl-2 and
XIAP were included in the model. Mass action type of
biochemical reactions was used to represent protein–
protein interactions and enzymatic reactions, except
for two transport reactions as indicated.

The model was created in both Jacobian (Numerica
Technology, LLC, Cambridge, MA) for the purpose of
parameter estimation and sensitivity analysis, and
MATLAB (The Mathworks, Inc., Natick, MA) for the
purpose of Monte Carlo simulation. A copy of the
original code can be obtained upon request. The
simplified ODE model consists of 11 molecules of
nonzero initial conditions (concentrations), 18 inter-
mediate complexes with zero initial conditions and 36
rate constants. Our preliminary simulation results
revealed no significant differences in the long-term
dynamics between model outputs with or without pre-
equilibration (data not shown). Thus, to reduce the
running time, the model was not pre-equilibrated before
running the simulations.

We measured an extensive set of experimental data
for parameter estimation because many of the non-zero
initial conditions and the rate constants for the Fas
pathway are unknown. Moreover, the initial conditions
and the rate constants for the aggregated molecules do
not correspond to any values in real life. Cleavage
kinetics of full-length caspase-8 with stimulation of
100 ng mlK1 FasL in control Jurkat cells are the same
data that have been described previously (Hua et al.
2005). Caspase-3 cleavage kinetics in both control
(transfected with empty vector) and Bcl-2 overex-
pressed Jurkat cells (generation of these cell lines has
been described previously (Hua et al. 2005)) stimulated
with 1, 10, 100 and 1000 ng mlK1 FasL were measured
using intracellular staining followed by flow cytometry
(figure 2). All the experiments were repeated at least
three times and gave similar results. Results from the
best experiment were chosen for parameter estimation.

In order to fit the estimated parameter values to
experimental data, the unknown initial conditions were
manually adjusted (initial concentrations taken from
literature are indicated in electronic supplementary
material) and all the rate constants were optimized
using Jacobian with the WEIGHTED_LEAST-
SQUARES option as the objective function. The sum
of free cleaved caspase-3 and XIAP bound cleaved
caspase-3 was used to fit the FACS data of caspase-3
activation since the intracellular staining technique
does not differentiate the two forms of cleaved caspase-3.

Since, a previous study (Hua et al. 2005) has shown
that a sixfold increase of Bcl-2 level has the
same blocking effect as a 50 fold increase, the initial
condition for Bcl-2 was increased by 10 fold during
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model simulation to mimic the experimental Bcl-2
overexpressed cells. All of the biochemical reactions,
reaction rate constants and non-zero initial conditions
used in the model are listed in electronic supplementary
material. These values are referred to as baseline
values. Sensitivity analysis was done in Jacobian
using a non-normalized sensitivity calculation.
4.4. Monte Carlo simulation

Monte Carlo simulation was conducted in MATLAB with
‘ode15s’ differential equation solver. Each changing
initial condition has a concentration range from 10%
(10K1) of to 10 times the baseline value. The sampling
interval within this range was set to be 100.025 unless
otherwise specified. With this sampling interval, each
initial condition has 81 potential values, resulting in
981Z2.0!1077 possible combinations of different initial
conditions. Each run of Monte Carlo simulation
contains one million individual simulations, each of
which simulates 6 h of reactions after adding FasL. For
each simulation, the initial conditions for all the
molecules and the time-course of the free cleaved
caspase-3 generation were saved for the following
analyses.
4.5. Clustering

One million simulations from a run of Monte Carlo
simulation were clustered into three groups according
to the kinetics of free cleaved caspase-3 production
using k-means clustering algorithm (Duda et al. 2001).
We used the squared Euclidean metric as the distance
metric to group together free cleaved caspase-3 time-
courses with similar dynamics as well as similar final
concentrations at the end of the 6 h simulation period.
The k-means clustering algorithm was run five times
and each run consisted of 500 iterations. The number of
simulations in each cluster was 360 182 (sensitive-
response cluster), 247 195 (medium sensitive-response
cluster) and 392 623 (insensitive-response cluster). The
centroids for all three clusters are given in figure 3.
4.6. Construction of the decision tree model

Decision trees are a family of algorithms that aim to
uncover the predictive structure of a classification or
prediction problem while still maintaining good pre-
diction accuracy. The decision tree algorithm used in
our study is the classification and regression trees
(CART) method (Breiman et al. 1984). Here, we used
initial conditions for each simulation as the predictor
dataset ðX2R

