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Abstract 3 

The nutritional environment to which an individual is exposed during the perinatal period 4 

plays a crucial role in determining their future metabolic health outcomes. Studies in rodent 5 

models have demonstrated that excess maternal intake of high-fat and/or high-sugar ‘junk 6 

foods’ during pregnancy and lactation can alter the development of the central reward 7 

pathway and program an increased preference for ‘junk foods’ and increased susceptibility to 8 

diet-induced obesity in the offspring. More recently, there have been attempts to define the 9 

critical windows of development during which the reward pathway is most susceptible to 10 

alteration, and to determine whether it is possible to reverse these effects through nutritional 11 

interventions applied later in development. This review discusses the progress made to date in 12 

these areas, highlights the apparent importance of sex in determining these effects and 13 

considers the potential implications of the findings from rodent models in the human context.  14 

 15 

Key Words: programming, high-fat diet, reward  16 
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Introduction 17 

Both human and animal studies have provided compelling evidence that the nutritional 18 

environment an individual experiences before birth and/or in early infancy is a key 19 

determinant of their subsequent metabolic health outcomes. In particular, individuals who are 20 

exposed to maternal overnutrition during the perinatal period have a greater propensity 21 

towards excess food intake and weight gain in child and adult life (1-6). More recently, 22 

animal studies have demonstrated that in addition to predisposing individuals to consume 23 

more energy overall, perinatal exposure to high-fat and/or high-sugar diets also increases the 24 

preference for palatable ‘junk foods’ in the offspring (7, 8).  25 

Over the past few years, studies from our group and others have provided novel insights into 26 

the biological mechanisms which underlie the developmental programming of food 27 

preferences. These studies have strongly implicated altered development of the central 28 

mesolimbic reward system in this mechanistic pathway, and demonstrated that both opioid 29 

and dopamine signalling within this reward system are persistently altered by prenatal 30 

fat/sugar exposure, both in relation to gene expression of key components of these pathways 31 

and the way in which they function. The majority of studies to date have focussed on the 32 

consequences of being exposed to high-fat and/or high-sugar diets during the entire perinatal 33 

period (i.e. before birth and during the suckling period). However, given that the 34 

development of central reward systems begins before birth and extends into the fourth week 35 

of postnatal life in the rodent (9-11), there has been growing interest in defining whether 36 

there are critical windows of reward pathway development during which exposure to a 37 

maternal junk food diet is most detrimental. In addition, there remains limited information as 38 

to whether and to what extent the effects of early life exposure to poor quality diets can be 39 

reversed by interventions applied later in development. 40 

This review summarises our current understanding of the key periods of development during 41 

which exposure to ’junk food’ diets can lead to permanent changes in the mesolimbic reward 42 

pathway and establish lifelong food preferences. We also discuss the results of studies which 43 

have examined the potential reversibility of these programming effects, and highlight the 44 

challenges inherent in extrapolating the findings from the animal studies in this area to a 45 

human context.  46 

 47 
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High-Fat/High-Sugar ‘Junk Foods’ and the Mesolimbic Reward System 48 

The drive to consume highly palatable foods has a strong biological basis which goes beyond 49 

the need to satisfy hunger. The reason for this is that these foods have the ability to activate 50 

the central neural circuits involved in the regulation of motivation and reward (the 51 

mesolimbic reward system) in a manner analogous to alcohol and drugs of abuse (12, 13). 52 

Studies in both humans and animals have shown that the intake of fat and sugar produces 53 

acute increases in the synthesis and secretion of opioids and dopamine within the central 54 

reward system (14-19). The similarity between the acute effects of palatable foods and those 55 

of well-characterised drugs of abuse has led to the concept of palatable foods as a ‘natural’ 56 

reward. 57 

 58 

The pleasurable sensation that is experienced after consuming drugs, alcohol and palatable 59 

foods is ultimately due to the activation of dopamine signalling (20). The intake of palatable 60 

foods stimulates the synthesis of endogenous opioids, which bind to μ-opioid receptors on 61 

inhibitory GABAergic neurons in a region of the mesolimbic reward system known as the 62 

ventral tegmental area (VTA). This blocks their inhibitory action on dopaminergic neurons in 63 

