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ABSTRACT

The A site of the small ribosomal subunit partici-
pates in the fidelity of decoding by switching
between two states, a resting ‘off’ state and an
active decoding ‘on’ state. Eight crystal structures
of RNA duplexes containing two minimal decoding A
sites of the Homo sapiens mitochondrial wild-type,
the A1555G mutant or bacteria have been solved.
The resting ‘off’ state of the mitochondrial wild-type
A site is surprisingly different from that of the
bacterial A site. The mitochondrial A1555G mutant
has two types of the ‘off’ states; one is similar to the
mitochondrial wild-type ‘off’ state and the other
is similar to the bacterial ‘off’ state. Our present
results indicate that the dynamics of the A site in
bacteria and mitochondria are different, a property
probably related to the small number of tRNAs used
for decoding in mitochondria. Based on these
structures, we propose a hypothesis for the molec-
ular mechanism of non-syndromic hearing loss due
to the mitochondrial A1555G mutation.

INTRODUCTION

Fidelity of decoding during protein biosynthesis can be
divided into two steps; (i) initial selection and (ii) proof-
reading (1,2). In the first step, the non-cognate tRNA is
discriminated by the difference in free energy of base
pairings between the codon and cognate tRNA anticodon.
In the second step, the aminoacyl-tRNA decoding site
(or the A site) acts as an RNA molecular switch upon
recognition of the codon–anticodon pair and provokes an
irreversible step of GTP hydrolysis. These two steps of
decoding guarantee the high fidelity of translation. Crystal
structures of various bacterial 30S and 70S ribosomes

have revealed the molecular mechanisms of the proof-
reading step at atomic level (3–10). When the cognate
tRNA is delivered to the A site, the A-site molecular
switch changes its conformation from an ‘off’ state to an
‘on’ state. These two local states are linked to the ‘open’
and ‘closed’ global states of the ribosome during decoding,
as observed by Ramakrishnan and coworkers (1,2,6), but
the connecting mechanisms are not fully described yet.
In the ‘off’ state, two adenine residues, A1492 and A1493,
do not make any interaction with codon–anticodon helix.
On the other hand, in the ‘on’ state, these two adenines
fully bulge out and come together with G530 in the
shoulder domain of the 30S subunit to recognize the first
two Watson-Crick base pair of codon–anticodon mini-
helix and induce ribosomal transitions from the ‘open’ to
the ‘closed’ forms (1,2,6). Recently, functional character-
istics and tertiary structures of the A-site molecular
switch in Homo sapiens cytoplasms have been revealed
by X-ray analyses of RNA fragments containing the
minimal A site (11), but those in H. sapiens mitochondria
are still unknown.

The secondary structure of theH. sapiens mitochondrial
A site is very similar to that of the bacterial A site
(Figure 1) (12). Differences are found at residue 1556
(1491 in bacterial numbering), which is a C in mitochon-
dria and a G in bacteria, and at the base pair between 1494
and 1555 (1410 and 1490 in bacterial numbering), which is
a CoA opposition in mitochondria and an A-U (66.5%)
or a G=C (26.4%) base pair in bacteria (13). It is impor-
tant to note that residue 1492 (1408 in bacterial number-
ing) is an A in the H. sapiens mitochondrial as in bacterial
A sites, while it is a G in the H. sapiens cytoplasmic A site
(11,12). Because of the similarity in the secondary
structure of the A site, it has long been believed that the
H. sapiens mitochondrial A site has functional character-
istics and tertiary structure similar to those of the bacterial
A site.

However, the structural components of the H. sapiens
mitochondrial ribosome are noticeably different from
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those of the bacterial ribosome. The mitochondrial
ribosome is formed by a small 28S subunit and a large
39S subunit. The small subunit consists of a 12S rRNA
and 29 proteins (14–16), while the large subunit consists of
a 16S rRNA and 48 proteins (14,17,18). The 5S rRNA,
which is present in the bacterial ribosome, is absent in the
mitochondrial ribosome. The ratio of protein to rRNA
mass in the mitochondrial ribosome (2:1) is inverted from
the ratio found in the bacterial ribosome (1:2). A surpris-
ing feature of the H. sapiens mitochondrial system is the
use of an extended decoding mechanism, which allows
translation of all 60 codons with only 22 tRNA species
(19–23). Mammalian mitochondrial translation does not
use nucleus-encoded tRNAs, although mitochondrial
import of some tRNAs occurs in eukaryotic microorgan-
isms (protozoa, fungi, algae), in some plants and in a
few animals (24,25). In addition, tRNA modifications at
the wobble position of the anticodon, where post-
transcriptionally modified nucleotides often play an
essential role in the precise decoding of the genetic code
in bacteria and eukaryotic cytoplasms (26), are less fre-
quent in mitochondria (23,27). In other words, in contrast
to Escherichia coli with 45 tRNA species (or 41 anti-
codons) and H. sapiens cytoplasms with 46 tRNA species
(28,29), mitochondria must gain flexibility (each tRNA
decodes two or four codons) in the decoding process
(20–22) without loosing fidelity. Therefore, it is possible
that mitochondria have unique proofreading mechanism
in the decoding process to accommodate flexibility and
fidelity.