1 000 000!9Þ, and corresponding clusters
(computed in §4.5) as the outcomes ðY2R

1 000 000!1Þ.
The idea behind the CART algorithm is to progress-

ively split the predictor dataset into smaller and
smaller subsets. Ideally, each subset would correspond
to only one outcome, i.e. each subset would be pure.
Usually, however, there is a mixture of outcomes after a
split, so for each split there is a need to decide whether
to continue splitting or accept imperfect classification.
If splitting is chosen, all variables in the predictor
dataset are considered and the one minimizing impurity
J. R. Soc. Interface (2006)
is used to split the data subset again into two subsets.
For example, in figure 4, the first split is done based on
the initial condition of XIAP so that the dataset is
divided into two subsets: cases with XIAP initial value
less than 3.1 go to left ðXXIAP!3:12R

740 495!9Þ, while the
rest go to right XXIAPR3:12R

259 505!9
� �

.
The original dataset is split until a termination

condition (e.g. validation error is minimized, purity
after a split does not increase significantly, or split
dataset would have too few cases) is met. In order to
avoid overfitting, the final decision tree is achieved by
applying a pruning algorithm that aims at to simul-
taneously maximize the prediction accuracy and
minimize the tree complexity (i.e. size). Here, we used
the cost-complexity pruning algorithm as described in
(Breiman et al. 1984).

Leaf nodes in a decision tree represent outcomes (one
of the apoptosis sensitivity clusters). A rule in the
decision tree is the path from the root node to a leaf
node. For example, the rule I1 (figure 4) is a result from
two splits; first XIAPR3.1 and then XIAPR5.2, giving
the rule ‘IF XIAPR5.2 THEN the class is insensitive
response cluster.’ Accuracy of this rule is 78%.

The parameters used in the CART algorithm were as
follows. The Gini index (Breiman et al. 1984) was
chosen to be the purity function instead of twoing and
deviance functions since it gave slightly better predic-
tion accuracy than the other two functions. In order to
avoid leaf nodes containing too few data points, we
constrained the number of simulations in a node to be at
least 15% of the number of simulations in the smallest
cluster for the node to be split again. In our case, each
node must contain at least 37 080 simulations in order
to be considered for splitting. Prior probability for ith
class was obtained by dividing the number of the cases
of ith class by the total amount of observations. The
costs of a misclassification and a correct classification
were set to be one and zero, respectively.
4.7. Calculation of the COST values

In order to estimate the minimal number of pertur-
bations between any two clusters, we define COST
value to be the estimated number of molecules with
different concentration ranges between two paths.
These are the molecules need to be perturbed to switch
a cell from one path to another path. The COST for
switching from path X (e.g. I2) to path Y (e.g. III1) is
calculated in the following way:

(i) IF one molecule belongs to both paths and the
concentration range of this molecule for path X
is a subset of the range for path Y, THEN COST
is unchanged;

(ii) IF one molecule belongs to both paths and the
concentration range of this molecule for path X
has no intersection with the range for path Y,
THEN COST is increased by one;

(iii) IF one molecule belongs to both paths and the
concentration range of this molecule for path X
partially overlaps with the range for path Y,
THEN we estimate the likelihood that this
molecule has different value between path X
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and Y by calculating the percentage of simu-
lations in path X with the concentration value of
this molecule not in the range for path Y and
COST is increased by this percentage;

(iv) IF onemolecule belongs topathY, but not topath
X, THEN COST is increased by the percentage of
simulations in path X with the concentration of
this molecule not in the range for path Y and

(v) IF onemolecule belongs topathX, but not topath
Y, THEN COST is unchanged.

An example of a COST value calculation is given in
the electronic supplementary material.
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REFERENCES

Adam, B. L. et al. 2002 Serum protein fingerprinting coupled
with a pattern-matching algorithm distinguishes prostate
cancer from benign prostate hyperplasia and healthy men.
Cancer Res. 62, 3609–3614.

Basso, K., Margolin, A. A., Stolovitzky, G., Klein, U., Dalla-
Favera, R. & Califano, A. 2005 Reverse engineering of
regulatory networks in human B cells. Nat. Genet. 37,
382–390. (doi:10.1038/ng1532)

Bentele, M., Lavrik, I., Ulrich, M., Stosser, S., Heermann,
D. W., Kalthoff, H., Krammer, P. H. & Eils, R. 2004
Mathematical modelling reveals threshold mechanism in
CD95-induced apoptosis. J. Cell. Biol. 166, 839–851.
(doi:10.1083/jcb.200404158)

Bratton, S. B., Lewis, J., Butterworth, M., Duckett, C. S. &
Cohen, G. M. 2002 XIAP inhibition of caspase-3 preserves
its association with the Apaf-1 apoptosome and prevents
CD95- and Bax-induced apoptosis. Cell Death Differ. 9,
881–892. (doi:10.1038/sj.cdd.4401069)

Breiman, L. 2001a Random forests. Mach. Learn. 45, 5–32.
(doi:10.1023/A:1010933404324)

Breiman, L. 2001b Statistical modelling: the two cultures.
Stat. Sci. 16, 199–231. (doi:10.1214/ss/1009213726)

Breiman, L., Friedman, J. H., Olshen, R. A.& Stone, C. J. 1984
Classification and regression trees. London: Chapman &
Hall.

de Pillis, L. G., Radunskaya, A. E. & Wiseman, C. L. 2005 A
validated mathematical model of cell-mediated immune
response to tumor growth. Cancer Res. 65, 7950–7958.