this brain region and thereby increases dopamine production (21).  The terminals of these 64 

dopaminergic neurons project from the VTA to another region of the mesolimbic reward 65 

pathway, the nucleus accumbens (NAc) and dopamine release into the NAc is thereby 66 

increased. Here, it binds to dopamine receptors (D1 and D2) on the post-synaptic NAc 67 

neurons and dopamine signalling is activated (21). Opioids can also act directly through 68 

receptors in the NAc to further potentiate dopamine signalling (Figure 1). 69 

 70 

The importance of opioid and dopamine signalling in the regulation of palatable food intake 71 

has been demonstrated by pharmacological studies in both humans and animals. In rats, 72 

microinjections of exogenous opioids or dopamine receptor agonists into either the VTA or 73 

NAc enhances the ingestion of foods which are rich in fat and sugar (14, 22, 23), whilst 74 

injections of µ-opioid receptor antagonists or dopamine receptor antagonists have the 75 

opposite effect (24-27). Similarly, administering the opioid receptor antagonist naloxone to 76 

human subjects has been shown to reduce the intake of high fat/high sugar snacks including 77 

cookies and chocolate bars without altering the intake of less palatable foods (28). 78 

 79 
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In addition to the acute effects of palatable foods on the reward circuitry, prolonged exposure 80 

to excessive amounts of fat and sugar is associated with molecular adaptations which mirror 81 

those seen in drug and alcohol addiction. Chronic overconsumption of high-fat, high-sugar 82 

diets results in reduced expression of the D2 dopamine receptor (29) and decreased dopamine 83 

content (18, 30) in the NAc. We have also recently shown that feeding rats a cafeteria diet 84 

consisting of a range of common human ‘junk foods’, including chocolate biscuits, sweetened 85 

breakfast cereal and extruded potato snacks, for 8 weeks resulted in reduced expression of 86 

both tyrosine hydroxylase (TH), the rate limiting enzyme in dopamine synthesis and 87 

biomarker of rate of dopamine production, and the μ-opioid receptor mRNA in the NAc (31); 88 

consistent with changes in the reward pathway observed after chronic exposure to well-89 

characterised opioid drugs, such as morphine (32). Excess consumption of ‘junk foods’ also 90 

leads to behavioural changes indicative of the development of dependence. Rats provided 91 

with free access to either high-fat and/or high-sugar diets consume increasing quantities as 92 

over time, and exhibit classic withdrawal signs when the diet is removed (33, 34). As a result, 93 

overstimulation of brain reward systems through excessive consumption of palatable foods 94 

results in the development of compulsive-like consumption of high-fat, high-sugar foods.  95 

 96 

The Development of the Reward Pathway  97 

Rodents have been the model of choice in which to study the early life ontogeny of various 98 

brain circuits, including the mesolimbic reward system. In rodents, mesolimbic opioid and 99 

dopamine neurons can be identified as early as embryonic day 13 (11, 35). At birth, 100 

dopamine fibres in the NAc are present at a higher density than in the adult rodent (36), and 101 

the abundance of the µ-opioid receptor in this brain region also peaks in the first 4 days after 102 

birth, before declining to adult levels (37). Dopamine and opioid receptors can be detected in 103 

the mesolimbic reward system in early-mid embryonic life in the rat, but only become 104 

functional at the late embryonic or postnatal stage, suggesting that the ability of the fetus to 105 

respond to endogenous or exogenous dopamine may be limited. It is not until the third to 106 

fourth postnatal week that the opioid and dopamine systems in the rodent reach their adult 107 

configuration (9-11, 38) (Figure 2).  108 

It is important to recognise that the developmental trajectory of these pathways is likely to be 109 

different in the altricial rodent model compared to the human. While there have been 110 

relatively few human studies in this area, largely relying on information from autopsy studies, 111 
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evidence from the limited clinical studies that have been conducted suggests that both 112 

dopamine and endogenous opioids, including β-endorphin, are expressed in the fetal striatum 113 

by 12 weeks gestation (39, 40). In contrast, the associated receptors cannot be detected until 114 

gestational week 20 (41, 42). Knowledge of this area is still somewhat limited, and further 115 