The A1555G mutant of the H. sapiens mitochondrial A
site has been found in more than 120 families throughout
the world and is one of the most common genetic causes
of non-syndromic hearing loss (30–32). In the A1555G
mutant A site, the G1555 residue is expected to form
a Watson-Crick base pair with the C1494 residue on the
opposite strand rendering it closer to the bacterial A site
(Figure 1).

In the present study, we have solved eight crystal
structures of RNA fragments containing two minimal
A sites of the H. sapiens mitochondrial wild-type, the
A1555G mutant or bacteria. Comparative structural ana-
lyses provided us with insights into the decoding mecha-
nisms in the mitochondrial and bacterial ribosomes. These
observations lead to a hypothesis for the molecular
mechanism of non-syndromic hearing loss due to the
A1555G mutation in the mitochondrial A site.

MATERIALS AND METHODS

Crystallization

Two internal loops of the bacterial A site, the H. sapiens
mitochondrial A site or its A1555G mutant were inserted
between Watson-Crick pairs in sequences designed to fold
as a double helix (BACT, WT and MUT, respectively)
(Supplementary Figures 1, 2 and 4). The RNA oligomers
were chemically synthesized by Dharmacon (Boulder, CO)
and purified by HPLC and reverse phase chromatogra-
phy. To resolve phase, bromine derivatives of WT and
MUT with 5-bromouracil residues (BrU) at the central
stem were also synthesized (WT-Br, MUT-Br1 and MUT-
Br2, respectively) (Supplementary Figures 3, 5–8). Before
crystallization, 4mM paromomycin or tobramycin solu-
tion containing 50mM sodium cacodylate buffer (pH 6.5)
was prepared, and 2mM RNA solutions containing
100mM sodium cacodylate (pH 6.5) and 25mM sodium
chloride were annealed by heating at 858C for 2min
followed by slow cooling to 378C. Same volumes of RNA
solution and paromomycin or tobramycin solution were
mixed at 378C and then cooled slowly to room tempera-
ture (21–258C). Crystallizations were performed by the
hanging-drop vapor diffusion method at 208C and 378C
by mixing 1 ml of RNA/aminoglycoside solution and 1 ml
of crystallization solution containing 50mM sodium
cacodylate (pH 7.0), 0–2mM spermine tetrahydrochlor-
ide, 50–200mM potassium chloride, 20–200mM stron-
tium chloride, 0–5% (v/v) glycerol and 1–5% (v/v)
2-methyl-2,4-pentanediol. Crystals suitable for X-ray
experiments were obtained after optimization of crystal-
lization conditions. For the bacterial A-site RNA, the
BACT-Co crystal was obtained in the condition contain-
ing hexammine cobalt chloride (Table 1 and Supplemen-
tary Figure 1). For the mitochondrial A-site RNA, two
types of crystals (WT-K and WT-Br-K) were obtained in
conditions containing potassium chloride (Table 1 and
Supplementary Figures 2 and 3). And for the A1555G
mutant RNA, five types of crystals (MUT-K, MUT-
Br1-Sr, MUT-Br1-K1, MUT-Br1-K2 and MUT-Br2-Co)
were obtained in conditions containing potassium chlo-
ride, strontium chloride or hexammine cobalt chloride
(Table 1 and Supplementary Figures 4–8).

Data collection, structure determination and refinement

X-ray data of eight crystals were collected at 100K with
synchrotron radiation at the ID14-2, ID23-1 or BM30
beamline in the European Synchrotron Radiation Facility
(ESRF; Grenoble, France), or at the PX beamline in the
Swiss Light Source (SLS; Villingen, Switzerland). Each
dataset was processed by using the program Crystalclear
(Rigaku/MSC) or MOSFLM (33,34), and was scaled and
merged using Crystalclear or SCALA from the CCP4 suite
of crystallographic programs (35).
The BACT-Co crystal has I4 spacegroup (Table 1),

which is different from any bacterial A-site crystals
obtained previously in conditions without hexammine
cobalt chloride (P212121, P21 or P41) (36–41). Two crystals
of the mitochondrial A-site RNA, WT-K and WT-Br-K,
have the same spacegroup P1 with similar unit cell

Figure 1. Secondary structures of the bacterial, H. sapiens mitochon-
drial wild-type and its A1555G mutant A sites. The nucleotides differ-
ent from those in the bacterial A site are colored in red. The G1555
residue in the A1555G mutant is colored in blue.
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Table 1. Crystal data, statistics of data collections and statistics of structure refinements

Bacterial H. sapiens mitochondrial wild type H. sapiens mitochondrial A1555G mutant

