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Abstract
Purpose of review—To discuss the role of mathematical models of sexual transmission of HIV:
the methods used and their impact.

Recent findings—We use mathematical modelling of “universal test and treat” as a case study
to illustrate wider issues relevant to all modelling of sexual HIV transmission.

Summary—Mathematical models are used extensively in HIV epidemiology to deduce the
logical conclusions arising from one or more sets of assumptions. Simple models lead to broad
qualitative understanding, while complex models can encode more realistic assumptions and thus
be used for predictive or operational purposes. An overreliance on model analysis where
assumptions are untested and input parameters cannot be estimated should be avoided. Simple
models providing bold assertions have provided compelling arguments in recent public health
policy, but may not adequately reflect the uncertainty inherent in the analysis.
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Introduction
Mathematical models have played important roles facilitating understanding of HIV
epidemiology and evaluating the performance of prevention initiatives [1]. From the earliest
models examining the interaction between HIV and other sexually transmitted infections
(STIs) [2], the effects of sexual mixing patterns between individuals by age [3] and
predicting the future course of HIV epidemics [4], modelling has assisted in making
projections [5], explaining past and future trends [6-8], as well as predicting the impact of
existing and proposed HIV prevention initiatives [9-11]. Such analyses, where model input
parameters are believed to be estimated with sufficient accuracy, can provide quantitative
predictions, often being combined with economic analyses to provide cost effectiveness or
cost benefit projections [12, 13]. Where such precision is not attainable, modelling can
explore more qualitative outcomes, able to open up new directions of enquiry, such as

Corresponding author: Rebecca Baggaley, MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease
Epidemiology, Imperial College London, St Mary's Campus, Norfolk Place, Paddington, London W2 1PG Tel: 02075943288 Fax:
02075943282 r.baggaley@imperial.ac.uk.

We declare that we have no conflict of interest.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing
this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it
is published in its final citable form. Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

Europe PMC Funders Group
Author Manuscript
Curr Opin HIV AIDS. Author manuscript; available in PMC 2011 January 01.

Published in final edited form as:
Curr Opin HIV AIDS. 2010 July ; 5(4): 269–276. doi:10.1097/COH.0b013e32833a51b2.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



predicting the impact of HIV prevention technologies yet to be developed (such as vaccines
and microbicides).

Both qualitative models (used for broad insights) and detailed models (developed for
operational purposes) may influence HIV prevention and treatment policies, yet there may
be also be a lack of trust due to the opaque nature of (often quite complex and technical)
modelling methods that are used, or conversely, overconfidence and reliance on certain
methods or research groups because of lack of understanding of mathematical models in the
wider stakeholder community [1]. In this review we include a case study which has recently
received a lot of attention and where models have been used to influence the research
community, policy and beyond: mathematical models of HIV testing and antiretroviral
treatment as prevention (‘test and treat’).

From efficacy to effectiveness
Mathematical models have proven especially useful for assessing interventions such as ‘test
and treat’ or male circumcision, because their effect is to prevent transmission, and these
interventions have individual, pair-wise and population level benefits which are very hard to
estimate using empirical field studies alone. Protecting one individual from acquiring
infection has an indirect protective effect on others (Figure 1a). The efficacy of an HIV
prevention intervention denotes the degree of protection against infection experienced by
one individual benefitting directly from the intervention, such as the protection afforded to a
man who is circumcised. Effectiveness of infectious disease interventions is more complex,
as it includes the far-reaching population effects of applying the intervention to each of these
individuals (as shown by the concept of herd immunity, vaccination of a fraction of the
population provides protection to unvaccinated or otherwise unprotected individuals). The
relationship between individual level efficacy and population level effectiveness (Figures 1a
and 1b) is not straightforward because of the indirect benefits of prevention, but also
because people may be exposed to HIV multiple times in a lifetime. The prevention of one
new infection could in principle lead to a whole sub-epidemic being averted, but it could
also result in a whole different epidemic due to the same person being infected at a later
date. Mathematical models are ideal tools for exploring these complex relationships between
different scenarios, and therefore for relating individual efficacy to population effectiveness
in different settings.

There are estimates of efficacy for a whole range of HIV interventions: voluntary
counselling and testing and other behaviour change interventions, male circumcision,
antiretroviral therapy (ART), pre- and post-exposure prophylaxis, and treatment for bacterial
STIs, HSV and other coinfections [14-18]. However, almost no direct estimates of
effectiveness exist because sufficiently large community-based trials, which would reflect
the indirect protective effect on others as illustrated in Figure 1a, or community cluster
randomised trials that could measure the effects illustrated in Figure 1b, are increasingly
viewed as prohibitively expensive. Mathematical models are thus often viewed as the only
feasible method for assessing the effectiveness of interventions with known efficacy.