studies are required to gain a better understanding of the early life ontogeny of the reward 116 

pathway in both rodents and humans. These studies will undoubtedly assist research in 117 

identifying when during development the reward circuits are likely to be most susceptible to 118 

environmental insults.  119 

Critical Windows of Development in the Programming of Food Preferences 120 

There are currently limited studies which have attempted to determine the separate 121 

contributions of prenatal and early postnatal exposure to ‘junk food’ or high-fat diets on 122 

subsequent food preferences in the offspring, and fewer still which have looked at the effects 123 

of exposure after weaning (Figure 3). However, the results from the studies to date suggest 124 

that exposure of the fetus/neonate during different periods before birth and/or in the early 125 

postnatal period may have distinct consequences for the programming of the reward circuitry 126 

and subsequent food preferences and susceptibility to diet induced obesity in the offspring. 127 

Exposure before birth vs during the suckling period 128 

The relative impact of exposure to a high-fat diet before birth and during the suckling period 129 

on later food preferences has been evaluated in a number of studies using a cross-fostering 130 

paradigm, in which offspring born to mothers consuming junk food/high-fat diets are 131 

transferred to mothers fed a standard chow diet, or vice versa, within 24 hours of birth. This 132 

approach provides the opportunity to isolate the effects of exposure to the junk food diet 133 

during fetal and suckling periods without any carry over effects associated with switching the 134 

same dam from one diet to another, and is thus of considerable value in defining critical 135 

developmental windows. In one such study, Chang and colleagues demonstrated that 136 

offspring who had been exposed to a high-fat diet in utero exhibited an increased body 137 

weight, increased body fat mass, and increased fat preference, independent of whether they 138 

were suckled by a dam consuming a control or high-fat diet (43). This study went on to show 139 

that exposure to a high-fat diet before birth, but not during the suckling period, also resulted 140 

in significant increases in the proliferation of neuronal cells involved in regulating fat intake 141 

(eg. galanin neurons) in the hypothalamic appetite regulatory centre (43). These results led 142 

the authors to conclude that exposure to a high fat diet before birth was both necessary and 143 
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sufficient to program a preference for high fat foods and thereby predispose the offspring to 144 

diet-induced obesity (43). 145 

The findings of Chang and colleagues have not, however, been replicated in other cross-146 

fostering studies. In one of these studies, Gorski et al demonstrated that exposure to a high-147 

fat diet during the suckling period alone was sufficient to increase the offspring’s appetite for 148 

high-energy foods in adulthood. In this study, the offspring of obesity-resistant dams that 149 

were cross-fostered to obesity-prone dams fed on a high energy diet, exhibited a significantly 150 

higher energy intake when given free access to the same high energy diet between 8 and 12 151 

weeks post-weaning (44). More recently, we also used a cross-fostering paradigm to evaluate 152 

the effect of exposure to a maternal cafeteria diet before birth and/or during the suckling 153 

period on food preferences and susceptibility to diet induced obesity in adulthood. Consistent 154 

with Gorski’s findings, we found that exposure to a maternal cafeteria diet during both the 155 

fetal and suckling periods or suckling period alone, but not fetal period alone, was associated 156 

with higher intake of fat, carbohydrate and total energy when offspring were given free 157 

access to both a control and cafeteria diet at 2 months of age (45). The results of the latter two 158 

studies suggest that the suckling period, rather than the prenatal period, plays the more 159 

important role in the programming of food preferences. Importantly, these studies also raise 160 

the possibility that the effects of prenatal exposure to a cafeteria diet on subsequent food 161 

preferences/susceptibility to diet-induced-obesity in the offspring could potentially be 162 

reversed by restoring appropriate nutritional intakes during the lactation/suckling period.  163 

The results of these cross-fostering studies need to be interpreted with caution in light of 164 

reports that switching pups to a foster mother at birth, even if she is consuming the same diet, 165 

can impact on the subsequent growth, metabolic profile and behaviour of the offspring (46). 166 

