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ABSTRACT 28 

Background: Chronic low back pain (CLBP) is a multifactorial condition with a variety of symptoms; one being 29 

abnormal gait. The lumbar spine and its musculature are important in controlling gait and in CLBP the lumbar 30 

extensors are often deconditioned. Because of this specific isolated lumbar extension exercise is often 31 

recommended. It was therefore of interest to examine its effects of upon gait variability. 32 

Objective: To examine the effects of isolated lumbar extension resistance training upon lumbar kinematic 33 

variability during gait in participants with CLBP. 34 

Design: Randomized controlled trial. 35 

Setting: University Health, Exercise and Sport Science Laboratory 36 

Participants: Twenty four participants with non-specific CLBP 37 

Interventions: Participants were randomly allocated to a 12 week isolated lumbar extension exercise intervention 38 

(1x/week performing a single set to momentary muscular failure using a load equal to 80% max tested torque) or 39 

non-training control period. 40 

Main Outcome Measurements: Lumbar kinematics during gait including angular displacement, kinematic 41 

waveform pattern (CVp) and offset (CVo) variability were examined using three dimensional analyses. 42 

Results: No significant changes in displacement or CVo were found as a result of the intervention. However, a 43 

small but significant reduction in sagittal plane CVp (-20.90+43.53%, Effect Size = 0.48, p = .044) occurred 44 

indicating improved motor pattern replication through this movement plane.  45 

Conclusions: Considering the role of the lumbar extensors in gait, and their common deconditioning in CLBP, an 46 

isolated lumbar extension resistance exercise intervention may reduce gait variability. These results suggest 47 

isolated lumbar extension exercise may specifically reduce sagittal plane variability, indicating improved motor 48 

pattern replication through this movement plane, perhaps due to the plane of movement utilized during the 49 

exercise.  50 
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INTRODUCTION 88 

Chronic low back pain (CLBP) is highly prevalent [1-4] with considerable costs worldwide [5-13]. However, in 89 

as much as 85% of LBP cases no specific patho-anatomical diagnosis is found [14]. More recently CLBP has been 90 

noted a multifactorial condition with a variety of associated symptoms [15,16]. One of these symptoms being 91 

abnormal gait [17-19]. Average movement amplitudes of the trunk and pelvis in CLBP participants do not usually 92 

differ from asymptomatic participants [18,20,21]. However despite this, CLBP participants do present differently 93 

in other aspects of lumbar spine movement; inability to adapt pelvis/trunk coordination phase differences during 94 

increased walking velocity [20-26], and greater stride-to-stride variability lumbar spine movement relative to the 95 

pelvis [18]. Lamoth and colleagues [24] suggest ability to deal with unexpected perturbations in movement is 96 

likely reduced. It is also suggested that deficiencies in gait control produce excessive stresses to the lumbar spine, 97 

perhaps contributing to CLBP [18]. However, recent review reports little evidence for walking itself being 98 

causally associated with CLBP [27]; thus the gait observed in CLBP might be justifiably considered a symptom 99 

instead. 100 

 101 

Another common factor associated with CLBP is specific deconditioning (i.e. reduced strength/endurance, 102 

atrophy, and excessive fatigability) of the lumbar extensor musculature [28] with evidence suggesting it may be 103 

involved in abnormal gait in CLBP [20,23,29-35]. Healthy participants demonstrate relatively low stride-to-stride 104 

variability in lumbar kinematic patterns during level and incline gait [36]. However, greater stride-to-stride 105 

variability at the lumbar spine in all planes [18], greater frontal plane coordination variability of the pelvis/trunk 106 

