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ABSTRACT

Understanding patterns of rRNA evolution is critical
for a number of fields, including structure prediction
and phylogeny. The standard model of RNA evolu-
tion is that compensatory mutations in stems make
up the bulk of the changes between homologous
sequences, while unpaired regions are relatively
homogeneous. We show that considerable hetero-
geneity exists in the relative rates of evolution of
different secondary structure categories (stems,
loops, bulges, etc.) within the rRNA, and that in
eukaryotes, loops actually evolve much faster than
stems. Both rates of evolution and abundance of
different structural categories vary with distance
from functionally important parts of the ribosome
such as the tRNA path and the peptidyl transferase
center. For example, fast-evolving residues are
mainly found at the surface; stems are enriched
at the subunit interface, and junctions near the
peptidyl transferase center. However, different
secondary structure categories evolve at different
rates even when these effects are accounted for.
The results demonstrate that relative rates and
patterns of evolution are lineage specific, suggest-
ing that phylogenetically and structurally specific
models will improve evolutionary and structural
predictions.

INTRODUCTION

RNA molecules fold into defined structures that are
critical for their biological functions. During RNA
evolution, the structure is much more conserved than
the sequence (1,2). The sequence variations that con-
tribute to differences between species are those that
preserve the structure and function of the RNA molecule.

An important model for studying RNA evolution is
the ribosomal RNA (rRNA). The ribosome is a large
complex of both RNA and protein, but it is the RNA
component that catalyzes one of the most fundamental

and most highly conserved biochemical activities:
protein synthesis (3). Some universally conserved regions
of the rRNA might date back to the RNA world, a
hypothetical stage of evolution in which RNA performed
all major biochemical reactions (4). In particular, the
peptidtyl transferase center, which catalyzes peptide
bond synthesis, has been independently recovered by
artificial selection from random-sequence pools (5),
suggesting that it would have been relatively easy to
‘discover’ after the evolution of RNA (6).
The rRNA is present in all extant species and

presumably dates back to the earliest forms of life.
It thus reflects the evolutionary history of life itself, and
can be used to establish the evolutionary relationships
between all species on earth (7). Because reconstruction
of phylogeny depends on the evolutionary model that is
assumed, it is important to understand how rRNA
actually evolves.
The most widely accepted model of rRNA evolution is

a ‘rates across sites’ model, in which a multiple sequence
alignment is used to assign rates of evolution to each
position in the rRNA (8). Secondary structure is expected
to influence evolutionary rates primarily through com-
pensatory mutations in stems. Because stems are assumed
to be largely structural, any substitution of one
base pair for another should typically be acceptable.
In contrast, unpaired regions are thought to depend more
specifically on their sequence. For example, tetraloops
fall into only a few families (9). This view was promoted
by the paradoxical finding that most of the highly
conserved regions, i.e. regions with no or small variability
at the sequence level, in the bacterial small subunit
(SSU) rRNA were in unpaired, rather than in paired,
regions (10–17). This finding suggested the then-
revolutionary view that base pairing is a weak constraint
on sequence compared to other influences on the sequence
near the active site of the ribosome. This idea is
further supported by two additional observations: it is
often possible to experimentally swap one base pair
for another while preserving function, and paired
regions change faster than unpaired regions when the
GC content of each region is plotted against total GC
content (18).
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The assumption that RNA evolution is composed
predominantly of compensatory mutations in paired
regions suggests that specific rate matrices should be
used to describe paired regions for evolutionary studies.
RNA violates the assumption of site independence that
underlies many evolutionary models, because maintaining
base pairing requires the bases at two interacting sites to
change in a correlated fashion. Currently, many models of
RNA evolution incorporate the nonindependence of
sites in paired regions by allowing correlated mutations
(12, 19–24), including noncanonical base-pair interactions
represented as isostericity matrices (25). The special
treatment of paired regions is a more accurate model of
RNA evolution than using a single four-state rate matrix.
However, these models could potentially be refined further
with detailed knowledge about the rates of change in
different unpaired regions (hairpin loops, bulges, and
multi-helix junctions) and in different taxonomic groups.
Although the standard model of fast-evolving stems is

widely accepted (22,26,27), there are three good reasons to
believe that the paired–unpaired dichotomy provides a
limited view of RNA evolution.
First, although many base pairs in many molecules

can be changed experimentally without disrupting func-
tion, the same is true for unpaired regions. For example,
replacing large or poorly structured loops with tetraloops
is commonly performed to improve crystallization of
RNAs [see for example (28)]. Accordingly, it is unclear
whether, on average, changes in stems can be tolerated
more often than changes in unpaired regions.
Second, the early observation that many highly

conserved bases in rRNA are unpaired (10) need not
imply that most unpaired bases in rRNA are highly
conserved. For example, the conservation maps from the
comparative RNA web site (29) show that 44 and 35% of
the nucleotide positions in bacteria and eukaryotes,
respectively (both large subunit (LSU) and SSU) are
conserved in more than 98% of the sequences in the
alignment. Of these more than 98% conserved positions,
only 50–54% are unpaired. Because there are more
paired positions than unpaired positions in the rRNA,
on average about 50% of the unpaired positions and 30%
of the paired positions are highly conserved (more than
98%). The other half of the unpaired positions are
thus free to evolve at higher rates. (Note that only
positions that are present in at least 95% of the sequences
are counted, excluding about 8% of the positions in the
bacterial model and about 30% in the eukaryotic model,
and that differences in the definition of ‘highly conserved’
can change the figures substantially.)
Third, we recently showed that even random sequences

that have never been exposed to selection show different
rates of change in the GC contents of paired and unpaired
regions as the GC content of the whole molecule changes,
suggesting that different bases have different intrinsic
propensities for base pairing (30). Consequently, the
paradigm introduced by Muto and Osawa for detecting
selection as a different response to changes to GC content
in different parts of the molecule, which works well for
coding regions (31,32), is not valid for rRNA.

