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Abstract

Purpose of review: Approximately 10% of patients become blind despite using evidence-based 

guidelines developed from clinical trials and epidemiology studies. Our purpose is to review 

opportunities to decrease glaucoma-related blindness using the emerging principles of precision 

medicine.

Recent findings: This review focuses on three topics: 1) candidate biomarkers for angle-based 

surgeries, 2) head-mounted display (HMD) technology for vision and testing, and 3) glaucoma 

risk alleles discovered by genome-wide association studies (GWAS). First, in angle-based 

surgeries, tracers injected into the anterior chamber or Schlemm’s canal (SC) have allowed 

visualization of aqueous veins. We describe an innovative use of optical coherence tomography 

angiography (OCTA) to visualize aqueous veins in a case with 6-year successful outcome 

following catheter-based trabeculotomy. Second, HMD technology can augment perceived vision 

and can be used for perimetry testing. Third, developing genetic risk scores that characterize 
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patients who are at highest risk for blindness is a priority. Such biomarker risk scores will integrate 

GWAS-based risk alleles for glaucoma along with well-known demographic and clinical risk 

factors.

Summary: As we gain more knowledge, precision medicine will enable clinicians to decrease 

glaucoma-related blindness by providing more timely interventions to those patients who are at 

highest risk for progression to blindness.
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Introduction

Glaucoma remains a major cause of blindness with estimates of 13.5%−42% of patients 

blind unilaterally and 4%−16% blind bilaterally.(1–8) The 39th Shaffer Lecture focused on 

applying precision medicine for individualized care to patients with the goals of enhancing 

vision and preventing glaucoma-related blindness.(9) The intent of health service systems is 

to address reasons for glaucoma-related blindness that include poor access to care,(10) 

failure to adhere to medications and follow-up care,(11) and lack of application of best 

practices.(12–15) In spite of access and adherence to care, the current event-based approach 

based on progressive visual field loss(16, 17) reveals a major gap in the ability to identify 

patients at risk for blindness.

Glaucoma-related blindness is an unfortunate consequence of progression with a clear 

phenotype of large cup-to-disc ratio with profound retinal nerve fiber layer thinning. Quigley 

highlighted future glaucoma care needs to prevent glaucoma-related blindness and vision 

impairment.(18) First, there is a need to improve the definition of glaucoma to enhance 

ability for comparing research studies. Second, there is a need to advance evidence-based 

diagnostic and therapeutic approaches, that will involve biomarkers. Third, there is a need to 

address the current office-based intraocular pressure (IOP) data collection as this approach 

because of inadequate sampling of IOPs to assess variance. Fourth, there is a need to adopt 

systems to improve medication adherence and follow-up care, and shift to sustained drug 

delivery. Fifth, there is a need to develop and validate new technology for more patient-

friendly visual field testing.

According to the NIH Precision Medicine Initiative, precision medicine is described as “an 

emerging approach for disease treatment and prevention that takes into account individual 

variability in genes, environment, and lifestyle for each person” (https://ghr.nlm.nih.gov/

primer/precisionmedicine/definition accessed 12/8/2018). We categorize three principles of 

precision medicine relevant to glaucoma care: (A) phenotyping with evolving glaucoma 

disease definitions using newest technology for earlier diagnosis and detecting disease 

progression(18); (B) discovery, validation, and understanding of biomarkers for glaucoma, 

risk factors, disease progression, drug response and surgical outcome; and (C) revamping 

epidemiology studies and clinical trials to discover and validate environmental risk factors 

and lifestyle behaviors that affect disease onset and progression.
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An integral concept for precision medicine is the role of biomarkers to assess the disease 

phenotypes, disease stage, risk factors, and response to treatments. The US Food and Drug 

Administration (FDA) has defined a biomarker “as an indicator of normal biological 

processes, pathogenic processes, or responses to an exposure or intervention, including 

therapeutic interventions.” (https://www.fda.gov/downloads/Drugs/

DevelopmentApprovalProcess/DrugDevelopmentToolsQualificationProgram/

ucm533161.pdf accessed 12/8/2018). The types of biomarkers include molecular, histologic, 

radiographic or other imaging, and physiologic. At this time, the role of biomarkers for 

glaucoma care is limited to the physiologic parameter of IOP and functional testing using 

visual fields.(19) At present, there is insufficient evidence for structural endpoints of optical 

coherence tomography (OCT) as a predictor for diagnosis or progression. This review 

focuses on three topics that represent principles of precision medicine.