Crystal code BACT-Co WT-K WT-Br-K MUT-K MUT-Br1-Sr MUT-Br1-K1 MUT-Br1-K2 MUT-Br2-Co
Aminoglycoside Paromomycin Paromomycin Paromomycin Paromomycin Paromomycin Paromomycin Tobramycin Paromomycin
PDB ID 3BNL 3BNN 3BNO 3BNP 3BNQ 3BNR 3BNS 3BNT

Crystal data
Space group I4 P1 P1 P3121 C2 C2 C2 P64
Unit cell (Å) (8) a=b=53.6,

c=63.5
a=34.6, b=44.5,

c=52.4
a=35.2, b=45.5,
c=52.2

a=b=66.6,
c=57.6

a=71.3, b=76.1,
c=55.9

a=71.2, b=77.4,
c=56.3

a=72.7, b=77.1,
c=56.5

a=b=74.9,
c=22.5

�=68.8, �=71.3,
g=67.7

�=71.4, �=73.4,
g=74.0

�=117.1 �=115.1 �=115.7

Za 1 2 2 1 2 2 2 0.5
Data collection
Beamline BM30 of ESRF PX of SLS ID23-1 of ESRF PX of SLS ID23-1 of ESRF� ID23-1 of ESRF ID14-2 of ESRF BM30 of ESRF�

Wavelength (Å) 0.91636 0.9999 0.8856 0.9801 0.92070/0.92110/0.91625 0.91625 0.933 0.91950/0.91984/0.91637
Resolution (Å) 36.8–2.6 39.6–2.0 29.0–2.35 57.7–2.7 49.8–2.0/49.8–2.0/49.8–2.0 51.0–2.1 35.4–1.9 37.4–2.3/37.4–2.4/37.4–2.3
Of the outer shell (Å) 2.7–2.6 2.1–2.0 2.4-2.35 2.9–2.7 2.1–2.0/2.1–2.0/2.1–2.0 2.2–2.1 2.0–1.9 2.4–2.3/2.5–2.4/2.4–2.3
Unique reflections 5295 17270 11751 4263 17465/17512/17519 16388 21598 3368/2981/3374
Completeness (%) 99.9 97.0 98.0 99.4 97.4/97.4/97.4 99.8 97.4 100.0/99.9/99.9
In the outer shell (%) 100.0 92.6 97.7 100.0 85.6/85.4/85.5 100.0 97.4 100.0/100.0/100.0
Rmerge

b (%) 5.1 9.6 9.9 7.8 4.9/4.9/5.0 11.6 3.1 8.4/9.5/7.2
In the outer shell (%) 28.6 36.9 39.0 36.4 28.0/33.2/37.3 37.8 37.8 30.4/26.9/25.7
Ranom

c (%) – – – – 5.1/4.0/4.5 – – 6.6/6.5/5.2
In the outer shell (%) – – – – 24.6/29.0/33.1 – – 19.0/16.0/15.5
Redundancy 7.1 2.7 7.7 9.9 3.5/3.5/3.5 6.9 3.8 9.9/9.9/9.9
In the outer shell 7.3 2.6 8.0 10.2 2.6/2.6/2.6 7.1 3.8 10.5/10.5/10.5

Structure refinement
Resolution range (Å) 36.0–2.6 39.6–2.0 36.9–2.35 40.0–2.7 49.8–2.0 51.0–2.1 35.4–1.9 37.4–2.3
Used reflections 5278 17269 11718 4204 17514 16147 21594 3371
R-factord (%) 22.0 23.8 22.6 23.1 22.9 21.5 24.7 21.7
Rfree

e 25.1 26.4 25.5 27.0 26.9 24.5 26.0 25.5
Number of DNA atoms 940 1788 1788 908 1942 1884 1884 464
Number of cations 8 [Co(NH3)6]

3+ – – – 8 Sr2+, 2K+ 2K+ 2K+ 1 [Co(NH3)6]
3+, 1 Na+

Number of water 38 114 31 13 191 183 102 55
Number of

aminoglycoside
None None None None 1 (non-specific) 1 (non-specific) None None

RMSD
Bond length (Å) 0.004 0.005 0.005 0.005 0.004 0.004 0.004 0.004
Bond angles (8) 0.9 0.9 0.9 1.0 0.8 0.9 0.8 0.8
Improper angles (8) 1.3 0.7 0.7 0.9 0.7 0.7 0.7 1.3

aNumber of dsRNA in the asymmetric unit.
bRmerge=100��hklj|Ihklj – <Ihklj>| / �hklj< Ihklj>.
cRanom=100��hklj|Ihklj(+) – Ihklj(�)| / �hklj[Ihklj(+)+ Ihklj(�)].
dR-factor=100��||Fo| – |Fc|| / �|Fo|, where |Fo| and |Fc| are optimally scaled observed and calculated structure factor amplitudes, respectively.
eCalculated using a random set containing 10% of observations that were not included throughout refinement (58).
�For phase determination with the multiple anomalous diffraction (MAD) method, three datasets were collected with three wavelengths. Statistics from left to right are of peak, edge and remote
data, respectively.
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dimensions, suggesting their isomorphism (Table 1). Three
different crystal forms were obtained for the A1555G
mutant-RNA, P3121, C2 and P64 (Table 1).