The aim of this article is to test the commonly accepted
hypotheses that compensatory mutations in paired
regions quantitatively dominate RNA evolution, and
that the unpaired regions form a single category that can
be treated as homogeneous. Specifically, we address the
following questions:

(1) Do the different unpaired categories (hairpin loops,
bulges, and multi-helix junctions) change at the
same rate over a wide range of species? There are
several reasons why we might expect these structural
elements to evolve at different rates. First, they are
subject to different structural and functional require-
ments. Second, they have different patterns in
terms of nucleotide composition (30), which suggests
that they are under distinct evolutionary constraints.
Third, in a study that distinguishes between
these structural elements in six mammalian
rRNAs, they are shown to evolve at different rates
(33). Incorporating structure-specific rates of change
should make current models of RNA evolution more
accurate.

(2) Do paired regions always evolve fastest, and is the
general pattern of substitution rates shared among
all three phylogenetic domains (the archaea, the
bacteria and the eukaryotes) and both ribosomal
subunits? Rates of change vary considerably among
taxa. We might expect to see a change in the
relative substitution rates in eukaryotes, because they
distinguish themselves from archaea and bacteria
in several ways. First, they have longer rRNA
sequences (34). Most if not all eukaryotic insertions
are on the ribosome surface (35), where substitution
rates are known to be higher than in the ribosomal
center (36). The eukaryotes also show different
trends in the base composition of different structural
components of the rRNA (30). Finally, it has been
shown in a small sample of eukaryotic sequences that
loops and bulges evolve as fast as stems [33].

(3) How does the distribution of different structural
components in the 3D structure of the ribosome
affect their evolution? It is known that parts of the
rRNA further from the center of the ribosome evolve
more quickly (36). Can the generally accepted
faster rate of evolution of stems be explained by
their spatial distribution in the ribosome, e.g. because
stems more frequently occur at the ribosomal
surface? Now that we have a 3D structure, under-
standing the relationship between variability and 3D
structure could potentially help both structure
prediction and the development of better models of
rRNA evolution for phylogeny.

METHODS

Ribosomal sequence and structure data

There are many ribosomal sequences and structural
models available, allowing a detailed analysis of evolu-
tionary rates. The first complete rRNA sequences
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for both the SSU and LSU were determined for E. coli
shortly after the Sanger sequencing method became
available (37,38). Today, a wealth of aligned sequence
data is available. The European rRNA database (RDB)
(39) and the comparative RNA web site (CRW) (29)
provide alignments containing up to several hundred LSU
sequences per phylogenetic domain (about 400 bacterial
LSU sequences), and thousands of SSU sequences (about
12 000 bacterial SSU sequences in the RDB).

Soon after the first full-length rRNA sequences were
determined, the first covariation-based secondary struc-
ture models were developed (10,11,40–44). These models
predicted the secondary structure in terms of Watson–
Crick and G–U wobble base pairs. As the amount of
sequence data has increased, the structural models
have repeatedly been refined. Over time, they have
matured into complex models that also incorporate non-
standard base pairs and tertiary interactions (2,45–49).
These models are available on the CRW (29). The RDB
(39) provides a similar, independently developed, set of
structural models. These models were originally derived
by comparing 14 SSU rRNA sequences and surveying
existing structural models (50), and have been successively
refined (51–58).

In general, the available secondary structure models
are of high quality. The bacterial secondary structure
model is especially well established and is consistent
with chemical experiments (59) and crystal structures of
the ribosome (60). The eukaryotic structural model has
been accurately determined for the more conserved
regions, but the structure of some of the variable regions
is still disputed (61). Thus far, there is no crystal structure
to resolve these controversial regions.

In this study, we used sequence and structure informa-
tion from three sources: the European RDB (39), the
CRW (29), and the RCSB Protein Data Bank (62,63).
Table 1 provides details about the model organisms,
alignments, sequence accession numbers, and crystal
structures used.

Structural classification

RNA secondary structure is a collection of base pairs,
interspersed with unpaired bases. Base pairs can either be

nested or non-nested. Two base pairs, one between
positions i and j and the other between positions i 0 and
j 0 (where i < j; i0 < j0 and i < i0) are nested if either
i < i0 < j0 < j or i < j < i0 < j0. Pseudoknots are non-
nested base pairs between a loop of one stem and residues
outside that stem (64).
RNA secondary structures can be decomposed into

distinct structural classes. A fully nested structure without
pseudoknots can be represented as a tree, and thus
each position can be classified into either stem, loop,
bulge, junction, end or flexible (30). In this study, we did
not remove pseudoknots from the structural models,
which required us to combine some of the structural
classes for simplicity. We distinguished stem, loop, bulge
and ‘junction/other’ [essentially the same as in (33)].
The ‘junction/other’ category includes the categories
junction, end and flexible in the fully nested structures,
and pseudoknotted regions. Most bases in this class are
from multi-helix junctions.
In summary, the class ‘stem’ contains all base-paired

positions, the class ‘loop’ contains all unpaired positions
connecting two halves of a helix, the class ‘bulge’ contains
all unpaired bases connecting exactly two helices and
all other positions are classified as ‘junction/other’.

Calculating rates of change from large alignments

We used two types of ‘variability maps.’ In these maps,
variability is calculated from a large alignment of rRNA
sequences (separated by phylogenetic domain and sub-
unit) and superimposed onto a structural model. First,
we used the RDB variability as calculated by the
substitution rate calibration method (65,66), available
from the European rRNA database (39). Second, we
used the CRW secondary structure conservation maps,
provided on the comparative RNA web site (29), where
conservation is calculated based on the nucleotide
distribution at a particular alignment position.
The substitution rate calibration method classifies

each position as one of six rate categories (seven in more
recent publications). Sites that are absent in 75% or
more of the sequences in the alignment are considered too
variable to be classified and are excluded from the
analysis. On the CRW conservation diagrams, only four

Table 1. Sources of sequence and structure information

Source Model species Subunit Seqs Acession Ref. Crystal structure

RDB E. coli SSU 500 J01695 (13)
RDB E. coli LSU 71 J01695 (13)
CRW E. coli SSU 4214 J01695 (29)
CRW E. coli LSU 436 J01695 (29)
RDB T. thermophilus SSU 3407 M26923 (36) 1GIX (70,74)
RDB T. thermophilus LSU 184 X12612 (36) 1GIY (70,74)
RDB T. thermophilus 5S 310 * (79) 1GIY (70,74)
RDB S. cerevisiae SSU 500 J01353 (80)
RDB S. cerevisiae LSU 77 U53879 (17)
CRW S. cerevisiae SSU 1939 U53879 (29)
CRW S. cerevisiae LSU 116 U53879 (29)