Text of review

Candidate Imaging Biomarkers of Schlemm’s Canal-based Surgeries.

The intent of glaucoma surgery is to achieve low IOP with minimal IOP fluctuation and with 

minimal risk of complications, minimal impact on quality of life, and decrease medication 

burden. Various microinvasive glaucoma surgeries (MIGS)(20–22) have been introduced, 

but the long-term efficacy and cost-effectiveness of MIGS compared to trabeculectomy 

remain to be determined. The mechanisms for MIGS include targeting Schlemm’s canal 

(SC) to increase aqueous humor outflow into aqueous veins, increase uveoscleral outflow, or 

create a small fistula to bypass the angle and divert aqueous humor into the subconjunctival 

space.

The SC-based MIGS builds on Grant’s observation that complete trabeculotomy eliminated 

49% of outflow resistance at normal IOP in enucleated healthy human eyes.(23) At higher 

IOP, 71% of outflow resistance was eliminated.(24) A replication study that titrated 

trabecular meshwork (TM) tissue ablation with an excimer laser showed that 35% of outflow 

resistance was eliminated at normal IOP.(25) These studies suggest that a third-to-half of the 

outflow resistance remains distal to SC, depending upon the IOP. Thus, the successful IOP 

reduction after eliminating some of the TM assumes that the aqueous humor is able to drain 

though the downstream pathways beyond SC.

It is believed that this residual outflow resistance beyond SC resides in the aqueous humor 

pathways of the collector channels to the intrascleral venous plexus and aqueous veins.(26) 

The precise mechanisms that determine this residual resistance are not fully understood and 

need to integrate the observations of segmental aqueous humor outflow,(27) peri-limbal 

tissue biomechanics,(28) and the aqueous veins.(26)

There are three to six large aqueous veins that are predominantly located in the nasal region 

of the eye.(29) These aqueous “super highways” are visible at the slit lamp under high 

magnification. These large aqueous veins have been visualized intraoperatively after 

increasing IOP with physiological solutions. The high IOP causes a “fluid wave” as the 

pressurized gradient of physiological solution blanches the aqueous veins.(30) Recently, 

various tracers have been used to visualize the aqueous humor outflow pathway using 
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fluorescein,(31–33) indocyanine green,(34) and trypan blue.(35) These tracers and the use of 

fluorescent microspheres have confirmed the presence of the large aqueous veins, but more 

importantly provide additional evidence to visualize the intrascleral venous plexus within the 

outer peri-limbal scleral tissue (Figure 1).

Recently, spectral domain OCT has been used to visualize these aqueous veins.(36, 37) We 

present an innovative application of OCT angiography (OCTA) to visualize aqueous veins. 

We propose that these aqueous veins are structural biomarkers that determine a successful 

outcome for SC-based MIGS. We present imaging evidence of aqueous veins by fluorescein 

during surgery and by OCTA five years after surgery that explain the sustained six-year IOP 

reduction in a case after catheter-based trabeculotomy.

In October 2011, a 14-year old male presented with vision of 20/20 in each eye, and IOP of 

14 mmHg right and 50 mmHg, left. After treatment with timolol, brimonidine, brinzolamide, 

latanoprost, and laser iridotomy, he presented to University of Michigan in March 2012 (he 

provided assent and his parents provided consent in an approved IRBMED project for this 

case report). His corrected vision was 20/15 in each eye. Gonioscopy showed open angles 

without developmental anomalies. Biomicroscropy showed no signs of anterior segment 

dysgenesis, and an iridotomy in the left eye. He had severe visual field loss that matched his 

diffuse retinal nerve fiber loss and 0.99 cup-to-disc ratio in his left eye, and healthy right eye 

(Figure 2). Medical management was continued to minimize disruption with school, and in 

June 2012, IOPs were 11 mmHg right and 28 mmHg left.

In July 2012, a left trabeculotomy was performed using a microcatheter (iTrack™ 250A 

Microcatheter, iScience Interventional™, Menlo Park, CA) through a temporal approach 

under a scleral flap. A fluorescein angiogram was performed(33) by injecting fluorescein 

from the microcatheter into SC (see supplemental video). His angiogram revealed several 

tracer patterns (Figure 3): (a) large aqueous veins with rapid transit and clearance of 

fluorescein without leakage, (b) small aqueous veins with slower transit and fluorescein 

leakage, (c) virtually no reflux of fluorescein from SC across the TM and into the anterior 

chamber, and (d) regional variation of fluorescein tracer outflow.