For MAD phasing using the anomalous scattering of
bromine atoms, X-ray data of MUT-Br1-Sr and MUT-
Br2-Co were taken with three different wavelengths based
on XAFS measurements (Table 1). Initial phases were
estimated by the MADmethod using the program SOLVE
(42) with figure-of-merit of 0.40 and 0.46, respectively.
Electron densities, modified by solvent flattening with the
program CNS (43), showed clearly the phosphate-ribose
backbone with the individual bases. The molecular struc-
tures of MUT-Br1-Sr and MUT-Br2-Co were constructed
on a graphic workstation with the program O (44). Initial
phases of other crystals were determined by the Molecular
Replacement method with the program AMoRe (45) using
the bulk-solvent technique (46,47). The details of phase
determinations will be discussed elsewhere.

The atomic parameters of each structure were refined
with the program CNS (43) through a combination of
simulated-annealing, crystallographic conjugate gradient
minimization refinements and B-factor refinements,
followed by interpretations of the omit map at every
nucleotide residue. The statistics of structure refinements
are summarized in Table 1. Electron density indicating
specific binding of aminoglycosides to the A site could not
be observed in any of the crystal structures, indicating that
complex formation did not occur under the present
conditions. In MUT-Br1-Sr and MUT-Br1-K1, a non-
specific binding of paromomycin between two symmetri-
cally related RNA duplexes was observed (Supplementary
Figures 5 and 6).

The adiabatic morphing calculations between the ‘off’
and ‘on’ states of the A-site molecular switches were
performed with the program CNS (43) using a pro-
grammed input file morph_dist.inp (48,49). All figures were
drawn using the PyMOL Molecular Graphics system
(2002) DeLano Scientific, San Carlos, CA (http://www.
pymol.org).

Coordinates

The atomic coordinates have been deposited in the Protein
Data Bank (PDB) with the ID codes 3BNL (BACT-Co),
3BNN (WT-K), 3BNO (WT-Br-K), 3BNP (MUT-K),
3BNQ (MUT-Br1-Sr), 3BNR (MUT-Br1-K1), 3BNS
(MUT-Br1-K2) and 3BNT (MUT-Br2-Co).

RESULTS

Overview of the A-site structures

In all cases, the two RNA strands form a duplex
(Supplementary Figures 1–8). At the center of the
duplex, four contiguous Watson-Crick G=C base pairs
are formed. In the case of bromine derivatives, two of four
G=C base pairs are replaced with the Watson-Crick
A-BrU base pairs. Three Watson-Crick G=C base pairs
close the stem at both ends of the duplex. Some of the
terminal overhanging residues at the 50-end (UU or C) are
involved in crystal packing interactions and others are
disordered in the solvent channel.

The BACT-Co crystal contains an asymmetrical RNA
duplex (Supplementary Figure 1). Two A sites in the
duplex have almost identical conformations except for the
A1492 residue (Supplementary Figure 9a), and are similar
to the bacterial ‘off’ state with tucked-in A1492 and A1493
found in the Thermus thermophilus 30S ribosomal particle
[PDB ID: 1J5E in (3)].
For the H. sapiens mitochondrial A site, two types of

crystals with P1 spacegroup, WT-K and WT-Br-K, were
obtained (Table 1). In each crystal, two RNA duplexes are
in the asymmetric unit (Supplementary Figures 2 and 3).
Therefore, a total of eight internal loops are observed.
Although four of these eight A-site internal loops are free
from any intermolecular interactions in crystalline state
and four others are involved in crystal packing, all of them
have identical conformations with a bulged-out residue,
A1558 (A1493 in bacterial numbering), and a tucked-in
residue, A1557 (A1492 in bacterial numbering) (Supple-
mentary Figure 9b), suggesting that there is no crystal-
packing effect on this conformation of the A site. Since
this conformation is different from the ‘on’ states of the
bacterial and H. sapiens cytoplasmic A sites with bulged-
out A1492 and A1493 [PDB ID: 1IBM in (5); 2FQN in
(11)], it should correspond to the ‘off’ state of the
mitochondrial wild-type A site.
For the A1555G mutant of the H. sapiens mitochon-

drial A site, five types of crystal structures were solved
(Table 1). Eight unique duplexes (i.e. 16A sites) were
identified in these structures (Supplementary Figures 4–8).
According to their structural properties, they are divided
into two types of conformations: (i) a conformation with
bulged-out A1558 and tucked-in A1557 (Supplementary
Figure 9c) and (ii) a conformation with both A1558 and
A1557 tucked-in (Supplementary Figure 9d). These two
conformations are observed in crystals with different
spacegroups, again suggesting that there is no crystal-
packing effect on these conformations of the A site.
The former one is almost identical with the ‘off’ state of
the mitochondrial wild-type A site mentioned above
(Figure 2a). On the other hand, the latter one is almost
identical with the bacterial ‘off’ state found in the BACT-
Co crystal mentioned above (Figure 2b). Therefore,
both conformations should correspond to the ‘off’ state
of the mitochondrial A1555G mutant. For convenience,
we name them the first and second ‘off’ states of the
mitochondrial A1555G mutant, respectively.
Hereafter, we will detail each conformation of the A site

using the best defined structure with lower temperature
factor and better identified solvent peaks (Figures 3–6).