Duda, R. O., Hart, P. E. & Stork, D. G. 2001 Pattern
recognition. London: Wiley.

Frantz, S. 2005 Drug discovery: playing dirty. Nature 437,
942–943. (doi:10.1038/437942a)

Fussenegger, M., Bailey, J. E. & Varner, J. 2000 A
mathematical model of caspase function in apoptosis.
Nat. Biotechnol. 18, 768–774. (doi:10.1038/81208)

Gunther, E. C., Stone, D. J., Gerwien, R. W., Bento, P. &
Heyes, M. P. 2003 Prediction of clinical drug efficacy by
classification of drug-induced genomic expression profiles
in vitro. Proc. Natl Acad. Sci. USA 100, 9608–9613.
(doi:10.1073/pnas.1632587100)

Hautaniemi, S., Kharait, S., Iwabu, A., Wells, A. &
Lauffenburger, D. A. 2005 Modelling of signal-response
cascades using decision tree analysis. Bioinformatics 21,
2027–2035. (doi:10.1093/bioinformatics/bti278)
J. R. Soc. Interface (2006)
Hoffmann, A., Levchenko, A., Scott, M. L. & Baltimore, D.
2002 The IkappaB–NF-kappaB signalling module: tem-
poral control and selective gene activation. Science 298,
1241–1245. (doi:10.1126/science.1071914)

Hua, F., Cornejo, M. G., Cardone, M. H., Stokes, C. L. &
Lauffenburger, D. A. 2005 Effects of Bcl-2 levels on Fas
signalling-induced caspase-3 activation: molecular genetic
tests of computational model predictions. J. Immunol. 175,
985–995.

Igney, F. H. & Krammer, P. H. 2002 Death and anti-death:
tumour resistance to apoptosis. Nat. Rev. Cancer 2,
277–288. (doi:10.1038/nrc776)

Irmler, M. et al. 1997 Inhibition of death receptor signals by
cellular FLIP. Nature 388, 190–195. (doi:10.1038/40657)

Kholodenko, B. N., Demin, O. V., Moehren, G. & Hoek, J. B.
1999 Quantification of short term signalling by the
epidermal growth factor receptor. J. Biol. Chem. 274,
30 169–30 181. (doi:10.1074/jbc.274.42.30169)

Kislinger, T., Gramolini, A. O., Pan, Y., Rahman, K.,
MacLennan, D. H. & Emili, A. 2005 Proteome dynamics
during C2C12 myoblast differentiation. Mol. Cell Proteo-
mics 4, 887–901. (doi:10.1074/mcp.M400182-MCP200)

Krammer, P. H. 2000 CD95’s deadly mission in the immune
system. Nature 407, 789–795. (doi:10.1038/35037728)

Landowski, T. H., Qu, N., Buyuksal, I., Painter, J. S. &
Dalton, W. S. 1997 Mutations in the Fas antigen in
patients with multiple myeloma. Blood 90, 4266–4270.

Lavrik, I., Golks, A. & Krammer, P. H. 2005 Death receptor
signalling. J. Cell Sci. 2, 265–267. (doi:10.1242/jcs.01610)

Ma’ayan, A., Blitzer, R. D. & Iyengar, R. 2005 Toward
predictive models of mammalian cells. Annu. Rev.
Biophys. Biomol. Struct. 34, 319–349. (doi:10.1146/
annurev.biophys.34.040204.144415)

Mencher, S. K. & Wang, L. G. 2005 Promiscuous drugs
compared to selective drugs (promiscuity can be a virtue).
BMC Clin. Pharmacol. 5, 3. (doi:10.1186/1472-6904-5-3)

Nagata, S. 1999 Fas ligand-induced apoptosis. Annu. Rev.
Genet. 33, 29–55. (doi:10.1146/annurev.genet.33.1.29)

Podgorelec, V., Kokol, P., Stiglic, B. & Rozman, I. 2002
Decision trees: an overview and their use in medicine.
J. Med. Syst. 26, 445–463. (doi:10.1023/A:1016409317640)