In August 2017, slit lamp photos and anterior segment OCTA (Optovue Inc., Fremont, CA, 

USA) imaging were performed. We established the following protocol for OCTA imaging of 

the perilimbal vessels with the anterior segment lens: (i) retina 3 mm by 3 mm scan setting, 

(ii) F setting −15 D, (iii) Z setting +15 D, (iv) cautious initial focus anterior to lens capsule 

as the anterior segment lens is very close to the cornea, and then (v) instruct the patient to 

look in the proper direction to scan the aqueous veins of interest with orientation 

perpendicular to the OCTA lens. All OCTA scans attempted to capture a portion of the angle 

and distinct conjunctival and episcleral vessels for image registration. Surface conjunctival 

and episcleral vessels were used as ground truth for image registration to overlay the OCTA 

image (Figure 4).

The OCTA images (Figure 5A) were processed from the raw scan data using an image 

browser supplied by the manufacturer (Avanti RTVue XR Image Viewing Software, ReVue 

Version 2016.2.0.35, Optovue). These files were imported into ImageJ (FIJI v1.51s).(36, 38) 
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Scan volumes were aligned using the StackReg Plugin for ImageJ.(39) The aligned 

volumetric data set was averaged three times, yielding B-scans displaying dark aqueous 

humor-filled vasculature, which appeared as “scleral voids”. Contrast was locally enhanced 

and images were black-white inverted, yielding white aqueous humor filled vasculature on a 

dark background. The “subtract background” plug-in isolated the white aqueous humor 

filled vasculature. The image stack was then re-sliced to position the stack into an en-face 

orientation, and a z-projection used to create an en-face map of scleral voids, presumably the 

aqueous veins (Figure 5B).

With the combined fluorescein tracer observations at the time of surgery and OCTA map 

obtained five years later, we propose that this patient had primary pathology of his TM 

causing elevated IOP. The trabeculotomy tore through his diseased TM and created a cleft 

into SC (Figure 6). We believe that his successful 6-year outcome with average IOP ± SD of 

8.7 ± 1.6 mmHg (range 6–11) without medications nor filtration bleb was due to normal 

sclera and healthy deep and superficial aqueous veins.

HMD Technology to Augment Vision and to Test Visual Fields.

Augmented reality is an established technology that superimposes a computer-generated 

image onto a user’s view. Within ophthalmology, such technology has been established as an 

assistive low vision aid, and a lexicon has been proposed to communicate about the various 

types of display type and optical design.(40) For patients who have a severely constricted 

visual field, a commercial off-the-shelf HMD device was successfully used to expand the 

perceived field of view.(41) The subject of this case report had a remarkable change in his 

mobility due to an enlarged perceived field of view due to the optical mechanism of 

projecting a wide-angle video through a prism onto a healthy portion of his retina. The 

profound impact of HMD on this patient’s mobility and perception of his environment is 

truly inspirational and was shared in the 39th Shaffer Lecture. This patient’s story generated 

enthusiasm for a pilot clinical trial to examine the ability of optical HMD to enlarge the 

visual field of patients who have severe visual field loss due to retinal dystrophy and to 

improve mobility and patient-reported outcomes (https://clinicaltrials.gov/ct2/show/

NCT02983305 accessed 12/12/2018).

Another active area of research is the potential use of augmented reality HMD technology 

for visual field testing. The potential advantages from a human factor engineering (or 

“patient-friendly”) perspective include no need of a dark room, no need for an occlusive 

patch for testing, and no need to maintain head position.

Matsumoto et al designed a portable HMD perimeter called “imo” under similar test 

conditions as the Humphrey Field Analyzer (HFA).(42) A unique feature is separate right 

and left optical systems and pupil monitoring. A pilot test in 20 subjects with glaucoma 

showed similar visual field deficits measured by HFA and HMD “imo.” The sensitivity to 

detect glaucomatous field loss were highly correlated comparing the two perimetry test 

methods (right eye r=0.96, left eye r=0.94, P<0.001).
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Tsapakis et al used a commercial HMD unit combined with a 6” display smartphone.(43) In 

a pilot study of 10 subjects with glaucoma, the visual field test results with HFA compared 

to their off-the-shelf HMD system were highly correlated (r=0.808, P<0.0001).