Structure of the bacterial A site in the ‘off’ state

A stereoview with the secondary structure of the bacterial
A site in the ‘off’ state found in the BACT-Co crystal is
shown in Figure 3a. Its conformation is similar to the
bacterial ‘off’ state found in the T. thermophilus 30S
ribosomal particle with a root mean square deviation
(RMSD) of 1.1 Å [PDB ID: 1J5E in (3)]. In addition, all
base pairs and base-stacking columns except residues
A1492 and A1493 are present in these two bacterial ‘off’
states and in the bacterial ‘on’ state found in the
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T. thermophilus 30S ribosomal particle in complex with the
cognate tRNA [PDB ID: 1IBM in (5)].
At the top side of the A-site internal loop, four Watson-

Crick base pairs, C1404=G1497, G1405=C1496,
U1406oU1495 and C1407=G1494, form (Figure 3b–e).
At the bottom of the A-site internal loop, the Watson-
Crick C1409=G1491 and A1410-U1490 base pairs form
(Figure 3g and h). The A1493 residue stays inside the
A-site helix and forms a Watson-Crick AoA base pair
with the universally conserved A1408 residue through
a single hydrogen bond N6-H. . .N1 (Figure 3f). On the
other hand, the A1492 residue adopts different conforma-
tions in the two A sites of the asymmetrical duplex; one
occupies the shallow/minor groove of the C1409=G1491
base pair and interacts with G1491 through a single
hydrogen bond O40. . .H-O20 (Figure 3g), and the other
one is fully bulged out to the solvent region (see red-line
strand in Supplementary Figure 9a). There are three
different base-stacking columns; one contains all bases on
the short strand, the others are U1490-G1491 and A1492-
A1493-G1494-U1495-C1496-G1497 on the long strand
(Supplementary Figure 10a).

Structure of theH. sapiensmitochondrial A site in the
‘off’ state

A stereoview with the secondary structure of the
H. sapiens mitochondrial A site in the ‘off’ state is
shown in Figure 4a. Its conformation is surprisingly
different from that of the bacterial ‘off’ state found in the
BACT-Co crystal mentioned above (RMSD=5.3 Å).

At the top side of the A-site internal loop, four Watson-
Crick base pairs, C1488=G1562, G1489=C1561,
U1490oU1560 and C1491=G1559, form as observed in
the bacterial ‘off’ state mentioned above (Figure 4b–e).
However, the geometry of the U1490oU1560 base pair
(U1560 points into the deep/major groove site) is different
from that in the bacterial ‘off’ state (compare Figure 4d
with Figure 3d). At the bottom of the A-site internal loop,
the Watson-Crick A1555oC1494 base pair with only
one hydrogen bond N1. . .H-N4 closes the internal loop
(Figure 4h). The universally conserved A1492 residue
(A1408 in bacterial numbering) bulges out from the
Watson-Crick stem, and does not form any base pair
(Figure 4f). The subsequent C1493 residue is sandwiched
between A1492 and C1494, and also does not have any
partner to form a base pair in the internal loop of the
A site (Figure 4g). Consequently, the short RNA strand of
the A-site internal loop has two different stacking
columns; C1488-G1489-U1490-C1491 and A1492-C1493-
C1494 (Supplementary Figure 10b). On the long RNA
strand of the A-site internal loop, the two adenine residues
(which recognize the first two Watson-Crick base pairs of
the codon–anticodon helix), A1558 and A1557 (A1493
and A1492 in bacterial numbering), have different confor-
mations (Figure 4f). The A1558 residue is fully bulged out
to the solvent region. On the other hand, the A1557
residue is pushed in the A-site helix and is stabilized by
the C1556-A1557-G1559 stacking interaction. Although
A1557 does not form any base pair, water mediated
hydrogen bonds are observed between the Watson-Crick

Figure 2. Superimpositions between the ‘off’ state of the H. sapiens mitochondrial wild-type A site (red) and the first ‘off’ state of the A1555G mutant
A site (blue) (a) and between the second ‘off’ state of the A1555G mutant A site (blue) and the ‘off’ state of the bacterial A site (gray) (b). The
nucleotides different from those in each other are drawn in stick. In figures, geometric nomenclature and classification of nucleic acid base pairs are
according to the Classification in (57).
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edge of A1557 and the O2P atom of A1492. As a result, all
residues on the long strand of the A-site loop except
A1558 are involved in the same stacking column
(Supplementary Figure 10b). To form these bulged
conformations, A1557 and A1558 adopt C20-endo sugar
puckers and have characteristic torsion angles around the
P-O50 (�), C50-C40 (g) and O30-Pn+1 (�). Small � (928) and
� (1218) angles and large g (1268) angle allow the A1558
residue to protrude from the A-site helix into the solvent
region, and small � (628) and g (508) angles and large
� (3088) angle allow the A1557 residue to be bulged into
the A-site helix.