[20,21], and more rigid transverse plane coordination variability of the pelvis/trunk [20,25,37] is reported in CLBP 107 

participants. This abnormal variability combines with poorer erector spinae activity adaptability to unexpected 108 

perturbations [29], or velocity changes [23]. In fact, findings from numerous studies suggest lumbar extensor 109 

dysfunction during gait in CLBP [20,23,29-31]. Hanada et al. [35] also report, though asymptomatic controls 110 

activated their rectus abdominus and internal oblique’s greater compared with their lumbar extensors, the opposite 111 

was seen in symptomatic participants i.e. greater lumbar extensor activation compared to rectus abdominus and 112 

internal oblique’s. More recent work suggests greater lumbar extensor activity in CLBP participants compared 113 

with controls [32], at a range walking velocities [33], and neither disability nor fear of movement is associated 114 

with this activity [32]. However, different coping strategies may be associated with greater activity 115 

(catastrophizing) or greater relaxation during double support (distraction) suggesting some cognitive influence 116 

over control of motor patterns [34]. 117 
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 118 

Gait is normally quite robust in the face of lower limb muscular weakness [38]. The lumbar spine, however, helps 119 

drive human bipedal gait [39]. It is possible greater lumbar extensor activation, and altered lumbar spine 120 

kinematics in CLBP, is a manifestation of the commonly associated lumbar extensor deconditioning [28]. Greater 121 

activation in the face of fatigue due to deconditioning might be compensatory to maintain lumbar spine control 122 

during gait. Hart et al. [40] demonstrate inducing lumbar extensor fatigue impacts lumbar kinematics during 123 

running gait of healthy and CLBP participants. Arjunan et al. [41] also show greater lumbar extensor activity 124 

during running gait in CLBP. Indeed, prospective evidence suggests lumbar extensor deconditioning as a risk 125 

factor for low back injury and pain [28]. Thus, it may be responsible for development of abnormal gait variability 126 

in CLBP. 127 

 128 

Exercise programs have shown success in improving aspects of gait variability in older individuals with 129 

improvement in part determined by strength gains [42]. Specific lumbar extensor exercise, however, is often used 130 

in CLBP [43] and thus may affect the associated lumbar spine kinematic gait variability. Varied exercise based 131 

interventions (Pilates, trunk extensions, stability exercise, transverse abdominus exercise) improveme gait control 132 

in CLBP participants [44-46]. However, more specific exercise for the lumbar extensors is isolated lumbar 133 

extension (ILEX) [47]. ILEX significantly improves lumbar extensor strength, pain and disability in CLBP 134 

participants [48-50]. Further, recent work reports improvement in ILEX strength from a strengthening program 135 

predicts improved gait endurance in CLBP participants [51]. ILEX however has yet to be examined for effects 136 

upon lumbar kinematics during gait. Taking this into consideration, the purpose of this study was to examine the 137 

effects of an ILEX exercise intervention upon lumbar kinematic variability during gait in participants with CLBP.  138 

 139 

METHODS 140 

Study Design 141 

A randomized controlled trial design was adopted with one experimental group and a control group. The study 142 

was part of a wider investigation examining ILEX in CLBP participants published in part elsewhere [50]. Gait 143 

data were also collected as part of this study, though it was not hypothesized the different training groups 144 

(FULLROM & LimROM) would differ in this outcome. Data analysis revealed no differences between the two 145 

intervention groups for these outcomes and variables found to significantly improve here were similar between 146 

the two groups (see below). Thus here the two groups were combined to form a single training group. Strength, 147 
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pain and disability outcomes are reported elsewhere [50]. Here the gait data are described only. The study was 148 

approved by the NHS National Research Ethics Service, Southampton & South West Hampshire Research Ethics 149 

Committee B (REC Reference: 11/H0504/9). 150 

 151 

Participants 152 

Thirty eight participants (males n = 21, females n = 17) were initially identified and recruited by posters, group 153 

email and word of mouth from a University and the surrounding locality. Direct referral was also provided from 154 

a local private chiropractor in addition to posters in their practice. A power analysis described previously [50] 155 

showed that each group required 7 participants to meet the required power of 0.8 at an alpha value of p <  .05. No 156 

previous work has examined effect sizes of the kinematic variables considered here and so, though considered 157 

adequately powered with respect to ILEX strength outcomes, there was possibility a type II error may result with 158 

respect to kinematic data. To reduce this risk, 5 kinematic trials were performed per participant, considered 159 

sufficient for adequate statistical power for kinematic data utilizing single subject statistical methods [52]. 160 