However, the apparent importance of the suckling period in determining later feeding 167 

behaviour has also been demonstrated in rodent studies in which pups remained with their 168 

natural mother throughout the experiment, but the dams were only fed the cafeteria diet 169 

during either pregnancy or lactation. In one such study, Bayol and colleagues showed that the 170 

offspring of dams fed a cafeteria diet during both  pregnancy and lactation had a higher BMI 171 

and food intake after weaning than offspring of mothers who were a fed cafeteria diet during 172 

pregnancy and were switched to a control diet after delivery (7). Wright and colleagues have 173 

also undertaken a similar study, in which behavioural satiety sequence analysis was applied 174 

to specifically investigate food consumption patterns of adult offspring exposed to the 175 

cafeteria diet whilst suckling, but not before birth. They reported that offspring who had been 176 
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exposed to a cafeteria diet during the suckling period alone period exhibited an increased 177 

number of feeding bouts and spent more time feeding when provided with a cafeteria diet in 178 

adulthood, than non-exposed offspring (47). Thus, while more studies are required, the 179 

weight of the evidence to date appears to suggest that exposure to a cafeteria/high-fat diet 180 

during the suckling period has a greater impact on subsequent food preferences/feeding 181 

behaviour than exposure before birth.    182 

Post-weaning 183 

In the rodent model, offspring are capable of consuming solid foods and are no longer 184 

dependent on their mother for nutrition by 3 weeks of age (48). However, as discussed above, 185 

the development of the reward pathway has been shown to continue into the fourth postnatal 186 

week (10, 11). This suggests that there is the potential for environmental insults in the 187 

immediate post-weaning period to also impact on the development of this pathway. In 188 

support of this, Teegarden and colleagues demonstrated that mice offspring exposed to a high 189 

fat diet only during the fourth week of life (22-28 days of age) exhibited a significant 190 

preference for this same high fat diet as adults (49). Importantly, this increased preference for 191 

fat was associated with increases in striatal expression of Cdk5 and phosphor-DARPP-32, 192 

which are negative regulators of dopamine transmission. The authors proposed that the 193 

associated inhibition of dopamine signalling in the reward system was responsible for driving 194 

the increased consumption of fat, as a compensatory response to stimulate dopamine 195 

signalling and thereby normalise dopaminergic tone (49). The ability of exposure to a highly 196 

palatable diet only during the fourth week of life to program adult food preferences has also 197 

been demonstrated in a study in which neonatal rats fed a sugary cereal from postnatal days 198 

22-27 were shown to exhibit an increased preference for this same food in adulthood (50).  199 

 200 

In order to further investigate the impact of altered reward signalling in the fourth week after 201 

birth, we recently undertook a study in our laboratory to determine the effect of blocking 202 

opioid signalling in the period immediately after weaning on gene expression in the  reward 203 

pathway and food preferences in adult life. We found that while administering the opioid-204 

receptor antagonist, naloxone, for ten days after weaning resulted in altered gene expression 205 

in the mesolimbic reward pathway at the end of this period, there was no impact on adult 206 

food preferences, independent of whether the offspring had been exposed to a control or junk 207 

food diet in the fetal and suckling period (Gugusheff et al, unpublished observations). While 208 

the results from studies to date suggest that there may be the potential for altering the 209 
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development of the reward pathway, and thus food preferences, in the post-weaning period in 210 

rodents further studies are required to confirm this and to determine the underlying 211 

mechanism.  212 

 213 

Adolescence 214 

Adolescence is a period of transition from childhood to adulthood, corresponding to the age 215 

of 12 to 18 years in humans and 28 to 56 days in rodents (51). Existing evidence suggests that 216 

the adolescent brain is highly plastic, undergoes extensive re-organisation and maturation of 217 

neuronal circuits (52), and this plasticity is thought to be one of the main reasons for the 218 

increased susceptibility of adolescents to the effects of recreational drugs and alcohol. Studies 219 

on nicotine and ethanol addiction in rodents have shown that exposure to these substances 220 

during the adolescent period, but not during adulthood, results in neuronal alterations of 221 

dopaminergic, cholinergic and glutamatergic systems throughout the brain including 222 

hippocampus, striatum and midbrain (53, 54). There are currently no studies which have 223 

studied the long-term consequences for the reward pathway/food preferences of being 224 

exposed to a high-fat diet/cafeteria ‘junk food’ diet only during adolescence. However, the 225 

fact that drugs of abuse and palatable foods both activate the mesolimbic reward system via 226 

similar pathways (21, 55) raises the possibility that a similar phenomenon may be observed.  227 