Source: RDB — European rRNA database, CRW – Comparative RNA web site. Seqs: number of sequences in the alignment from which
conservation/variability is calculated. Accession: accession number of the structural model. Ref: reference. Crystal structure: crystal structure we used
for 3D calculations. *: structural model derived from 5S rRNA database.
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rate categories are distinguished, ranging from more than
98% conserved to less than 80% conserved. For a base to
be classified in one of the four categories, it has to be
present in at least 95% of the sequences in the alignment.
The CRW conservation method thus uses stricter require-
ments for classifying residues. The two different measures
of conservation agree well (average r 2 ¼ 0:824 when using
a sliding window); see Supplementary Figures 1 and 2 for
the strength of association between the two measures.
Both CRW conservation and RDB variability data are

available for SSU/LSU E. coli as bacterial model and
S. cerevisiae as eukaryotic model. The structural models
from both sources are not exactly the same, but share on
average 80.5% of their base pairs (see Supplementary
Data). We used the variability maps to assign each
position to a rate category.

Calculating rates of change from pairwise comparisons

Calculating the rate of change from pairwise sequence
comparisons circumvents two important problems that
arise from calculating variability values from large
alignments. The first problem is that many positions
have ambiguous structural classifications. This problem
arises because the variability values calculated from the
large alignments are superimposed on a single structural
model that is representative of a whole phylogenetic
domain. Because not all sequences in the alignment fold
into exactly the same structure, the structural category
at many positions will only be valid for a subset
of the alignment. For example, a position that is in a
bulge in the model species, might be in a multi-helix
junction in another species in the alignment because
of a stem-loop insertion. In the pairwise comparison
method, we avoid this problem because we do not assume
a single structural model for every sequence in the
alignment. Instead, each sequence has its own model
(available on the CRW), which is used in the comparison.
Positions with ambiguous structural classifications can
be averaged over the different possibilities, or excluded
from the analysis. In addition, limiting the comparison
to more closely related species also reduces the number
of ambiguous positions. The second problem is that
the strict presence/absence requirements in the CRW
calculations result in many unclassified positions.
This problem mainly affects alignments of eukaryotic
sequences, because these alignments contain many inser-
tions that are only present in a few species. Pairwise
comparisons avoid this problem because variable
regions are not excluded.
In the pairwise comparison method, we counted the

base changes between the sequences in each structural
element. The neutral assumption would be that all the
changes in the molecule are distributed equally over the
different structural elements, and thus that each structural
element absorbs the same percentage of change.
We applied two different counting methods. First,
counting point mutations only, in which we only counted
positions with a non-degenerate base in both sequences
and the same structural classification. Second, counting
insertions and deletions (indels) in addition to point

mutations, in which we counted positions with a
non-degenerate base in both sequences or a non-degen-
erate base in one sequence and a gap in the other.
Especially in comparisons over larger evolutionary dis-
tances, incorporating indels is very important because they
make up a large part of the sequence divergence.

From the raw counts, we calculated the fraction
divergence overall and per structural category as the
fraction of positions with a different base in both
sequences divided by the total number of positions that
we were counting. As mentioned before, not all positions
were counted. Positions where both sequences had a gap
were eliminated before the counting process started,
and positions that did not meet the criteria for being
included in the counting process were ignored.
For example, these could be positions that contained
degenerate bases or that were not sequenced. We also
calculated the fraction of comparisons in which the
hairpin loops were changing faster than the stems.
Optionally, we could split the counts when the structural
classification was ambiguous (otherwise ignored), and we
could limit the allowed fraction of divergence or
ignored positions. The tables containing results of these
calculations will specify the counting method and chosen
options and limits.

For the pairwise comparisons, we used the sequences,
structural models and a high-quality alignment from
the CRW web site (all downloaded in June 2006).
Initially, we did a large-scale comparison within each
phylogenetic domain and subunit, where we compared
all sequences for which there was a structural model
and an entry in the CRW alignment. When looking
over the whole range of diversity, many positions were
ignored because of conflicting structural information.
Focusing on an individual lineage reduced the structural
differences, because the species were more closely
related and thus less structural changes had occurred
since the time of divergence. Not all sequences for which
a structural model was available had an exact match in
the alignment. For these groups, we aligned the
sequences with MUSCLE (67) and inserted the gaps into
the corresponding structural classifications. These align-
ments were of high quality, because the species were
closely related (see Supplementary Data). Since there were
at most very small differences between the data
calculated from the CRW alignment or from the
MUSCLE alignment, we reported the results for the
largest data set.

3D structural calculations

We performed structural calculations using the PDB
files 1GIX and 1GIY, corresponding to the crystal
structures of the ribosomal subunits from Thermus
thermophilus solved at 5.5 Å. These files provide the 3D
coordinates for the phosphorus atom in each residue.
It has previously been shown that the average variability
of residues increases with distance from the center of
the ribosome (36), but it is unclear that the geometric
center is the correct reference point. We calculated
distances between the P atom of each residue and the
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following locations: the distance from the peptidyl
transferase center (‘PTC’), defined as the P atom of
residue A2451; the distance from the tRNA path (‘path’),
defined as the distance from the closest P atom of any
of the three tRNAs or any of the two mRNA codons
included in the crystal structure; the distance from
the closest protein (‘protein’), defined as the distance
from the closest C-a atom of any protein attached to
the same subunit; the distance from the subunit
interface (‘interface’), defined as the distance from the
closest P atom in the other subunit, as well as the distance
from the center (‘center’), defined as the distance from
average of the coordinates of all P atoms in the ribosome
(including SSU, LSU and 5S rRNA). We then
correlated each of these distances for each residue with
evolutionary rate and structural category, as calculated
above.