Structure of the A1555Gmutant of theH. sapiens
mitochondrial A site in the first ‘off’ state

A stereoview with the secondary structure of the A1555G
mutant of the H. sapiens mitochondrial A site in the first
‘off’ state is shown in Figure 5a. Its overall conformation
is very similar to that of the ‘off’ state of the mitochondrial
wild-type A site mentioned above (RMSD=1.0Å)
(Figure 2a). Only one difference between them is found
at the bottom of the A-site internal loop. As expected, a
Watson-Crick G1555=C1494 base pair is observed in the
A1555G mutant (Figure 5h) instead of the A1555oC1494

Figure 3. The bacterial A site in the ‘off’ state. (a) Secondary structure and stereoview. (b–h) Atomic details of each base pair of the A site. Three
universally conserved adenine residues, A1408, A1492 and A1493, are colored in orange, blue and red, respectively. Two nucleotides different from
those in the mitochondrial A site, U1490 and G1491, are colored in cyan and green, respectively. The hydrogen bonds are represented by black
dashed lines.
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base pair in the wild-type (Figure 4h). As observed in the
wild-type ‘off’ state, there are three stacking columns; one
contains all residues on the long strand except A1558, and
others are C1488-G1489-U1490-C1491 and A1492-C1493-
C1494 on the short strand (Supplementary Figure 10c).

Structure of the A1555Gmutant of theH. sapiens
mitochondrial A site in the second ‘off’ state

A stereoview with the secondary structure of the A1555G
mutant of the H. sapiens mitochondrial A site in the

second ‘off’ state is shown in Figure 6a. Its conformation
is completely different from that of the first ‘off’ state of
the A1555G mutant just discussed (RMSD=4.5 Å). On
the other hand, it is almost identical with the bacterial ‘off’
state found in the BACT-Co crystal (RMSD=1.1 Å)
(Figure 2b). Differences between them are found only at
the bottom of the A-site internal loop. The C1493 residue
(C1409 in bacterial numbering) forms a Watson-Crick
C1493oC1556 base pair with only one hydrogen bond
N4-H. . .O2 (Figure 6g) instead of the Watson-Crick C=G
base pair in bacteria (Figure 3g). Since C1556 points into

Figure 4. The H. sapiens mitochondrial A site in the ‘off’ state. (a) Secondary structure and stereoview. (b–h) Atomic details of each base pair of the
A site. Three universally conserved adenine residues, A1492, A1557 and A1558 (A1408, A1492 and A1493 in bacterial numbering), are colored in
orange, blue and red, respectively. Two nucleotides different from those in the bacterial A site, A1555 and C1556 (A1490 and C1491 in bacterial
numbering), are colored in cyan and green, respectively. The hydrogen bonds are represented by black dashed lines.
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the deep/major groove side, there is a large space at the
shallow/minor groove edge of C1556 occupied by A1557
(A1492 in bacterial numbering). The A1557 residue forms
a cis Hoogsteen/Sugar-edge base pair with C1556 through
a direct hydrogen bond N7. . .H-O20 and a water-mediated
hydrogen bond N6-H. . .W. . .O2 (Figure 6g). Two water-
mediated hydrogen bonds, N6-H. . .W. . .O2 and
N6-H. . .W. . .N3, are observed between A1557 and
C1493 (Figure 6g). At the bottom of the A-site helix, the
Watson-Crick C1494=G1555 base pair forms (Figure 6h)
instead of the Watson-Crick A-U base pair in bacteria
(Figure 3h). Therefore, as observed in the bacterial ‘off’

state found in the BACT-Co crystal, there are three
different base-stacking columns. All bases on the short
strand make one stacking column. On the other hand, the
long strand has two different base-stacking columns;
G1555-C1556 and A1557-A1558-G1559-U1560-C1561-
G1562 (Supplementary Figure 10d).