The plasticity of the adolescent brain also suggests that it may be possible to intervene during 228 

this period to reverse the negative effects of being exposed to junk food/high fat diets during 229 

the perinatal period. Again, however, this has yet to be tested experimentally and remains an 230 

important avenue for further research. 231 

 232 

Potential reversibility of programmed effects 233 

The evidence linking perinatal ‘junk food’ exposure to an increased preference for these 234 

foods later in life, has led to growing interest in determining whether, and to what extent, the 235 

negative effects of exposure to highly palatable diets during the fetal/suckling periods can be 236 

reversed by interventions applied later in development. In order to examine the potential 237 

reversibility of programming induced by maternal junk food feeding, we have undertaken a 238 

series of studies in which we investigated whether providing offspring exposed to a maternal 239 

cafeteria diet during the perinatal period with a standard rodent diet after weaning could 240 

ameliorate the programming of food preferences and mesolimbic reward system. These 241 
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studies demonstrated that whilst consuming the standard diet for 3 weeks post-weaning did 242 

normalise chow intake and fat deposition at 6 weeks of age, the mRNA expression of the D1 243 

receptor in the NAc, a marker which has been associated with junk food withdrawal (56), 244 

remained higher in offspring of junk food fed dams at this time. Importantly, those offspring 245 

exposed to a junk food diet during the perinatal period consumed significantly more total 246 

energy than offspring of control dams when free access to the junk food diet was reinstated 247 

from 6 to 9 weeks of age (31). These results suggest that providing a nutritionally complete, 248 

standard rat feed, for 3 weeks after weaning was insufficient to reverse the programming of 249 

an increased preference for junk food as a consequence of perinatal exposure to the junk food 250 

diet.  251 

 252 

In this same series of studies, we also determined whether providing offspring of junk food 253 

fed dams with a standard rodent feed for a more extended period after weaning would reverse 254 

the programming effects. These studies demonstrated that a 3-month period on the standard 255 

rat feed after weaning was sufficient to reverse the increased preference for a junk food diet 256 

in male, but not female offspring (31). The findings of this study therefore suggest that, at 257 

least in male offspring, the programming effects of maternal palatable diets on subsequent 258 

food preferences can potentially be ameliorated by eliminating the junk food stimulus from 259 

weaning to adulthood (31). The importance of prolonged chow intake post-weaning was also 260 

demonstrated in a study by Velkoska and colleagues, which focussed on offspring reared in 261 

small litters to induce early postnatal overnutrition. These authors reported that when these 262 

offspring were fed on a standard rodent feed from weaning they remained fatter and 263 

hyperleptinaemic when compared to animals from normal-sized litters in adolescence (57), 264 

but were not different in relation to body weight, body composition or plasma leptin 265 

concentrations when fed on the standard feed through to adulthood (57). 266 

 267 

While these studies suggest that the potential exists for mitigating programming effects 268 

through extended periods of consuming a nutritionally balanced standard feed post-weaning, 269 

at least in male offspring, this is not supported by all rodent studies. Indeed, there are at least 270 

2 studies which have reported that offspring exposed to high fat diets in utero exhibit an 271 

increased preference for sucrose and fat at 18-24 weeks of age, even when they have been fed 272 

on a standard rodent feed since weaning (58, 59). The differences in findings may be due to 273 

the different timing and duration of the dietary perturbation in the dams, and in the specific 274 

composition of the experimental diets (and indeed the ‘control’ rat feed), and there remains a 275 
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need to better understand which specific dietary components are the key drivers in the early 276 

life origins of food preferences. 277 

  278 

Sex Differences  279 

The majority of studies to date which have focussed on the critical windows of reward 280 

pathway development and the programming of food preferences have only considered male 281 

offspring or have failed to separate male and female animals in the analysis (7, 43, 59). Many 282 

researchers choose to focus only on male offspring to avoid any possible complications in the 283 

interpretation of results introduced by the hormonal fluctuations which accompany the 284 

estrous cycle in females (60). However, there is emerging evidence to suggest that male and 285 

female offspring respond differently to early life nutritional insults, and that it is often not 286 

appropriate to extrapolate results obtained in males to females. By way of example, studies 287 

by our group have shown that maternal palatable diet consumption during the lactation 288 

increases the preference for high fat food in juvenile male offspring, but not in females, while 289 

increasing the propensity to develop diet-induced obesity in female offspring only (45). 290 