RESULTS

We find that structural categories in the ribosomal RNA
evolve at different rates, and that these rates vary across
phylogenetic domains. Although it is true that highly
conserved regions tend to be unpaired, the converse, that
unpaired regions are more conserved, is not always true
(although it is widely assumed).

Stems indeed dominate rRNA evolution in bacteria and
archaea

In bacteria, stems contain many fast-evolving positions
and few slow-evolving positions compared to the
three different unpaired categories. Figure 1 shows this

relationship using evolutionary rates derived from a
large alignment of SSU bacterial sequences, superimposed
on the E. coli secondary structure. The data shown are
for the RDB evolutionary rates and structural model,
but any combination of CRW and RDB rates and
structures gives essentially identical results (see
Supplementary Data for further comparisons). This
observation is consistent with previous reports of fast-
evolving stems in bacterial SSU rRNA (10–17). For
each structural category, the distribution of rates
appears to be bimodal with residues evolving at inter-
mediate rates being rare. This pattern is also observed
in the eukaryotes, perhaps suggesting that residues in the
ribosome are either under strong selection or under no
selection.
Directly counting the changes between sequences

through pairwise comparisons revealed a similar pattern
(Table 2). In both bacterial and archaeal SSU sequences,
we observed that stems evolve fastest, the three unpaired
regions are slower, with hairpin loops being faster
than bulges and the junctions being slowest (Figure 2A
and B). In both groups, counting only point mutations
or including indels did not alter the observation.
Including indels slightly increased the fraction of diver-
gence in hairpin loops at larger overall evolutionary
distances (data not shown). The fastest evolving
structural elements change 2.7-fold faster than the
slowest evolving elements (measured at half of the
maximum divergence).
The rates of substitution observed in the whole bacterial

domain reappeared when focusing on clusters of more
closely related species. In proteobacteria (Figure 2E)
and firmicutes (Figure 2F), stems typically evolved
faster than any unpaired categories. There did not seem
to be a difference between the bacilli and the mollicutes
when inspected individually, despite the extreme
changes in GC content in the mycoplasmas (68). Among
spirochetes, the pattern also seemed typical (data not
shown).
In both the archaea and bacteria, some sequences

appeared to escape the general pattern. Among the
archaea, about 5% of the comparisons when counting
only point mutations (10% with indels) contradicted the
general observation that stems change faster than loops.
In all of these comparisons one of the sequences came
from either the Aeropyrum or Pyrococcus genus. In the
comparisons within bacterial SSU sequences, about 6%
had higher rates of change for loops than for stems. Most
of these outliers were comparisons among the
Actinobacteria. When all pairwise comparisons between
two species within this group were excluded, the fraction
of comparisons that contradicted the general pattern was
reduced to 0.5% (Table 2 and Figure 2D) (see Discussion
for further interpretation of these patterns).
As for SSU sequences, in bacterial LSU sequences all

unpaired categories changed slower than the stems (Figure
2C). However, unlike in SSU sequences, LSU bulges
changed faster than loops, when considering all bacteria
or when focusing just on the LSU g-proteobacteria
(data not shown).
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Figure 1. In bacteria, stems dominate in high-rate categories, unpaired
regions in low-rate categories. For each structural category, we
calculated the percent of positions (y-axis) in each rate category
(x-axis). For example, of all the positions in stems, 8% is in rate
category 1, 22% is in rate category 2, etc. The graph contains four
different series, one for each structural category. Within one series
the values add up to 100%. The data is calculated from the RDB
variability categories superimposed on the RDB secondary structure
model of E. coli.

Nucleic Acids Research, 2007, Vol. 35, No. 10 3343



Hairpin loops evolve faster than other structural
categories in eukaryotes

In eukaryotic SSU rRNA, loops are the fastest evolving
structural element, and evolve 1.37-fold faster than stems.
Eukaryotes thus do not follow the typical pattern of
evolutionary rates observed in archaea and bacteria. This
deviation from the bacterial pattern is consistent across
analyses.
Superimposing the variability values derived from large

alignments onto a single structural model is only partially
useful for eukaryotes. The first reason is that there is
controversy over the structure of a particular region
(positions 634–861 in the eukaryotic RDB model for
accession J01353) (61), in the CRW model all these
positions are unpaired, in the RDB model these positions
are in a complex pseudoknotted region. The other
problem is that eukaryotic sequences have large
insertions or deletions with respect to each other. In the
CRW conservation diagrams, any position that is present
in less than 95% of the sequences of the alignment is
considered variable and not characterized further.
This applies to about 30% of the positions in both the
SSU and LSU eukaryotic alignment. With these caveats
in mind, we examined the fraction of positions in each
rate class for all structural elements.
When we used the CRW conservation values and CRW

structural model and ignored all unclassified positions,
loops, bulges and stems had the same fraction of positions
in rate class 3 (out of 4) and stems have the highest
fraction of positions in the fastest evolving class. This
observation could no longer be made when we included
the unclassified positions. In that case, stems dominated
in rate class 3 and 4 (but also in class 2, which contains
moderately conserved positions), but the unpaired

regions dominated in the class with the most variable
positions. More than 45% of the junctions fell in this
class due to the long unstructured region. In fact, when we
ignored this region, hairpin loops dominated that class
(Figure 3 left). The combination of RDB variability scores
and the RDB structural model showed the change more
clearly. When we ignored unclassified positions, loops
and bulges dominated in the two fastest rate classes.
The positions in the unclassified regions were all unpaired,
and hairpin loops dominated this class independent of
excluding the structurally controversial region (Figure 3
right). In summary, the results from the large alignment
are not clear-cut, but they strongly suggest that hairpin
loops contain the highest fraction of fast evolving
positions.

The results from the pairwise sequence comparisons
leave no doubt that hairpin loops dominate rRNA
evolution in eukaryotes (Figure 4A and Table 3). When
we counted insertions and deletions in addition to point
mutations, hairpin loops changed at a faster rate
than stems in more than 90% of the comparisons. The
fact that indels are important for eukaryotic evolution was
indicated by the high fraction of ignored positions when
only counting point mutations (and hence the limitation
on the maximum fraction of ignored positions). This
was emphasized by the increase in the percentage of
pairwise comparisons in which hairpin loops change
faster than stems when we added indels to the counts
(from about 80–93%).