Nakanishi et al designed a cellphone-based HMD perimetry called “nGoggle” with 

integrated electroencephalogram and electrooculogram systems in order to assess the 

electrical brain responses associated with visual field stimulation.(44) This was a robust 

case-control study design with 33 glaucoma cases and 17 controls. For the visual field 

parameters, there was no difference between HFA and nGoggle sectoral testing. Test-retest 

variability was good with intraclass correlation coefficients ranging between 0.74 and 0.92 

among test subjects.

The application of HMD technology is an exciting application of augmented reality to 

enhance vision(41) as a means for low vision rehabilitation(40) and as a platform to test 

visual fields.(42–44)

Developing Genetic Risk Scores to Identify Patients at Highest Risk for Glaucoma-related 
Blindness.

Great discoveries have been made to dissect the genetic architecture of the complex 

diseases(45) that include primary open-angle glaucoma(46, 47) and the quantitative traits of 

IOP,(48–50) central cornea thickness (CCT),(51) and optic nerve features.(51) These 

glaucoma loci, glaucoma genes and risk alleles for the clinical risk factors, that are 

quantitative traits such as IOP and CCT, are summarized across the human genome (Figure 

7).

The general strategies for discovering these genes are summarized in Figure 8. In order to 

understand the success of gene discoveries from these genetic research strategies, it is 

helpful to understand the clinical context with three different clinical scenarios that represent 

the monogenic (Figure 8, right side), oligogenic (middle) and polygenic (left side) 

mechanisms of glaucoma. Three probands, who represent three patients or cases as the first 

affected family member seeking medical attention, are described below.

Case 1 illustrates a monogenic, simple Mendelian form of glaucoma (Figure 8, left side). 

Genes for this kind of glaucoma are found through the application of genetic linkage and 

sequencing strategies to discover rare, single gene variants that cause glaucoma with 

Mendelian inheritance patterns. A patient presents with elevated IOP, open-angle with a 

prominent Schwalbe’s line on gonioscopy, hypoplastic iris features, and glaucomatous optic 

nerve damage with matching nerve fiber layer defects and visual field loss. Systemic 

findings include flat cheek bones consistent with maxillary hypoplasia, abnormal teeth, and 

umbilical hernia. There is a strong family history of similar ocular and systemic findings in 

two other generations. The combined evidence of the proband’s phenotype of ocular 

examination findings, systemic findings, dental history, and family history is consistent with 

Axenfeld-Rieger syndrome, and a novel causative PITX2 defect was identified.(52)

This single genetic defect in the PITX2 gene has a large contribution, or effect size, and 

causes the autosomal dominant Axenfeld-Rieger syndrome. Axenfeld-Rieger has an 
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estimated prevalence of 1 in 200,000 (https://ghr.nlm.nih.gov/condition/axenfeld-rieger-

syndrome accessed 2.16.2019). The current tally of Mendelian forms of various ocular and 

non-ocular disease phenotypes and quantitative traits includes 3,657 genes (https://

www.omim.org/statistics/geneMap accessed 2.16.2019). Thus far for glaucoma, there are 

several dozen “major” glaucoma genes mapped so far with each representing founder effects 

in which rare gene mutations are passed down from one generation to the next through a 

family. However, even in these families, there are differences among relatives’ phenotypes 

due to variable expressivity of the genetic mutation. This variable expressivity is due to the 

influence of other genes which modify the expression of the genetic mutation.

Case 2 illustrates oligogenic form of glaucoma resulting from the action of a small number 

of genes. In such cases, the glaucoma disease phenotype results from the additive effects of 

several genes. In other cases, a proband with a rare Mendelian gene defect causing the 

glaucoma may also have other genes that modify the characteristics of the rare gene defect. 

A patient was diagnosed with juvenile-onset glaucoma and positive family history of open-

angle glaucoma. Mutation screening showed that affected family members all possessed the 

same defect in the Mendelian glaucoma gene myocilin. However, even though the primary 

cause of disease appeared to be the same for everyone in the family, family history 

demonstrated that some family members showed much earlier onset of glaucoma than 

others. While two copies of CYP1B1 cause congenital/infantile glaucoma, families have 

been described in which a single defective copy of CYP1B1 can influence age at onset when 

glaucoma is cause by a myocilin defect.(53) Family members with both myocilin and 

CYP1B1 defects had a younger age at onset of glaucoma compared to patients who only had 

myocilin mutations. Patients with both myocilin and CYP1B1 genes are manifesting a type 

of digenic inheritance, the simplest version of oligogenic inheritance. In this case, CYP1B1 
is not the cause of glaucoma, but it is a modifier, acting along with myocilin to create the 

total phenotype.