Rosenwald, A. et al. 1947 The use of molecular profiling to
predict survival after chemotherapy for diffuse large-B-cell
lymphoma.N. Engl. J. Med. 346, 1937–1937. (doi:10.1056/
NEJMoa012914)

Roth, B. L., Sheffler, D. J. & Kroeze, W. K. 2004 Magic
shotguns versus magic bullets: selectively non-selective
drugs for mood disorders and schizophrenia. Nat. Rev.
Drug Discov. 3, 353–359. (doi:10.1038/nrd1346)

Scaffidi, C., Fulda, S., Srinivasan, A., Friesen, C., Li, F.,
Tomaselli, K. J., Debatin, K. M., Krammer, P. H. & Peter,
M. E. 1998 Two CD95 (APO-1/Fas) signalling pathways.
EMBO J. 17, 1675–1687. (doi:10.1093/emboj/17.6.1675)

Schoeberl, B., Eichler-Jonsson, C., Gilles, E. D. & Muller, G.
2002 Computational modelling of the dynamics of the
MAP kinase cascade activated by surface and internalized
EGF receptors. Nat. Biotechnol. 20, 370–375. (doi:10.
1038/nbt0402-370)

Segal, E., Shapira,M.,Regev,A., Pe’er,D.,Botstein,D.,Koller,
D. & Friedman, N. 2003 Module networks: identifying
regulatory modules and their condition-specific regulators
from gene expression data. Nat. Genet. 34, 166–176.

Wiley, H. S., Shvartsman, S. Y. & Lauffenburger, D. A. 2003
Computational modelling of the EGF-receptor system: a
paradigm for systems biology. Trends Cell Biol. 13, 43–50.
(doi:10.1016/S0962-8924(02)00009-0)

http://dx.doi.org/doi:10.1038/ng1532
http://dx.doi.org/doi:10.1083/jcb.200404158
http://dx.doi.org/doi:10.1038/sj.cdd.4401069
http://dx.doi.org/doi:10.1023/A:1010933404324
http://dx.doi.org/doi:10.1214/ss/1009213726
http://dx.doi.org/doi:10.1038/437942a
http://dx.doi.org/doi:10.1038/81208
http://dx.doi.org/doi:10.1073/pnas.1632587100
http://dx.doi.org/doi:10.1093/bioinformatics/bti278
http://dx.doi.org/doi:10.1126/science.1071914
http://dx.doi.org/doi:10.1038/nrc776
http://dx.doi.org/doi:10.1038/40657
http://dx.doi.org/doi:10.1074/jbc.274.42.30169
http://dx.doi.org/doi:10.1074/mcp.M400182-MCP200
http://dx.doi.org/doi:10.1038/35037728
http://dx.doi.org/doi:10.1242/jcs.01610
http://dx.doi.org/doi:10.1146/annurev.biophys.34.040204.144415
http://dx.doi.org/doi:10.1146/annurev.biophys.34.040204.144415
http://dx.doi.org/doi:10.1186/1472-6904-5-3
http://dx.doi.org/doi:10.1146/annurev.genet.33.1.29
http://dx.doi.org/doi:10.1023/A:1016409317640
http://dx.doi.org/doi:10.1056/NEJMoa012914
http://dx.doi.org/doi:10.1056/NEJMoa012914
http://dx.doi.org/doi:10.1038/nrd1346
http://dx.doi.org/doi:10.1093/emboj/17.6.1675
http://dx.doi.org/doi:10.1038/nbt0402-370
http://dx.doi.org/doi:10.1038/nbt0402-370
http://dx.doi.org/doi:10.1016/S0962-8924(02)00009-0

	Integrated mechanistic and data-driven modelling for multivariate analysis of signalling pathways
	Introduction
	Results
	Generation of a simple mechanistic model for the Fas signalling network in Jurkat cells
	Generation of multivariate simulation dataset
	Data clustering
	Decision tree analysis of multivariate regulations of the Fas pathway
	Validation of the decision tree model
	Identification of minimal perturbations to switch the behaviour of the Fas pathway

	Discussion
	Generation of multivariate simulation dataset with the mechanistic model
	Data-driven modelling
	Predicting manipulations according to the decision tree
	Significance of the study

	Material and methods
	Cells and reagents
	Intracellular staining of active caspase-3
	Mechanistic model for the Fas pathway
	Monte Carlo simulation
	Clustering
	Construction of the decision tree model
	Calculation of the COST values

	We would like to thank Dr Suzanne Gaudet, Dr Melissa Kemp and Lucia Wille for critically reading the manuscript and for helpful comments and insights. This work was supported by an NIGMS P50 grant to the MIT Cell Decision Processes Centre, by a gift fr...
	References