The results from comparisons within several eukaryotic
lineages corroborated the observation over all eukaryotes
that hairpin loops evolve fastest (Figure 4B-E). In plants
and animals, the pattern held for every single comparison
(when only counting point mutations). In the fungi,

Table 2. Stems evolve fastest in bacteria and archaea

Lineage SU Aln Mode FD FI Split Cmp MD L4S Plot

Archaea SSU CRW P 1.0 1.0 F 171 30.1 5.26
Archaea SSU CRW I 1.0 1.0 F 171 32.2 10.5 ?

Bacteria SSU CRW P 1.0 0.3 F 10011 34.1 4.58
Bacteria SSU CRW I 1.0 0.3 F 10011 38.7 6.19 ?

Bacteria - ** SSU CRW P 1.0 0.3 F 9108 34.1 0.53
Bacteria - ** SSU CRW I 1.0 0.3 F 9108 38.7 2.22 ?

Bacteria LSU CRW P 1.0 0.2 F 787 34.7 1.27
Bacteria LSU CRW I 1.0 0.10 F 729 38.2 1.37 ?

Bacteria LSU CRW P 0.06 0.1 F 12 4.35 75.0
Bacteria LSU CRW I 0.06 0.1 F 12 4.45 75.0
a-Proteobacteria SSU MUS I 1.0 1.0 F 55 16.5 7.27 ? ?

b-Proteobacteria SSU MUS I 1.0 0.1 F 21 15.2 4.76 ? ?

g-Proteobacteria SSU MUS I 1.0 1.0 F 496 20.1 2.42 ? ?

g-Proteobacteria LSU MUS I 1.0 0.1 F 136 34.1 2.94
Firmicutes SSU MUS P 1.0 1.0 F 190 25.9 1.58
Firmicutes SSU MUS I 1.0 1.0 F 190 28.5 2.63 ?

Firmicutes SSU MUS I 1.0 0.15 F 153 28.5 3.27

In archaea and bacteria, the percentage of comparisons in which the hairpin loops dominate (column L4S) is very low. The table contains the
following columns: Lineage (‘Bacteria - **’ refers to the comparisons among the bacteria where all comparisons between two Actinobacteria are
excluded), SU (subunit), Aln (type of alignment, CRW ¼ alignment from comparative RNA web site, MUS ¼ MUSCLE alignment), Mode
(P ¼ point mutations only, I ¼ Indels added), FD (limit on fraction divergence), FI (limit on fraction ignored), Split (whether the counts at positions
with ambiguous structural classification are split between the two structural categories; if false, the positions are ignored), Cmp (number of pairwise
comparisons), MD (maximum divergence observed), L4S (percent of comparisons in which loops change faster than stems), and plot (data plotted in
Figure 2, ?? entries are plotted in one graph).

3344 Nucleic Acids Research, 2007, Vol. 35, No. 10



Figure 2. Pairwise sequence comparisons for bacteria and archaea. Stems evolve fastest, both in the complete set of bacteria and in individual
lineages. However, the different classes of unpaired regions always evolve at significantly different rates. The scatterplots show the fraction divergence
per structural category (y-axis) versus the fraction divergence overall (x-axis); see Methods for definition. (A) SSU bacteria. (B) SSU archaea.
(C) LSU bacteria. (D) Bacteria without Actinobacteria. (E) Proteobacteria. (F) Firmicutes.

Figure 3. Comparison between rates inferred using CRW and RDB rate categories showing that loops dominate high-rate classes in eukaryotes. The
graphs show the fraction of positions (y-axis) per rate class (x-axis) for each structural element. Both graphs show data for S. cerevisiae. Left: CRW
conservation values, CRW structural model, excluding the controversial region, including unclassified positions as highest rate class. Right: RDB
variability scores, RDB structural model, including the controversial region and unclassified positions. These two figures present essentially the same
data. The difference is caused by the different rate categories used by the two data sources. Rate categories 1 and 5 in CRW correspond roughly to
1/2 and 5/6/7 in RDB, respectively.
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Figure 4. Pairwise sequence comparisons for eukaryotes. Hairpins (blue) evolve fastest, both overall and in each lineage individually. The scatterplots
show the fraction divergence per structural category (y-axis) versus the fraction divergence overall (x-axis); see Methods for definition. (A) SSU
eukaryotes. (B) Viridiplantae and Metazoa. (C) Alveolata. (D) Fungi. (E) Stramenopiles. (F) LSU eukaryotes.

Table 3. Hairpin loops dominate evolution in eukaryotes

Lineage SU Aln Mode FD FI Split Cmp MD L4S Plot

Eukaryotes SSU CRW P 1.0 0.3 F 2061 27.7 74.8
Eukaryotes SSU CRW P 0.1 0.2 F 163 9.97 89.6
Eukaryotes SSU CRW I 0.35 0.15 F 620 35.0 94.4 ?

Eukaryotes SSU CRW I 0.1 0.15 F 115 9.90 93.0
Eukaryotes SSU CRW I 0.2 0.15 T 259 19.9 93.8
Viridiplantae SSU MUS P 1.0 1.0 F 136 15.8 100 ??

Viridiplantae SSU MUS I 1.0 1.0 F 136 17.5 99.3
Metazoa SSU MUS P 1.0 1.0 F 36 20.6 100 ??

Metazoa SSU MUS I 1.0 1.0 F 36 30.6 97.2
Alveolata SSU MUS P 1.0 0.15 F 190 17.8 86.3
Alveolata SSU MUS I 1.0 0.1 F 209 33.9 98.1 ?

Alveolata SSU MUS I 0.1 0.02 F 78 6.34 96.2
Fungi SSU MUS P 1.0 0.1 F 105 17.5 46.7
Fungi SSU MUS I 1.0 0.06 F 119 22.5 87.4 ?

Stramenopiles SSU MUS P 1.0 1.0 F 703 17.1 65.4
Stramenopiles SSU MUS I 1.0 1.0 F 703 19.9 91.2 ?