The sex-specific effects of early life nutritional exposures on subsequent food preferences 291 

highlight the importance of separating males and females in the analysis of these experiments. 292 

Our studies have also demonstrated that these sex differences in the response to perinatal junk 293 

food exposure also extend to the effects on the developing reward pathway. Thus, female 294 

offspring of junk food fed dams exhibit increased mRNA expression of key components of 295 

the dopamine signalling pathway, TH, the D2 dopamine receptor and the dopamine active 296 

transporter (DAT), in response to a junk food challenge in adolescence, while no changes in 297 

the expression of these genes is seen in males (31).  It is clear that future studies investigating 298 

the effects of maternal diet on the food preferences of the offspring will need to consider each 299 

sex separately and explore in more detail the mechanisms behind the observed sex 300 

differences.  301 

Extrapolation to Human Studies 302 

It is important to note that the work done to date looking at periods of plasticity during the 303 

development of the mesolimbic reward pathway have been conducted in altricial rodent 304 

models, which undergo a considerable degree of their maturation after birth, unlike human 305 

infants where brain development is largely completed in utero. This difference in the timing 306 
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of brain development between rodents and humans clearly needs to be considered carefully 307 

when making any attempts to translate the findings from the rodent model into a clinical 308 

setting (61), particularly in relation to critical developmental windows. It is also clear, 309 

however, that studying the impact of maternal diet on offspring feeding behaviour in humans 310 

is complicated by a number of logistical and practical considerations. It is clearly not possible 311 

from an ethical perspective to randomise women to consume a high-fat junk food diet during 312 

pregnancy/lactation, and obtaining reliable food intake data in observational studies is 313 

notoriously difficult. In addition to this, the confounding effects of sociodemographic factors 314 

in both food intake in mother and the food choices/obesity risk of their children is difficult, if 315 

not impossible, to control for.  The largest study to attempt to examine this in a human 316 

context was published by Brion and colleagues in 2010. These researchers used information 317 

on dietary intakes collected prospectively from 5717 mother-child pairs and 3009 father-child 318 

pairs from the ALSPAC birth cohort to examine the relationship between macronutrient 319 

intakes in the mother/father at different stages of the mother’s pregnancy and macronutrient 320 

intakes in the child at 9-10 years of age. The study reported that there was a strong correlation 321 

between maternal fat intake during pregnancy and the child’s preference for fat at 10 years of 322 

age (62), but no relationship with the father’s fat intake at any time. While it is difficult to 323 

completely exclude the possibility of confounding, these are nevertheless important and 324 

interesting results which support the potential for programming of food/macronutrient 325 

preference in humans.  326 

Other studies in humans focussed on early programming of food intake have concentrated to 327 

a greater extent on the programming of specific taste preferences. A series of elegant studies 328 

by Menella and colleagues showed that exposure to certain flavours (eg carrot, garlic) either  329 

in utero (63) or via the breast milk (63-65) increased the children’s preference towards the 330 

same flavour after weaning. In addition, a number of studies have reported that infants who 331 

are fed on soy-based as compared to milk-based formulas, which are known to have 332 

inherently different tastes, have markedly different taste preference profiles as late as 4-5 333 

years of age. Thus, children who had been fed the more bitter soy-based formulas preferred 334 

sour- and bitter- flavoured juices at 4-5 years of age, compared to those who were fed the 335 

sweeter-tasting milk-based formula (66). This suggests that in addition to changes in the 336 

reward circuitry in response to perinatal exposure to high-fat, high-sugar foods could also 337 

potentially program a preference towards the flavours of specific junk foods. Despite the 338 