 161 

Inclusion criteria were as follows; participants suffered from current non-specific low back pain having lasted 162 

longer than 12 weeks [53] and had no medical condition for which resistance training would be contraindicated. 163 

Exclusion criteria were as follows; participants must have no medical condition for which movement therapy 164 

would be contraindicated. These included: acute (not re-occurring) low back injury occurring within the last 12 165 

weeks, pregnancy, evidence of sciatic nerve root compression (sciatica), leg pain radiating to below the knee, 166 

paresthesia (tingling or numbness), current tension sign, lower limb motor deficit, current disc herniation, previous 167 

vertebral fractures or other major structural abnormalities. Participants were cleared as meeting the inclusion 168 

criteria and not exhibiting any of the exclusion criteria prior to involvement in the study by either their General 169 

Practitioner or the Chiropractor in the research group and provided written informed consent.  170 

 171 

Figure 1 shows a CONSORT diagram highlighting participant numbers for enrolment, allocation, follow-up and 172 

analysis. After initial drop outs thirty one participants were randomized using an randomization program 173 

(Research Randomizer vs. 3.0) to one of three participant groups; FullROM training group who trained using a 174 

full range of motion (n = 12), LimROM training group who trained using a limited range of motion (n = 10), and 175 

a control group (n = 9). As noted, the two training groups were combined for analysis. 176 

 177 



7 | P a g e  
 

Equipment 178 

Isometric ILEX strength testing and training were performed using the MedX Lumbar Extension Machine (MedX, 179 

Ocala, Florida; figure 2). The lumbar extension machine is reliable in asymptomatic [54] and symptomatic 180 

participants [55], and valid in removal of gravitational effects [56] and pelvic movement [57]. Pain was measured 181 

using a 100mm point visual analogue scale (VAS) [58], and disability measured using the revised Oswestry 182 

disability index (ODI) [59]. Gait kinematic variables were captured at 500hz using a 10 MX T20 camera three 183 

dimensional motion capture system (Vicon, Oxford) and analyzed using both Vicon Nexus software version 184 

1.4.116 (Vicon, Oxford), MATLAB version R2012a (MathWorks, Cambridge) and Microsoft Excel version 2010 185 

(Microsoft, Reading). 186 

 187 

Participant Testing 188 

Isometric ILEX strength was tested twice, on separate days (at least 72 hours apart in order to avoid the effects of 189 

residual fatigue or soreness) both before and after the intervention. The first test acted as familiarization and data 190 

from the second test was used for analysis. Each test involved maximal voluntary isometric contractions. Details 191 

of the full test protocol using the lumbar extension machine are documented elsewhere [54]. During the first and 192 

second to last visit to the laboratory, before and after the intervention, participants completed the VAS and the 193 

ODI. Gait data was collected using the Vicon system during the third visit and final visit to the laboratory both 194 

before and after the intervention period. Gait data was collected at least one week after isometric ILEX strength 195 

testing.  196 

 197 

Three dimensional motion analyses 198 

A three dimensional approach was used for data collection. Ten cameras were set up and angled in a manner to 199 

reduce hidden spots that might obscure data collection. The cameras identified reflective markers attached to the 200 

participant and output three dimensional coordinates for each marker. Data were recorded for 5 walking trials 201 

both pre and post intervention. Participants walked barefoot along a marked runway 8 meters in length at their 202 

free walking speed. At least one full gait cycle was captured per trial. 203 

  204 

Biomechanical Model 205 

The lumbar spine was considered from S1 to T12 relative to the pelvis and modelled as a rigid segment due to the 206 

segments ranging S2 to T10 always bending laterally toward the support leg with little variation between segments 207 
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[60]. Lumbar spine data were collected using the model previously described by Schache et al. [61] shown to have 208 

high overall repeatability of angular parameters [62]. 209 

 210 

Marker Set Up 211 

Reflective markers were placed over anatomical landmarks on the pelvis at both anterior superior iliac spines 212 