Stramenopiles SSU MUS I 1.0 1.0 T 703 20.8 93.9

Eukaryotes LSU CRW P 0.15 0.15 F 19 15.0 47.4
Eukaryotes LSU CRW I 0.15 0.15 F 18 13.5 61.1 ?

The table contains the following columns: Lineage, SU (subunit), Aln (type of alignment, CRW ¼ alignment from comparative RNA web site,
MUS ¼ MUSCLE alignment), Mode (P ¼ point mutations only, I ¼ indels added), FD (limit on fraction divergence), FI (limit on fraction ignored),
split (whether the counts at positions with ambiguous structural classification are split between the two structural categories; if false, the positions are
ignored), Cmp (number of pairwise comparisons), MD (maximum divergence observed), L4S (percent of comparisons in which loops change faster
than stems) and plot (data plotted in Figure 4, ?? entries are plotted in one graph).

3346 Nucleic Acids Research, 2007, Vol. 35, No. 10



stramenopiles and alveolata, insertions and deletions
played an important role, and resulted in a 30–40%
increase in the fraction of comparisons in which loops
evolve faster than stems.

Although too few eukaryotic LSU sequences were
available for the same analysis as above, we employed
this data by comparing the three sequences for which we
had a structural model and an aligned sequence
(Arabidopsis thaliana, Saccharomyces cerevisiae and
Oryza sativa) to all other sequences in the eukaryotic
LSU alignment. In these comparisons, we classified
positions using the secondary structure of the first
sequence. Examining sequences up to 15% divergence
from these reference sequences, hairpin loops evolved
faster than stems in 46% (just point) and 56% (indels) of
the comparisons (Figure 4F). These results suggest that
the pattern holds between SSU and LSU, although the
small data set makes this conclusion tentative.

To control for differences in GC content, which
can affect the distribution of different structural cate-
gories (30), we limited the range of GC content to be
consistent between bacteria and eukaryotes (45–55%).
This produced essentially identical results to those shown,
indicating that they are not an artifact of GC content
(data not shown).

The distribution of structural elements in 3D structure
only partially explains differences in rate

Crystal structures of the complete ribosome have recently
become available (69–75), allowing us to relate evolution
of the rRNA to specific structural features. Since the
complete ribosomal structure is only available for
bacterial species, we limit this analysis to that phylogenetic
domain. We correlated the distance from each of several
structural features (see Methods) in the T. thermophilus
sequence with rate category and structural category in
the bacterial alignment. This comparison was revealing;
the distribution of structural categories within the
ribosome is seen to be highly non-random.

Distance from features within the ribosome strongly affects
conservation in all structural categories. We tested
whether the conservation of residues varied systematically
with distance from several different features within the
ribosome, and whether these variations were consistent
across structural categories. Figure 5 shows the distribu-
tion of rate categories as a function of distance from
the PTC in the bacterial LSU (the PTC is located
within the LSU). Moving away from the PTC, the
slower rate categories rapidly decrease in abundance,
whereas the faster rate categories rapidly increase,
showing a clear relationship between distance from
the PTC and evolutionary rate (the proportion of bases
changing at intermediate rates seems to be relatively
constant in each distance bin). For example, 85.7% of the
residues are in rate class 1 at 0–10 Å and none are in rate
class 7; at >110 Å 9.68% of the residues are in rate class 1
and 41.9% are in rate class 7.

The rate categories show clear patterns as a function of
distance from the core structural elements. Figure 6A

shows two shells of residues in the LSU, the inner
shell being within 20 Å of the PTC and the outer shell
being at least 80 Å from it. The inner shell is
primarily composed of slow-evolving residues (cool
colors), reflecting the fact that this is one of the most
conserved regions within the ribosome; in contrast, the
outer shell consists primarily of fast-evolving sites (warm
colors).
We see a similar trend for each of the other distances,

including distance to the nearest protein and distance to
the path of the tRNA within the ribosome. We also
find that these patterns hold for each ribosomal feature
and for both subunits (Figure 5B; note that because both
the center and the PTC are located within the LSU, the
closest approach to these features in the SSU is
at least 49.5 Å). The results also hold for the structural
categories individually, to the limits of sampling error
(Figure 5 C–F show the LSU PTC distances broken
down by structural category). These results were statisti-
cally highly significant (P-value ranged from 3:03� 10�82

to 0.002 in a G test for independence between distance
bin and structural category). The effect was strongest for
the PTC (85.7% of bases within 10 Å in rate category 1)
and weakest for proteins and the subunit interface (about
25% of bases within 10 Å in rate category 1 and
intermediate for the tRNA path). Thus, as expected,
proximity to the PTC and, to a lesser extent, interactions
with tRNAs and proteins exhibit strong selective influ-
ences on residues within the rRNA. These influences
are reproducible for each individual structural category; it
is not true that the stems, but not the loops, are influenced
by the distance to the nearest protein. Interestingly, the
effects do not saturate after a few angstroms but continue
out to the surface of the molecule. For example, the
residues 60 Å from the PTC in the LSU evolve slower
than the residues 80 Å from the PTC, suggesting that the
influence of specific functional sites may extend over long
distances.
Fast-evolving sites (in all structural categories) thus

tend to be common near the surface of the ribosome
and rare in the interior, as previously observed by many
investigators [see for example (36)]. Figure 6B shows
the slowest rate category from the RDB data (category 1)
in blue, and the fastest categories (7 and 8) in red. The
fast categories clearly cluster near the surface. Figure 6B
thus directly illustrates the trend that fast-evolving sites
are more abundant on the outside of the ribosome in both
subunits and across all structural elements.