Even measurement of efficacy can be hugely expensive. Endpoints directly reflecting sexual
HIV transmission, such as follow-up of discordant couples (for example, Partners in
Prevention investigating the efficacy of acyclovir treatment of HSV in reducing the HIV
infectiousness of dually infected sexual partners [19]), or measuring HIV incidence or
prevalence, provide the most compelling evidence for HIV intervention efficacy. However,
their expense means that other endpoints are often used, such as reduction in HIV viral load
representing reduced infectiousness [20]. However, care must be taken in the translation
from such proxy endpoints to the effect on actual infection transmission as these are
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extrapolations and subject to wide statistical uncertainty, and potentially unknown setting-
specific confounders [21].

Difficulties in measuring population-level effectiveness not only include physical scale
(community-based trials need to be large) but also timescale. The indirect protective effects
of HIV interventions illustrated in Figure 1 change over time after the introduction of the
intervention, since the indirect effects of prevention may accumulate for many years after
each directly averted infection. For example, women indirectly benefit from the reduced
HIV incidence among circumcised men impacting on HIV prevalence. If these women go on
to form new partnerships with uncircumcised men, then with time the protective effect of
circumcision also goes on to indirectly benefit men who are not circumcised (Figure 2, taken
from Hallett et al [22]). These benefits increase over time, so where is the cut-off at which
point effectiveness should be measured? As benefits are likely to increase with the years, so
their measurement becomes less achievable, with increasing difficulty in separating the
effect from secular trends in natural epidemic dynamics and the impact of other
interventions. In this case, modelling can be used to explore different scenarios, measuring
effectiveness over many years and decades [12, 22].

Where large, community-based or cluster randomised trials of interventions have been
feasible, there is an increasing recognition of the importance of partnership between
empirical data gathering and mathematical modelling of HIV transmission. An example of
this recognition is the National Institutes of Health Methods for Prevention Packages
Program that has funded several multi-disciplinary groups, each including mathematical
modellers, to design and optimise combination prevention for HIV (see http://grants.nih.gov/
grants/guide/rfa-files/RFA-AI-08-019.html for details).

A focus on test and treat
In 2009, research by investigators at the World Health Organisation (WHO), modelling a
“universal test and treat” strategy for sexual HIV transmission prevention, was published in
the Lancet [12]. The strategy involved annual HIV screening and immediate initiation of
combination antiretroviral treatment (ART) for everyone testing positive in order to control
the HIV epidemic in sub-Saharan Africa. The authors predicted that the proposed strategy
could move generalised HIV epidemics such as that in South Africa to elimination (defined
as HIV incidence less than one case per thousand per year) within ten years.

The paper is interesting not only for its bold and optimistic approach (it assumes treatment
coverage quickly reaches 90% with only a 1.5% per year long-term drop-out rate, no
transmission of drug resistance, and substantial reductions in sexual risk behaviour), but also
for the magnitude of the reaction it generated [23-32]. It was greeted by a considerable
response from the research, policy making and advocacy communities, with supporters as
well as opponents. Among the various objections made on the grounds of feasibility and
human rights issues were those commenting on the modelling methods; that overly
optimistic assumptions were made and that the simple transmission model used could not
adequately capture the transmission dynamics in realistic populations.

Granich et al raise as many questions as they answer [12]. In terms of methodology, their
approach returns to very simple modelling structures. The majority of mathematical models
of ART and prevention of sexual HIV transmission have, like Granich et al, been simple
compartmental models. In these models, the variables that change over time are the number
of people in a typically small number of particular states (e.g. uninfected, early untreated,
treated), known as the compartments (Figure 3a)). Infection is governed by a per partnership
infectiousness (or a per act infectiousness and number of acts per partnership). Contacts are
typically relatively homogeneous (at least within and between the discrete classes) and
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partnerships are typically not modelled explicitly. These models vary in their complexity by
defining fewer or more different types of individuals (and therefore fewer or larger numbers
of compartments).

Some very generic insights, which remain broadly valid when replicated from more complex
models, can be obtained from the simplest transmission models, involving the smallest
number of differences between individuals. All heterogeneity is averaged out and they
involve just three input parameters: the average number of sexual partners each member of
the modelled population has (expressed as the rate of change of partners, often denoted “c”),
the duration that an individual remains infected with HIV (denoted “D”) and the average
probability of transmission of HIV for each partnership between an infected and uninfected
individual (denoted “β”). More complex models divide these three simplest factors into
more groups to reflect heterogeneity in these features over time since infection and between
individuals (e.g. Figure 3b). For example in the context of ART, treated individuals have a
lower risk of transmitting HIV through sex but live longer, thus reducing β but increasing D.
Therefore the simplest sexual HIV transmission models incorporating ART use involve an
average rate of uptake of treatment for all infected individuals, leading to an average
reduction in HIV infectiousness, an average increase in life expectancy and potentially also
an average change in individuals' risk behaviours (Figure 3a). Model output depends on
values assigned to these three parameters (β, c, D) for treated and untreated individuals, as
well as the rate of treatment uptake (γ). The generic insight obtained from this model is first
that treatment can only reduce overall incidence provided the reduction in β and c is greater
than the increase in D, and second that if this condition is met, then there is a threshold rate
of treatment uptake above which transmission is not sustainable and the epidemic can be
eliminated. Where more complex models are needed is in translating this generic insight into
specific quantitative predictions or conditions for success. The simple model cannot be used
to generate credible predictions of the magnitude of reduction in transmissibility or risk
behaviour, or of treatment uptake which are required for successful epidemic control –
estimates turn out to be strongly dependent on many specifics.