(ASIS) and at the midpoint of the posterior superior iliac spine (PSIS). Reflective markers were also used upon a 213 

thoracolumbar marker cluster similar to that used by Schache et al., [61,62]. As with the biomechanical model, 214 

this marker set up has been previously described elsewhere [61,62]. The only alteration in this present study was 215 

the use of a flexible based wand marker for the thoraco-lumbar cluster. Two additional markers were secured 216 

equidistant either side of the midpoint of the wand markers base. This was placed over T12 with the mid-point of 217 

the base located over the spinous process. The ASIS and PSIS were identified by palpation after identifying the 218 

iliac crest and palpating along its length. T12 was first located and marked using the technique suggested in Gray’s 219 

Anatomy for Students [63]. This location was confirmed, whilst the participant was in a flexed standing position 220 

supporting themselves upon a stool, by palpation and counting of the spinous processes from this marked point 221 

down to the sacrum, and then double checked by counting back up to the marked spinous process. All markers 222 

and the base of the thoracolumbar marker cluster were secured using double sided adhesive tape. Markers were 223 

placed by the same investigator for all gait trials. Figure 3 shows the marker set-up used. 224 

 225 

Kinematic Data  226 

Variability of angular kinematics of the lumbar spine about the three described axes relative to the pelvic segment 227 

was of primary interest (i.e. movement of the thoraco-lumbar marker cluster with respect to the pelvic markers). 228 

The Vicon Nexus software was used to run a Bodybuilder (Vicon, Oxford) code pipeline to calculate joint angles 229 

as outputs using Cardan (Euler) angles. The angles were calculated in the following order; 1) sagittal, 2) frontal, 230 

and 3) transverse. As with the biomechanical model, the Bodybuilder code used was the same as used by Schache 231 

et al. [61,62]. Data were filtered using a low pass Butterworth filter (fourth order, cutoff frequency determined 232 

for each individual participant as sum of residuals closest to zero using 4Hz, 6Hz, 8Hz, 10Hz, and 12Hz) and 233 

normalized to percentage gait cycle corresponding to initial right heel contact (0%) and subsequent right heel 234 

contact (100%). Heel contacts were identified as the lowest vertical displacement of a right heel marker. Stride 235 

duration and length was also calculated using the horizontal displacement of the right heel marker from initial 236 

right heel contact and subsequent right heel contact. Intra-subject variability in mean ensemble average was 237 
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calculated using coefficient of variation with pattern (CVp) and offset (CVo) variability calculated separately to 238 

account for the different information they provide; CVo being the variability in the mean offset of the waveform 239 

determined by the reference frame used, identification of anatomical landmarks, markers and their configuration, 240 

whereas CVp represents the variability in the waveform pattern and is more representative of repeatability of motor 241 

performance [64]. 242 

  243 

Participant Training  244 

Training was conducted 1x/week for 12 weeks. This frequency of training significantly improves ILEX strength 245 

whereas overtraining can occur at greater frequencies for ILEX [65], and that 2x/week training offers no greater 246 

improvements [48]. Twelve weeks was chosen as strength improvement from ILEX training occurs largely within 247 

the first 12 weeks [66]. Both groups performed one set of variable resistance ILEX exercise. FullROM group used 248 

their full ROM while LimROM group only used the mid 50% of their individual ROM [50]. Load was 80% of 249 

max recorded ILEX strength and repetitions performed until momentary muscular failure to control intensity of 250 

effort [67] using a duration of at least 2 seconds concentric phase, 1 second hold in full extension and at least 4 251 

seconds eccentric phase. Load was increased 5% next session once the participant could continue for over 105 252 

seconds using their current load before failure.  253 

 254 

Data Analysis 255 

Eligibility for analysis required completion of 75% of the intervention. Twenty four participants’ data (Males, n 256 