The ‘on’ states of theH. sapiensmitochondrial wild-type
and A1555Gmutant A sites

According to observations by Ramakrishnan and
coworkers on the bacterial A-site molecular switch on

Figure 5. The A1555G mutant of the H. sapiens mitochondrial A site in the first ‘off’ state. (a) Secondary structure and stereoview. (b–h) Atomic
details of each base pair of the A site. Three universally conserved adenine residues, A1492, A1557 and A1558 (A1408, A1492 and A1493 in bacterial
numbering), are colored in orange, blue and red, respectively. Two nucleotides different from those in the bacterial A site, G1555 and C1556 (G1490
and C1491 in bacterial numbering), are colored in cyan and green, respectively. The hydrogen bonds are represented by black dashed lines.
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the 30S and 70S ribosomes (3–10), the two adenine
residues, A1492 and A1493, bulge out of the A-site helix
and decode the first two base pairs of the codon–
anticodon minihelix by recognizing their shallow/minor
grooves and forming A-minor contacts. This conforma-
tion of the A site, called the ‘on’ state, has been observed
also in several crystal structures of RNA duplexes
containing the bacterial A site even in the absence of
aminoglycosides (50,51). In these cases, two bulged-out
adenines make the A-minor contacts with a Watson-Crick
stem of a neighboring duplex, which mimics the cognate

codon–anticodon stem. By analogy with the secondary
structure of the bacterial A site, the H. sapiens mito-
chondrial wild-type and A1555G mutant may have the
‘on’ states with two bulged-out adenines, A1557 and
A1558, as shown in Figure 7b and c and Supplementary
Figure 11. However, such an ‘on’ state could not be
observed in the present structures, suggesting that the free
energy minima of the ‘off’ states are either lower than
those of the ‘on’ states or that the free energy barriers
between the ‘off’ and ‘on’ states are high compared with
those of the bacterial A site.

Figure 6. The A1555G mutant of the H. sapiens mitochondrial A site in the second ‘off’ state. (a) Secondary structure and stereoview. (b–h) Atomic
details of each base pair of the A site. Three universally conserved adenine residues, A1492, A1557 and A1558 (A1408, A1492 and A1493 in bacterial
numbering), are colored in orange, blue and red, respectively. Two nucleotides different from those in bacterial A site, G1555 and C1556 (G1490 and
C1491 in bacterial numbering), are colored in cyan and green, respectively. The hydrogen bonds are represented by black dashed lines.
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DISCUSSION

Bacteria have a ‘soft’ A-site molecular switch

For the bacterial A site, four conformations of the
‘off’ states have been reported so far (Supplementary
Figure 11a) (11,52). Differences between them are found
only at the two adenine residues, A1492 and A1493;
(i) both are tucked-in, as observed in the present
BACT-Co crystal; (ii) only A1492 is bulged-out;
(iii) only A1493 is bulged-out; (iv) both adenines are
bulged-out but do not recognize the codon–anticodon
stem. These multiple conformations of the bacterial ‘off’
state suggest high flexibility of the bacterial A-site
molecular switch. On the other hand, the bacterial ‘on’
state is only observed in a single conformation, the one
with the two bulged-out adenines (Figures 7a and 8a and
Supplementary Figure 11a). Since all base pairs and base-
stacking columns except the A1492 and A1493 residues
are conserved in the bacterial ‘off’ and ‘on’ states, confor-
mational adaptations between these two states can easily
occur from any of the ‘off’ states (Figure 7a, Supplemen-
tary Figure 11a and Supplementary movie ‘bacteria’).
Recently, replica molecular dynamics simulations have
confirmed that the free energy barrier between the ‘off’
and ‘on’ states of the bacterial A site is sufficiently low for
aa-tRNA binding to shift the equilibrium (53). For these

reasons, we suggest that bacteria present an energetically
‘soft’ A-site molecular switch, which achieves high speeds
of translation, probably at a slight cost of proofreading
accuracy.

H. sapiensmitochondria have a ‘hard’ A-sitemolecular switch

In contrast to the flexible bacterial ‘off’ state, theH. sapiens
mitochondrial ‘off’ state is only observed in a single
conformation, which is completely different from any of
the bacterial ‘off’ state (Supplementary Figure 11). By
analogy with the secondary structure of the bacterial
A site, the H. sapiens mitochondrial wild-type may adopt
the ‘on’ state with two bulged-out adenines, A1557 and
A1558, as shown in Figure 7b and Supplementary
Figure 11b. Superimposition between the mitochondrial
‘off’ state and the crystal structure of the T. thermophilus
70S ribosome in complex with tRNA and mRNA (8)
suggests that the switching from the ‘off’ state to the ‘on’
state needs a global conformational change (Figures 7b, 8b
and Supplementary movie ‘mitochondria-WT’). On the
short RNA strand of the A-site internal loop, the bulged-
out A1492 and the subsequent C1493 and C1494 residues
(1408, 1409 and 1410 in bacterial numbering) have to move
within the loop in order to form the long base-stacking
column between all bases of the strand (Figure 7b). On the