Structural categories are unequally distributed throughout
the rRNA. We then tested whether proximity to impor-
tant functional elements of the ribosome was associated
with specific structural categories. Three important
structural features are highlighted in Figure 6C: the
PTC, the tRNA path and the SSU/LSU subunit interface.
The cluster of residues within 15 Å of the PTC (right-hand
side of the figure, clustered around the end of the tRNA) is
almost entirely composed of junctions (shown in green),
consistent with previous findings (76). The cluster of
residues within 15 Å of the tRNA path in the small
subunit (top-left of the diagram, near the anticodon
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loop of the tRNA) is also primarily composed of
junctions, with some stems (yellow) and a few bulges
(red). The cluster of residues within 10 Å of the subunit
interface (center) consists primarily of stems.
Stems are most equally distributed in both the SSU and

the LSU, making up about 60% of the atoms in each
distance bin. In the SSU, the area close to the tRNA path
is mainly made up of stems (30–60%) and junctions
(30–45%), and almost no bulges (5–8%) and loops
(5–15%) (Figure 7A). In the LSU, this area is mostly
stems (50–60%), loops (9–17%) and bulges (16–20%),
with junctions comprising just 10–15% of nearby residues.

Interestingly, in the LSU, the region around the PTC is
composed almost entirely of junctions (71% of the
residues within 10 Å fall into this category, and no
bulges are present); the proportion of residues that are
junctions falls steeply with increasing distance from the
PTC, dropping to less than 25% above 20 Å (Figure 7B).
Figure 7C and D shows that the residues participating
in inter-subunit RNA–RNA contacts at the subunit
interface are mostly in stems, loops and bulges
(with only 9.6% and 6.5% junctions within 10 Å of the
subunit interface in SSU and LSU, respectively). All the
differences in structural category representation are

Figure 5. Distribution of rate categories as a function of distance from the PTC. Each bar graph shows the fraction of atoms in each rate category
(y-axis) versus the distance from the PTC [x-axis; last bin contains all atoms >100 Å (or 140 Å on the SSU graph) away from the PTC]. The
fractions within a distance bin (vertical column) add up to 1.0. (A) LSU all structural elements. (B) SSU all structural elements. (C) LSU stem.
(D) LSU loop. (E) LSU bulge. (F) LSU junction/other.
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highly significant (P ranges from 1:37� 10�20 to 0.01 in G
tests for independence).
The distribution of structural elements as a function of

other features can be found in the Supplementary
Data. Visualization of this distribution in 3D is very
enlightening. For example, one can color the residues
at both sides of the subunit interface by structural
element or rate category to find that these are mostly
stems, loops and bulges, and in general highly
conserved, or changing at intermediate rates. We encou-
rage readers to explore the structure using the PyMol
script we supply.

Variation in rates in different structural categories is
not fully explained by proximity to functional
elements. Because both the rates and the structural
categories are strongly influenced by the overall structure
of the ribosome, the differences in overall evolutionary
rate we observe in different structural categories might
be solely due to unequal distances from, for example, the
PTC. Can we predict the distribution of rate categories
in the stems purely from the distance data? The null
hypothesis we are testing here is that the structural
category has no influence on evolutionary rate, and that
distance from functionally important regions is the sole
factor that affects evolutionary rate. If this null hypothesis
were true, we would be able to calculate the rate of
evolution of each structural category as the weighted
average of the products of the rate at each distance
and the fraction of bases in the structural category that is
found at that distance.
For example, suppose that the distance from the

PTC were the only factor that influenced the rate of
evolution. If all bases near the PTC evolved slowly, but
few of these bases are stems, stems would appear to
evolve rapidly simply because they are, on average, far
from the PTC. We can account for this effect by
binning the residues into distance classes (e.g. every 10
Å) from the feature of interest. For each distance, we
multiply the fraction of all bases that are in each rate
category by the fraction of all stems that appear at
that distance. For example, if 4% of all stems were
within 10 Å of the PTC, and residues within 10 Å of the
PTC were 75% in rate category 1, 20% in category
2 and 5% in category 3, the contribution of residues
within 10 Å of the PTC to the overall rate of evolution
in stems would be 75%� 4% ¼ 3% for category 1,
20%� 4% ¼ 0.8% for category 2 and 5%� 4% ¼ 0.2%
for category 3. Repeating this calculation for the other
distances and summing the results gives the predicted
fraction of bases in stems that fall into each rate category.
We can then test whether this prediction matches the
overall distribution of stems among rate categories. See
the Supplementary Data for a description on calculating
the correlations between predicted and actual rate
distributions.
We predicted the rate distribution from each

structural feature (center, tRNA path, etc.). Out of all
correlations between predicted and actual rate distribu-
tions, only the prediction based on the distance to the
tRNA path has a statistically significant correlation

Figure 6. Distribution of structural elements and rate categories in the
ribosome. Each panel shows the T. thermophilus ribosome, with
residues highlighted according to proximity to specific structural
features and colored either by rate or by structural category. Panel
(A) shows the large subunit with residues within 20 Å of the PTC (near
the tRNA ends) and residues >80 Å away from the PTC (outer shell)
highlighted. The residues are colored by rate category (fast evolving
sites in orange/red, slow evolving sites in cyan/blue, sites changing at an
intermediate rate in gray). The small subunit, 5S rRNA, and proteins
are hidden. The PyMol script that generates these figures is available as
Supplementary Data to allow interactive exploration of these features.
Panel (B) shows all residues in rate category 1 colored blue, all residues
in rate category 7 and 8 colored in red colors. Panel (C) shows all
residues within 15 Å from PTC (right), within 15 Å from the tRNA
path in the SSU (left) and within 10 Å on both sides of the subunit
interface (middle), colored by structural element. Stem in yellow, loop
in blue, bulge in red and junction in green.
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with the actual distribution (see Supplementary Data
for graphs and additional discussion). For example,
using the distance from the tRNA path in the LSU,
r2 ¼ 0:33 and P¼ 0.001 for the relationship between
observed and expected deviations. The effect is thus
highly significant, but relatively small, explaining
only a third of the variance. The distance from the
center of the ribosome is not predictive (r2 ¼ 0:07�0:11,
P > 0:05).

Thus, most of the variation in the rate of evolution in
the different structural categories is not explained by
the differential distribution of these structural categories
throughout the ribosome. For example, the fast evolution
of stems in bacteria cannot be simply explained by a
high abundance of stems on the ribosome surface.
We therefore reject the null hypothesis that the
distance from functionally important regions is the sole
factor that affects evolutionary rate, and instead

Figure 7. Distribution of structural elements in the ribosome as a function of distance from specific structural features. Each bar graph shows the
fraction of atoms in each structural element (y-axis) versus the distance from a particular feature (x-axis; last bin contains all atoms more than that
distance away). The fractions within a distance bin (vertical column) add up to 1.0. (A) SSU, tRNA path. (B) LSU, PTC. (C) SSU, subunit interface.
(D) LSU, subunit interface.
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conclude that structural category itself influences the
evolutionary rate.