= 13; Females, n = 11) were available after attrition. This number combined with 5 trials per participant was 257 

sufficient for statistical power. Mean values for angular displacements, stride-to-stride intra-subject variability 258 

using CVp
 and CVo were calculated for lumbar spine kinematics relative to the pelvis across all three planes of 259 

movement. Baseline demographic data and changes in VAS, ODI and ILEX strength met assumptions of 260 

normality and homogeneity of variance and thus were compared between groups using an independent samples t-261 

test. Kinematic data did not meet assumptions of normality or homogeneity of variance as is typical [68]. Thus 262 

non-parametric analysis was used and baseline data compared between groups using Mann Whitney-U exact test 263 

to check randomization succeeded for these variables. Examining the effects of the intervention, the independent 264 

variable was participant group (i.e. Combined training or Control) and dependent variables the absolute change 265 

from pre to post for kinematic variables. Wilcoxon Signed Ranks Exact test compared across the independent 266 

conditions. Perceived pain and disability were compared to consensus standards for minimal clinically important 267 
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change [69] (MCIC). Ostelo et al [69] proposed the MCIC for VAS as 15mm and for ODI 10 points. Further, 268 

effects sizes were calculated using Cohens d [70]. Statistical analysis was performed using SPSS statistics 269 

computer package (vs.20) and p < .05 set as the limit for statistical significance. 270 

 271 

RESULTS 272 

Participant Demographics 273 

Participant demographics, pain, disability and ILEX strength data are shown in Table 2 for groups. Comparison 274 

between groups revealed similar demographic variables at baseline and only showed a significant difference in 275 

VAS score (t(22) = 2.420, p = .024).  276 

 277 

Effects of Intervention upon VAS, ODI, and ILEX Strength 278 

Table 2 shows mean changes in VAS, ODI and ILEX strength in addition to effects sizes and 95% Confidence 279 

Intervals. The training group showed significant changes in VAS (t(22) = -3.651, p = .001), ODI (t(22) = -4.831, p < 280 

.001 and ILEX strength (t(20) = 3.641, p = .002) compared with the control group. Effect sizes were also considered 281 

larger for the training group and VAS and ODI both met MCICs. 282 

 283 

Effects of Intervention upon Kinematic Variables 284 

Table 3 shows pre and post group data for displacement, CVp and CVo. Wilcoxon Signed Ranks Exact test revealed 285 

significant changes after the intervention only for sagittal plane CVp (W(16), Z = -1.728, p = .044) in the training 286 

group only (The FullROM and LimROM groups made similar average improvements individually of -20.32% 287 

and -21.72% respectively) suggesting improvement in stride to stride waveform pattern replication. Figure 4 288 

presents an example of the pre and post kinematic waveforms for one training group participant for both individual 289 

gait trials and also the mean ensemble average showing a reduced stride to stride variability (evidenced by the 290 

narrower standard deviations about the mean ensemble average). 291 

 292 

DISCUSSION 293 

A 12 week ILEX resistance training intervention produced significant reduction in sagittal plane variability during 294 

gait in CLBP participants. These findings potentially offer further understanding regarding the relationships 295 

between CLBP, gait variability and lumbar extensor deconditioning. 296 

 297 
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Lumbar kinematic variability during gait in CLBP participants may be a consequence of the lumbar extensor 298 

deconditioning frequently associated with this population [28]. This potential link is emphasized by the fact that 299 

lumbar extensor fatigue affects lumbar kinematics during gait [40]. It seems reasonable to conclude that 300 

deconditioning of the musculature associated with controlling gait in patients with CLBP might be partially 301 

responsible for altered motor control. [39,71-73] Our findings in this study tend to support this conclusion.  302 