paucity of studies conducted to date, the available data does appear to provide support for a 339 
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fetal/early life origin to child and adult food preferences in humans, but there remains a need 340 

for well-constructed clinical studies in this field of research.  341 

Conclusion  342 

There is now clear evidence from animal studies that exposure to excess amounts of fat 343 

and/or sugar during the perinatal and immediate post-weaning periods alters the development 344 

of the central reward pathway and programs an increased preference for palatable foods later 345 

in life.  Whilst the number of studies separating the impact of nutritional excess during 346 

various developmental periods remains too small to form definitive conclusions, the weight 347 

of the evidence appears to suggest that it is exposure to these diets during the suckling period 348 

which is most detrimental in relation to these programming effects. However, given that the 349 

critical windows of development of the reward pathway are likely to differ between the 350 

rodent and the human, it becomes somewhat difficult to extrapolate this to a clinical context. 351 

Nevertheless, the studies reviewed in the current paper have highlighted the exciting 352 

possibility that the negative effects of exposure to a poor nutritional environment in early 353 

fetal life could potentially be prevented by restoring appropriate nutritional intakes either 354 

later in gestation or during the early postnatal period and indicate a need for continued 355 

research in this field.  356 

Moreover, this review has demonstrated that there are several important knowledge gaps 357 

remaining in this field of research. First, no studies conducted thus far that have investigated 358 

the role of the adolescent period as a critical window of development for food preferences. 359 

Given studies into the effects of drugs of abuse have highlighted the susceptibility of the 360 

reward pathway to alteration during this period, it is possible that junk food diet exposure 361 

during this time could be crucial for establishing lifelong food preferences but more 362 

importantly, may also offer an opportunity for positive nutritional intervention to overcome 363 

the negative effects of exposures earlier in development. Additional investigation is also 364 

required to more clearly define sex differences in the response to perinatal junk food 365 

exposure on the reward system and to evaluate the possibility of there being different critical 366 

windows in the development of the reward and/or taste pathways in males and females. In the 367 

face of the current obesity epidemic and increased availability of energy-dense junk foods, 368 

there is a need for continued research to clearly define the critical windows of development 369 

most sensitive to nutritional manipulations. Identification of these critical windows will not 370 

only improve our understanding of the mechanisms involved in the programming of food 371 
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preferences but more importantly will provide an opportunity to design targeted interventions 372 

which will be critical to breaking the current intergenerational cycle of obesity and poor 373 

metabolic health. 374 
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Figure 2. 382 
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Figure 3   384 
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Figure 1. Simplified schematic of reward pathway activation 1) A rewarding stimulus 385 

such as drugs and palatable foods can stimulate the dopamine neurons at the VTA, resulting 386 

in the release of dopamine at the NAc. 2) The rewarding stimulus can activate the release of 387 

endogenous opioids at the VTA, which inhibits GABAergic interneurons. GABA normally 388 

inhibits dopamine release. Therefore, this inhibition of GABA release disinhibits dopamine 389 

neurons resulting in increased dopamine release at the NAc. 3) Opioids can also bind to their 390 

receptors located at the NAc. The activation of efferent target neurons at the NAc through 1), 391 

2) and 3) creates a pleasurable feeling associated with the rewarding stimuli. Black and grey 392 

arrows indicate neuronal activation and inhibition respectively. Neurons are represented in 393 

circles. Adapted from (67). 394 

Figure 2. Ontogeny of dopamine and opioid systems Summary of key events in the 395 

development of the dopamine (top) and opioid (bottom) systems within the mesolimbic 396 

reward system throughout prenatal and first 4 weeks of postnatal life in the rodent. By 397 

postnatal week 4, dopamine and opioid systems are similar to that of an adult. Abbreviations: 398 

DA, dopamine; E, embryonic day; NAc, nucleus accumbens; MSN; medium spiny neuron; 399 

PW, postnatal week; VTA, ventral tegmental area. See text for references. Adapted from (68). 400 

Figure 3. Critical windows for programming food preferences  A summary of the studies 401 

which have investigated the periods of development in rodents during which high-402 

fat/cafeteria diet exposure is able to program an increased preference for these foods in 403 

adulthood. 404 
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