Every transmission model published has involved some extension to the simple generic
model to account for heterogeneity in one way or another, which is important because
different groups may initiate treatment at different rates and fare differently once on
treatment. Many of these heterogeneities are illustrated in Figure 3b. There may be
progression through stages of HIV infection, with treatment uptake dependent on the stage
(γ1 to γ5). Treatment failure and withdrawal from treatment may also be explicitly
incorporated, as may stratification of the populations into groups with different levels of
sexual activity (layers of boxes for each compartment illustrated on Figure 3b). Further
complexity arises from stratifying by level of adherence, explicitly incorporating rates of
diagnosis preceding treatment initiation, and development and transmission of resistance.

Models may also be more complex by adopting fundamentally different structures, such as
network models, which explicitly simulate each individual and the partnerships they form,
rather than relying on the averages of groups of people implicit in the former type of model
[33, 34]. These models are very effective at describing extremes of heterogeneous sexual
behaviour, but also and just as importantly, the effects of local saturation of epidemic
spread, which arises when the transmission of infection becomes limited because sexual acts
are repeated amongst subgroups of people who are all infected. Network models are also
necessary for modelling interventions that target specific individuals, for example through
contact tracing, which may help quickly identify individuals who are contributing
disproportionately to the epidemic.
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There will always be a need for simple alongside complex model structures because simple
models generate generic mechanistic insight, which can then be refined and matched to
specific operational data with more complex and hopefully realistic models. However, there
is also a need to revisit the fundamental validity of generic insights in the light of extra
detail. For example, for test and treat, Dodd et al [35] recently explored the model
predictions of Granich et al [12] but further adding sexual heterogeneity, with a core group
of highly sexually active individuals, and concluded that the impact of universal test and
treat would be highly dependent on the epidemiological context. Additionally, many may
argue that veracity of Granich et al [12]'s conclusions may be limited by not explicitly
modelling transmission of drug resistant HIV [36]. Drug resistance may not be a simple
refinement of the model, but could, in some scenarios, completely govern the success or
failure of any test and treat strategy. Thus, in this case, better parameters on sexual risk
behaviour and drug resistance could result in qualitatively different predictions, not just
refined versions of the predictions based on the simplest model [12].

Despite the attention that Granich et al received [12], ART for prevention is not a new idea.
A series of high profile papers was published when triple ART was in its infancy which
explored strategies involving treatment of individuals relatively early in their infection, with
high coverage levels, but for industrialised country contexts [37, 38]. While many models
have explored the potential impact of ART in resource-poor settings since then [39-42], the
more realistic or conservative their assumptions regarding ART coverage did not provoke a
significant response. In contrast, the high coverage assumed for the WHO authors' strategy
and questions regarding feasibility of such large scale roll-out implicit for regions with such
high HIV prevalence led to substantially more attention and criticism. Yet this is the kind of
exercise to which mathematical modelling is so well suited: hypothetical scenarios involving
blue skies thinking which can broaden and provoke debate, and hopefully also lead to
empirical data gathering and feasibility testing of the most promising ideas.

No single modelling analysis can tell us which test and treat strategies could be successful
and which could not, and Granich et al state that better data are required for model
parameterisation [12]. Since the introduction of triple ART in 1996, more than 30 articles
have been published presenting results from HIV transmission models exploring the impact
that ART has had or will have on HIV transmission (incidence, prevalence, infections
averted) in various settings [10, 37-69]. While earlier models focussed on predicting ART
impact in industrialised settings [37, 38, 46, 55, 56, 61], more recently, many models have
explored the impact in sub-Saharan Africa [42, 48, 50, 52, 57], as ART scale-up has become
a reality. While many of these restricted ART coverage to those with late-stage HIV
infection [41, 42], thought realistic because individuals in resource-poor settings are
typically diagnosed so late [70, 71], the sudden surge in ART funding from Pepfar and other
organisations after initiatives such as the WHO's “3 by 5” caused all modelling to shift in
scope and ambition, as people's mindsets altered. Treating people at earlier stages of
infection has become a realistic prospect, as demonstrated by the WHO's revised guidelines
recommending treatment of all individuals with CD4 counts ≤350 cells/mm3.