Previous studies offer support for exercise interventions improving aspects of gait variability including muscle 303 

activation [46], ground reaction force parameters [45] and displacements [44]. However, none have examined 304 

lumbar kinematic variability during gait, nor utilized specific exercise to isolate the lumbar extensors. Within the 305 

present study an intervention employing a highly specific form of exercise (ILEX) evidenced as most effective 306 

for conditioning the lumbar extensors was used [47]. The results indicate ILEX resistance training produced 307 

significant reduction in sagittal plane CVp suggesting improved ability to replicate motor patterns in this plane 308 

during gait. Because ILEX may be an optimal approach for conditioning the lumbar extensors [47] it appears 309 

reasonable the results produced may be the result of addressing the specific deconditioning seen in CLBP [28]. 310 

 311 

However, the improvement in sagittal CVp may suggest a specific intervention effect due to the plane of motion 312 

ILEX exercise is performed through. An exercise device similar to that used for ILEX also exists, which allows 313 

pelvic restraint for torso rotation through the transverse plane to be performed in isolation (Torso Rotation 314 

Machine, MedX, Ocala, Florida). Mooney et al. [74], demonstrated the latissimus dorsi and contralateral gluteus 315 

maximus follow a reciprocal activity relationship during gait, presumably contributing to control about the 316 

transverse plane. Mooney et al. [74] also examined activation during torso rotation exercise reporting abnormal 317 

activation patterns in symptomatic participants compared with controls. After a training intervention of 318 

progressive resistance training using the torso rotation device activation returned to normal levels of activity seen 319 

in asymptomatic participants. However, despite reporting EMG results for the latissimus and gluteus to clarify 320 

their role during gait, Mooney et al. [74] did perform pre and post intervention gait measurements to identify if 321 

any change had occurred in muscular control during gait. In light of the results of the present study it is suggested 322 

future research examine whether plane of movement specific training produces consequent plane of movement 323 

specific changes in lumbar spine control during gait i.e whether torso rotation improves transverse CVp.  324 

 325 

Though it seems reasonable the lumbar extensor conditioning effect from ILEX [47] might be the responsible for 326 

the sagittal CVp changes reported, the effect of reduced pain or disability should also be considered. In a previous 327 
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report [50] and others [48,49] we show the ILEX intervention used produces significant and meaningful reductions 328 

in pain and disability. Thus this may be a factor responsible for the gait improvements. However, other evidence 329 

suggests pain presence may not be associated with gait variability [26,29,75]. Lumbar spine kinematics during 330 

gait appear complex and developed over time, with patterns evident before pain is experienced [75] and both 331 

induced pain and fear of pain produce little change in muscle activity in CLBP patients [29]. Recent studies have 332 

shown that, even those with previous history of CLBP who are currently asymptomatic, demonstrate abnormal 333 

gait patterns [21,76]. Considering the multifactorial nature of CLBP, this evidence suggests gait variability may 334 

be a symptom associated with CLBP that results in consequence of lumbar extensor deconditioning. However, it 335 

is possible that pain might not be primarily responsible for this findings, but it might be caused by the 336 

consequences of pain.  Though neither disability nor fear of movement is associated with greater lumbar extensor 337 

activity during gait in CLBP [32], different cognitive strategies may be associated with greater activity 338 

(catastrophizing), or greater relaxation during double support (distraction), suggesting influence of pain 339 

consequences [34]. This consideration requires further investigation. 340 

 341 

Study Limitations 342 

The limitations of the present investigation should be noted. The clinical value of the significant change in sagittal 343 

CVp (-20.90+43.53%) is not wholly clear due to the large variability. If the effect size is calculated (0.48), the 344 

magnitude of change is considered small [70]. In addition, we are unaware of whether any data on asymptomatic 345 

participants exists for these outcomes, thus making the determination of clinical significance difficult. Finally, 346 

though Schache et al. [62] have shown high reliability for angular data for the model adopted in this study, we did 347 

not conduct our own reliability analysis.  348 

 349 

CONCLUSIONS 350 

The results of this study provide novel information on lumbar spine kinematic variability during gait in CLBP. A 351 