The third case illustrates common, complex forms of glaucoma discovered through the 

application of genome-wide association study (GWAS) to discover the many common gene 

variants that contribute to the common forms of glaucoma or the quantifiable risk factors, 

such as IOP or CCT. A patient returns for follow-up, repeat visual field testing, retinal nerve 

fiber layer imaging, and clinical exam for normal tension glaucoma based on maximum 

office-based IOPs of 19 mmHg. Often, the open-angle forms of glaucoma are complex 

diseases represented on the right side of Figure 8. These common, complex forms of 

glaucoma result from the combined effects of common variants in multiple genes, each of 

which have small effect sizes, such as CDKN2B-AS1, ABCA1, SIX6 and AFAP1.(54) The 

exact role of these multiple genes, with common variants and small effects on disease onset, 

progression, and severity, have yet to be determined. The current tally of 507 genes involved 

in the common complex forms of various ocular and non-ocular disease phenotypes and 

quantitative traits of the disease such as IOP, is incomplete since all of the genes involved 

have not yet been identified (https://www.omim.org/statistics/geneMap accessed 2.16.2019).

The next phases of translational research are to integrate the genetic findings with the 

established clinical risk factors of aging, higher IOP, thin central cornea, optic disc features, 

visual field loss patterns, low ocular perfusion pressure, and family history.(55–57) These 
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next phases include: (i) adopt the engineering principle of iterative analysis to advance the 

definition of glaucoma based on validated discoveries using new and established 

technologies; (ii) develop new clinical care models that enhance data collection to better 

characterize the clinical parameters, or endophenotypes, such as IOP with newer 

technologies;(58, 59) (iii) promote “participatory research” which means educating 

clinicians and their patients on the value and importance to volunteer for research that 

includes contributing biological samples, clinical data and other data related to behaviors, 

lifestyle and environmental risk factors; (iv) re-vamp epidemiology studies, clinical studies, 

and clinical trials to include data capture of lifestyle and health behaviors so that the role of 

environmental factors can be investigated; and (v) developing genetic risk scores that can be 

tested for the specificity and sensitivity to stratify risk for glaucoma-related blindness.

Conclusion

Current event-based glaucoma care is centered on progressive visual field and shows a major 

gap in the ability to identify patients at high risk for progression to blindness. With the large 

data generated from the translational studies described in the preceding section, machine 

learning will be applied to tease out biologically relevant pathways from these genetic risk 

alleles.(60, 61) These pathways will be investigated in the context of candidate biomarkers 

for diagnosis and prognosis, and potential new therapeutic targets. The discovery and 

validation of genetic risk scores can be tested as candidate molecular biomarkers to stratify 

risk for glaucoma progression.

Imaging biomarkers of the aqueous humor outflow pathways will help clinicians decide 

upon the initial surgical intervention based on a patient’s aqueous vein map. Future studies 

need to evaluate the relationships among structural data of aqueous veins, functional data of 

IOP and outflow facility, and the peri-limbal tissue biomechanical properties. Understanding 

how IOP outcome of SC-based MIGS is related to the density of aqueous veins, outflow 

facility function, and tissue properties will allow us to model with surgical outcome.

In summary, the discovery and validation of biomarkers have the potential to shift the 

current model of event-based care based on visual field change toward preventing glaucoma-

related vision impairment and blindness. Once new biomarkers are validated, then the 

clinician will be able to target more aggressive interventions to the patients who are at 

highest risk for blindness. Such robust biomarkers could ultimately lead to more efficient 

management with fewer follow-up office visits to assess treatment efficacy, fewer treatment 

failures, and decrease glaucoma-related blindness.(62)

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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KEY POINTS:

• Identifying and validating structural biomarkers of the aqueous humor 

outflow system in patients with glaucoma is an opportunity for implementing 

precision-based surgical care

• Application of augmented reality technology has the potential to provide 

practical and transformative wearable HMD that will decrease barriers for 

mobility caused by constricted visual fields

• A future roadmap that integrates risk scores based on genetics of glaucoma 

and glaucoma traits, clinical risk factors, and clinical outcomes will be critical 

to developing effective targeted therapies for patients, who are at the highest 

risk for glaucoma-related blindness.
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Figure 1. 
A. Fluorescent microscopy shows aqueous veins in perilimbal sclera in the nasal region from 

a normal human donor eye. Schlemm’s canal was perfused with 0.2% fluorescent 

microsphere solution (0.50 μm Fluoresbrite® YG Carboxylate Microspheres, Polysciences, 