Figure 7. Overview of the A-site molecular switches of the bacterial, mitochondrial wild-type and its A1555G mutant. Base-stacking columns are
colored in red, blue, orange and green, respectively. Bases, which are not involved in any stacking column, are colored in gray. Except when
indicated, all structures are crystallographically determined.
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long RNA strand, the tucked-in A1557 residue (A1492 in
bacterial numbering) has to bulge out into the shallow/
minor groove side, and the bulged-out A1558 residue
(A1493 in bacterial numbering) has to move a long
distance towards the shallow/minor groove of the codon–
anticodon stem (Figures 7b and 8b). Such conformational
transitions are accompanied by drastic changes of torsion
angles and sugar puckers. For example, the sugar puckers
of A1557 and A1558 (A1492 and A1493 in bacterial
numbering) must be altered from the C20-endo to C30-endo
conformations. Therefore, the free energy barrier between
the ‘off’ and ‘on’ states may be high. In other words,
the mitochondrial A-site molecular switch may be energet-
ically harder to achieve than the bacterial one. It is impor-
tant to remember that the H. sapiens mitochondria with
22 tRNA species must gain some flexibility (each tRNA
decodes two or four codons) in the decoding process
(20–22) without loosing fidelity in contrast to E. coli with
45 tRNA species (or 41 anticodons) and H. sapiens cyto-
plasms with 46 tRNA species (28,29). However, mitochon-
dria need to synthesize only 13 encoded protein species
during their long life cycle (23). It is thus possible that
mitochondria require a harder A-site molecular switch in
order to gain the necessary high accuracy of proofreading
probably at the cost of translation speed.

Hypothesis for the molecular mechanism of non-syndromic
hearing loss due to the A1555Gmutation in the
mitochondrial A-site molecular switch

The A1555G mutant of the H. sapiens mitochondrial
A site has two different ‘off’ states; one named the first

‘off’ state is almost identical with the mitochondrial
wild-type ‘off’ state (Figure 2a), and the other one
named the second ‘off’ state is very similar to the bacte-
rial ‘off’ state found in the present BACT-Co crystal
(Figure 2b). The latter conformation may be the inter-
mediate state between the first ‘off’ state and the ‘on’ state
of the A1555G mutant, which could not be observed in the
mitochondrial wild-type. In other words, the A1555G
mutation renders the mitochondrial A-site molecular
switch close to the bacterial one. By analogy with the
secondary structure of the bacterial A site, the A1555G
mutant may have the ‘on’ state with bulged-out A1557
and A1558, as shown in Figure 7c and Supplementary
Figure 11c. Conformational changes between the first and
second ‘off’ states as well as between the second ‘off’ and
‘on’ states may reversibly occur (see Supplementary movie
‘mitochondria-A1555G’). Since the latter case would be
easier to occur than the former one, the A1555G mutant
molecular switch is closer to the bacterial A-site molecular
switch (compare Figure 7c with Figure 7a and Supple-
mentary Figure 11c with Supplementary Figure 11a).
As discussed above, although the decoding process in
mitochondria is more flexible than that in bacteria, the
proofreading step in mitochondria with the ‘hard’ A-site
molecular switch may be more accurate than that in
bacteria. However, the decoding process in mitochondria
with the A1555G mutation (containing the ‘soft’ bacterial-
type A-site molecular switch) should become more
inaccurate. Since all 13 mitochondrial proteins are
subunits of the respiratory chain complexes and are
involved in synthesis of ATP by oxidative phosphoryla-
tion (23), non-syndromic hearing loss related to the
A1555G mutation may be caused by interfering with
energy production through protein mistranslation indu-
cing excess superoxide production resulting in oxidative
damage to mitochondria as proposed for aminoglycoside
action on mitochondria (54) and bacteria (55).

CONCLUSIONS

Due to the similarity of the secondary structure of the
A site, it has been supposed that the functional character-
istics and tertiary structure of the A-site molecular switch
is basically conserved in bacteria, H. sapiens cytoplasms
and mitochondria. However, these three cell types are
noticeably different in their biological properties such as
life cycle, genome size, structural component of ribosome
and number of tRNA species. In our present and previous
work (11), we have shown how a small difference of
nucleotide sequences affects the dynamics of the A-site
molecular switches underlying the decoding mechanisms
adapted to their biological properties and environments.
In addition, as observed in our previous work (56), it also
affects binding of aminoglycosides to the A-site molec-
ular switches. The actual mechanisms and the coupling
between the observed substates of the A sites and the
global ribosomal movements are certainly rather complex
and will require further techniques and experiments for
more extensive unraveling.

Figure 8. Stereoviews of interactions among the A site, mRNA
(orange) and tRNA (sky blue). (a) The T. thermophilus ribosome
[PDBID: 2j00 in (8)]. (b) The H. sapiens mitochondrial A site super-
posed on the T. thermophilus ribosomal A site. The A sites have the
‘on’ and ‘off’ states in (a) and (b), respectively. Three universally
conserved adenine residues, A1492, A1557 and A1558 (A1408, A1492
and A1493 in bacterial numbering), are colored in orange, blue and
red, respectively. Two nucleotides different in the bacterial and mito-
chondrial A sites, residues 1555 and 1556 (1490 and 1491 in bacterial
numbering), are colored in cyan and green, respectively.
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Supplementary Data are available at NAR Online.
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