Granich et al have asserted that screening the vast majority of individuals annually would be
sufficient to drive HIV epidemics to an elimination phase, as infections would be identified
and treated at such an early stage that the window of transmission before this would be too
short to sustain transmission [12]. The more infectious, or the more sexually active, an
infected individual is, the earlier in their infection treatment must be initiated for this to hold
(Figure 4, taken from Garnett and Baggaley [24]). There has therefore been considerable
debate on how early treatment must be initiated and of the magnitude of the role played by
acute, or primary HIV infection, in ongoing HIV transmission, and on how this depends on
the different epidemic contexts [28, 72, 73].
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Conclusion
The different model structures, model assumptions and parameter ranges, as well as choice
of model outcomes presented and the time scale over which impact of ART is measured,
makes comparison of ART HIV transmission modelling studies difficult. However, the need
to understand the implications of these variables requires a formal analysis of techniques and
exploration of (evidence-based) parameter space. The comparison of different models from
different research groups, designed to answer the same research question, can facilitate this
understanding and has recently been employed to assess the impact of male circumcision
[74].

We have used test and treat as a case study in this review, but for all HIV transmission
modelling there is a need to understand as fully as possible the dependencies in the model
predictions and to highlight those aspects of model structure which are imperative to
incorporate. It is thus vital, whether aiming for broad qualitative or detailed quantitative
insights, to systematically investigate the sensitivity of model output to predictions and to
present predictions with a full range of uncertainty to both parameters and modelling
choices. In this way models can be objectively compared, and important parameters can be
identified for further empirical research. Eventually, predictions can then converge to
improved levels of realism and reliability.

Recommended reading

Papers of particular interest, published within the annual period of review, have been
highlighted as:

* of special interest

** of outstanding interest

** Granich et al [12] Renowned paper using simple of models of sexual HIV
transmission and South Africa as an illustration to predict that elimination (or rather, near
elimination) of HIV is possible with high coverage of test and treat (“universal test and
treat”). Both the modelling approach and the feasibility of the intervention provoked
debate in the literature [23-32, 35, 75].

** UNAIDS/WHO/SACEMA Expert Group on Modelling the Impact and Cost of Male
Circumcision for HIV Prevention [74] Collaboration of experts reviewing the outcomes
of six mathematical models of the population level impact of male circumcision on HIV
incidence in high HIV prevalence settings. Models were from different research groups
and involved different methods, assumptions and some input variables, yet results were
relatively consistent, predicting that one HIV infection would be averted for every five to
15 male circumcisions performed.

* Dodd et al [35] Mathematical modelling analysis in response to the predictions of using
“universal test and treat” as an HIV prevention strategy (as proposed by Granich et al
[12]). A modified and extended version of the Granich et al model analysis, involving a
core group of highly sexually active individuals as well as the general population for an
HIV hyperendemic setting, was used to demonstrate that the impact of such a strategy
depends on the epidemiological context.
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Figure 1.
Demonstration of the impact of HIV prevention at the individual and population levels. a)
HIV prevention method directly prevents one transmission event but indirectly prevents an
additional three transmissions which would have also taken place. b) The population-level
effect of prevention methods can be measured through cluster randomised trials or
mathematical modelling analyses which compare scenarios where no protection is offered
(1) to those where all those at risk of acquiring HIV infection are protected (3) or some
degree of coverage in between (2).
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Figure 2.
Impact of male circumcision on HIV incidence among women (red line), uncircumcised
men (yellow line) and circumcised men (blue line), assuming 90% intervention coverage.
The output is the ratio of HIV incidence when the intervention is simulated relative to the
projection with no intervention. Taken from Hallett et al 2008 [22].
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Figure 3.
Schematic illustrations of the structure of HIV transmission models incorporating
antiretroviral therapy. a) Simplest HIV transmission model: model output is dependent on
the rate of treatment uptake, γ and the infectiousness (β), sexual activity (c) and duration
spent in that compartment (D) for infected individuals in the untreated compartment and
then the treated compartment. b) HIV transmission model with further stratifications to
incorporate heterogeneity between individuals in the population: stages of infection,
treatment failure, treatment withdrawal and heterogeneity in sexual activity (denote by
layers of compartments).
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Figure 4.
Cumulative number of new HIV infections transmitted per infected individual, as a function
of time since infection for scenarios in which each individual generates two, five and ten
new infections. Infectiousness is assumed to be ten-fold higher in the first two months than
in the long asymptomatic period and four-fold higher in the final 1.5 years, with average
duration of infection ten years. Taken from Garnett and Baggaley 2009 [24].
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