DISCUSSION

We have demonstrated that different structural elements
change at different rates in different lineages. In bacteria
and archaea, we observe the generally accepted pattern of
fast-evolving stems. However, this pattern differs mark-
edly in eukaryotes, where hairpin loops actually evolve
considerably faster than stems do. This result is not
primarily due to insertions and deletions in non-conserved
surface loops in the eukaryotes, because it persists when
these regions are excluded from the analysis. The different
types of unpaired regions always behave differently from
one another, underscoring the importance of moving
beyond the paired–unpaired dichotomy in studies of
evolutionary rates in rRNA.

To minimize the effects of errors in the structural
models, the alignments, and the rate inference procedure,
we used several complementary methods that agreed well
with one another. The general trends we identified are
supported by existing conservation maps and secondary
structure models calculated by two different research
groups (RDB and CRW), and by direct inference of the
amount of change in each structural category from pairs
of sequences. We verified that the choice of whether to
include or exclude gaps in calculations of evolutionary
distance, and use of either automated MUSCLE align-
ments or hand-curated alignments from CRW, produced
similar results. No matter which metric is used to measure
the substitution rates, hairpin loops evolve substantially
faster than stems in the eukaryotic lineage, and these
results hold both over short and long evolutionary
distances.

There is a small but significant effect of the distribution
of structural elements throughout the ribosome: for
example, the region around the PTC is largely made up
of junctions, whereas the subunit interface and the regions
near proteins (subject to the limits of the 5.5 Å resolution
of the crystal structure) are largely made up of stems.
We believe that differences in evolutionary rate between
structural categories are not due to these differences
in distribution because we can calculate the distribution
of rates in each structural category that would be expected
if distance from functionally important regions were
the only factor, and these distributions of rates do
not match. Thus, the differences in rates are likely to be
meaningful and are not simply an artifact of the
composition of the most conserved regions.

The distribution of structural categories in the ribosome
was influenced more strongly by proximity to defined
structural features, such as the PTC and the tRNA path,
than by proximity to the geometric center. These results
suggest that the factors driving the distribution
of structural elements within the ribosome are primarily
adaptive rather than consequences of, say, the physics
of helix packing. However, the results contrast
strikingly with proteins, in which hydrophobic residues
preferentially assort themselves into the core of

the molecule. Thus, secondary structure (and, presumably,
nucleotide composition) is likely to be a poor guide to
predicting whether a particular region of the rRNA is
buried or surface exposed.
Relative rates of evolution of different structural

categories, especially the ratio of changes in stems to
loops, differ drastically in different lineages. These results
suggest that the influence of each structural category
on the rate of evolution is not universally consistent,
diminishing the plausibility of using differences in rates in
different regions to infer properties of the secondary
structure. However, the results do suggest that models
of rRNA evolution that are specific to particular lineages
will be important for making the best alignments
and phylogenies. For example, the knowledge that loops
evolve rapidly in eukaryotes would lead us to give
changes in these regions of the sequence less weight for
phylogenetic inference. With the vast number of sequences
now flooding the databases (�300 000 SSU sequences
deposited in the Ribosomal Database Project as of this
writing, and pyrosequencing able to produce
100 000–300 000 sequence fragments in a single 4-h run),
detailed models of specific groups of organisms will
become increasingly feasible.
Outliers from the general pattern of rRNA evolution

may suggest interesting biology. For example, the
Actinobacteria appear to resemble the eukaryotic
pattern more than the general bacterial pattern. It is
possible that ecological factors such as multicellularity,
or molecular features such as linear rather than circular
chromosomes, in this lineage (77) cause them to
resemble eukaryotes more than other bacteria in factors
influencing rRNA evolution. This group has relatively
high GC content, contrasting with the low GC content
in eukaryotes overall, suggesting that differences in
base composition are not the main factor. Similarly,
in the archeal SSU, about 5% of the comparisons
(when counting only point mutations) or 10% (when
adding indels), do not support the general conclusion that
stems evolve faster on average outside the eukaryotes.
Loops evolve faster than stems in comparisons between
Aeropyrum pernix and Sulfolobus, Thermoproteus,
Methanothermobacter or Methanobacterium, and between
Pyrococcus and Sulfolobus. Aeropyrum and Pyrococcus
are very similar in this respect. Aeropyrum is thought to
be among the deepest diverging aerobic archaea, which
may suggest some convergence with the eukaryotic
pattern.

CONCLUSIONS

This work has several implications for future analyses.
For example, when constructing phylogenetic trees,
different models of RNA evolution should be adopted
(provided that sufficient sequences are available to
infer the parameters robustly). These models should be
both specific for structural categories, including treating
the different types of unpaired regions separately;
they should also be specific for particular phylogenetic
groups. For example, the general substitution model
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for bacteria does not fit the Actinobacteria well. Similarly,
methods for comparing microbial communities, such as
Fst (78), are based on diversity in an rRNA alignment.
These methods may be improved by adding masks that
weight more or less variable regions differently. Weighting
by structural category may be an important first step for
relatively unconserved regions.
The differences in the distributions of different struc-

tural categories appear to be driven primarily by
proximity to functional features in the ribosome,
rather than assorting by geometric configuration such as
the ribosome center. This observation, combined with the
lineage specificity of the rates of evolution of the different
structural categories, suggest that the findings outlined
here are likely to vary by lineage rather than reflecting
universal characteristics of RNA evolution. Interestingly,
the model that most change in functional RNAs comes
from compensatory mutations in stems is not universally
true. In this context, we eagerly await the availability of
the structure of a eukaryotic ribosome for comparison
with the results presented here for the bacterial ribosome.
We conclude that rates of evolution in different lineages

and structural features of the rRNA show an unexpectedly
rich and complex pattern, and that better understanding
of this pattern will refine the results of a wide range
of studies.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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