Inc., Warrington, PA) using a catheter (iTrack™ 250A Microcatheter, iScience 

Interventional™, Menlo Park, CA). B. Global fluorescent imaging of an anterior segment of 

a normal human donor eye. After perfusion with the fluorescent tracer, the eye was fixed in 

10% buffered formalin. The globe was cut along a coronal plane approximately 6 mm 

posterior to the limbus. The intraocular tissues of the anterior segment were removed. The 

left panel shows the internal posterior view with high fluorescence in the trabecular 

meshwork. The right panel shows the external anterior view showing segmental distribution 

of aqueous veins in the nasal region. (S=superior, T=temporal, I=inferior, N=nasal).
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Figure 2. 
Clinical testing composite of asymmetric glaucomatous in left optic disc compared to right 

(A; top panel), and corresponding severe visual field loss left eye compared to right (B; 

bottom panel).
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Figure 3. 
Still frames from intraoperative fluorescein aqueous angiogram during catheter-based 

trabeculotomy with catheter inserted under scleral flap (see supplemental video). (A) shows 

large aqueous veins with rapid transit and clearance of fluorescein without leakage, (B) 

demonstrates small, intricate branching aqueous veins with slower transit of fluorescein with 

leakage and staining of surrounding sclera tissue, (C) shows virtually no reflux of 

fluorescein from SC across the TM and into the anterior chamber, and (D) regional variation 

of fluorescein outflow.
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Figure 4. 
Slit lamp photography with OCT angiography (OCTA) overlay. (A) Slit lamp photograph. 

(B) Reference vessels (yellow tracing). Surface conjunctival and episcleral vessels were used 

as reference markers for image registration to overlay the OCTA image. (C) OCTA Overlay. 

We used Adobe Photoshop® software version 14.2.1 ×32 (San Jose, CA) to create an 

overlay the flat 2-dimensional OCTA image in the orientation of the curved 2-dimensional 

slit lamp image while maintaining the true anatomic orientation of the vascular bed. This 

was executed using the “transformation” tool. The aqueous flow was then revealed using the 

“layer” tool of Adobe Photoshop® on the newly oriented OCTA image.
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Figure 5. 
Frames A and B were derived from a single OCT-A scan. Frame A is the conventional OCT-

A image comprised of a map of moving reflective sources presumed to be blood cells. 

Frame B is a is a map of scleral voids; presumed to be areas in which clear aqueous create 

dark openings in OCT structural scans. Aqueous humor outflow vasculature (white arrows) 

produce a strong “signal” map of scleral voids (B), but are faintly visible in the OCT-A 

image (A) suggesting that the aqueous within contains some scattering media. Prominent 

blood vessels (red circle, A) present as shadows in the map of scleral voids (red circle, B).
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Figure 6. 
Anterior segment OCT (Visante™OCT) imaging along horizontal meridian of left eye. 

Gonioscopy showed a cleft into the back wall of Schlemm’s canal and the torn edges of 

trabecular meshwork (yellow arrows).
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Figure 7. 
Human chromosome ideograms (labeled 1 – 22, X and Y) with glaucoma loci, genes and 

glaucoma risk factor alleles. The glaucoma loci are indicated by black bars on the left side of 

the chromosome. The glaucoma genes are indicated by the black triangle on the right side of 

the chromosome. The genes representing glaucoma risk factors of optic nerve (orange 

circle), intraocular pressure (IOP, blue circle), and central cornea thickness (CCT, red 

square) are on the right side of the chromosome.
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Figure 8. 
Spectrum of the genetics of glaucoma and glaucoma risk factors with consideration of allele 

effect size and allele frequency (schematic modified from Giudicessi et al.(63)). For 

glaucoma genes with a large effect size and rare frequency (large green circle), the clinician 

observes a strong family history, such as autosomal dominant juvenile glaucoma or 

autosomal dominant Axenfeld-Rieger syndrome. In these rare glaucoma diagnoses, there is a 

single gene (or monogenic) that causes the glaucoma. Such monogenic disease genes are 

typically discovered by linkage methods. There are likely other variants (smaller yellow and 

blue circles) that may affect this rare monogenic variant. On the opposite spectrum, there are 

common variants with small effect size (smaller blue and yellow circles) that are associated 

with glaucoma risk factors. These glaucoma risk alleles are typically discovered by genome-

wide association study (GWAS) methods.
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