12 week ILEX resistance exercise intervention significantly reduced sagittal plane CVp suggesting improved 352 

motor pattern replication. These findings are important as they demonstrate that improvements may be possible 353 

in various factors typically associated with CLBP through use of ILEX exercise. 354 

 355 
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 515 

FIGURES 516 

 517 

Figure 1. CONSORT diagram showing flow of participants through the study 518 
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 519 

Figure 2. MedX Lumbar Extension Machine Restraint System (Reproduced with permission from MedX 520 

Corporation) 521 

 522 

Figure 3. Marker set-up 523 
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 524 

Figure 4. Example of Training Group Pre (left) and Post (right) Lumbar Kinematic Pattern Variability; top 525 

graphs show individual trials kinematic waveform patterns and bottom graphs shows mean ensemble average (+ 526 

standard deviation; dotted line) for these trials; CVp = Waveform pattern variability.  527 

 528 

TABLES 529 

Table 1. Baseline group demographics. 530 

 Training (n = 17) Control (n = 7) p 

Age (years) 47+13 42+15. .645 

Stature (cm) 171.90+9.26 180.82+7.70 .076 

Body Mass (Kg) 75.00+15.49 85.48+18.26 .324 

BMI (Kg/m2) 25.12+3.10 25.94+4.41 .899 

Symptom Duration (years) 14+11 12+11 .800 

VAS (mm) 47.26+24.09 19.2+15.51 .024 

ODI (pts) 34.71+12.69 26.2+7.27 .158 

ILEX Strength (Nm) 177.80+83.80 192.21+67.60 .691 

BMI = Body Mass Index; VAS = Visual Analogue Scale; ODI = Oswestry Disability Index; ILEX = Isolated 531 

Lumbar Extension  532 
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Table 2. Changes in VAS, ODI, and ILEX strength as a result of the ILEX resistance training intervention. 533 

Outcome Change 95%CIs Effect Size 

VAS (mm) 

Training -23.65+21.59 -35.82 to -10.58 -1.10 

Control 10.29+18.11 -6.46 to 27.03 0.57 

ODI (pts) 

Training -17.06+6.71 -20.13 to -12.67 -2.54 

Control -1.71+7.95 -9.07 to 5.64 -0.22 

ILEX Strength (Nm) 

Training 41.49+30.51 24.60 to 58.39 1.36 

Control 10.29+18.11 -15.25 to 9.67 -0.21 

95%CIs = 95% Confidence Intervals; VAS = Visual Analogue Scale; ODI = Oswestry Disability Index; ILEX = 534 

Isolated Lumbar Extension 535 

 536 
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 552 
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Table 3. Pre and post ILEX resistance training intervention kinematic data 

 

*Denotes significant change from pre to post (p = .044); CVp = Waveform pattern variability; CVo = Waveform offset variability 

 

 

 

 Displacement (degrees) CVp (%) CVo (%) 

 Frontal Sagittal Transverse Frontal Sagittal Transverse Frontal Sagittal Transverse 

Training          

 Pre 10.61+3.74 3.92+1.20 8.85+2.72 41.95+16.62 111.99+42.64 46.49+20.57 27.48+18.34 103.94+52.78 41.69+28.15 

 Post 10.80+2.88 4.31+1.37 9.41+3.26 39.35+12.72 91.09+28.27* 48.20+24.02 25.87+15.02 87.95+41.10 42.35+25.28 

Control          

 Pre 8.15+1.94 4.13+1.78 6.91+7.87 52.65+19.23 92.95+27.07 33.41+11.74 32.30+29.09 66.33+69.07 14.15+5.46 

 Post 7.25+2.31 3.80+1.54 8.86+2.32 56.45+11.82 89.51+26.63 40.25+20.83 44.59+46.13 85.91+39.78 31.66+27.27 


