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Abstract  1 

The light harvesting phycobilisome complex is an important component of photosynthesis in 2 

cyanobacteria and red algae. Phycobilisomes are composed of phycobiliproteins, including 3 

the blue phycobiliprotein phycocyanin, that are considered high value products with 4 

applications in several industries. Remarkably, several cyanobacteria and red algal species 5 

retain the capacity to harvest light and photosynthesise under highly selective environments 6 

such as hot springs and flourish in extremes of pH and elevated temperatures. These 7 

thermophilic organisms produce thermostable phycobiliproteins, which have superior 8 

qualities much needed for wider adoption of these natural pigment-proteins in the food, 9 

textile and other industries. Here we review the available literature on the thermostability of 10 

phycobilisome components from thermophilic species and discuss how a better appreciation 11 

of phycobiliproteins from extreme environments will benefit our fundamental understanding 12 

of photosynthetic adaptation and could provide a sustainable resource for several industrial 13 

processes. 14 

 15 

Introduction 16 

Phycobilisomes (PBSs) are large, light harvesting complexes that improve the efficiency of 17 

light capture in the visible spectrum and help to push the boundaries where phototrophic 18 

species can survive. PBSs are located on the outer surface of thylakoid membranes in 19 

prokaryotic cyanobacteria and some eukaryotic algae, such as the Rhodophyta (red algae) and 20 

Glaucophyta, and range in size from 3000 to 7000 kDa. PBSs funnel light energy that falls in 21 

the spectral gap between the major absorption bands of chlorophyll (500-660 nm) to the 22 

photosystem reaction centres of PSI and PSII. This is particularly advantageous in aquatic 23 

habitats, as longer wavelengths of visible light preferentially absorbed by chlorophyll (i.e. red 24 

light) penetrate less well through water than shorter wavelengths (i.e. green and blue light) 25 

(Samsonoff and MacColl, 2001; Adir, 2005; Blot et al., 2009). A secondary role for the PBS 26 

is nitrogen storage, as indicated by the rapid PBS degradation upon nitrogen starvation 27 

(Yamanaka and Glazer, 1980; Carrieri et al., 2017; Ruan et al., 2018). PBSs are found in 28 

microbes from a wide range of ecological niches including those that grow in extreme 29 

environments, such as high temperatures and acidic conditions. Remarkably, in those 30 

environments the components of PBSs have evolved relatively minor structural modifications 31 

that significantly enhance stability and preserve pigment-protein function even under 32 

conditions at the biological limits of phototrophic life.  33 

 34 
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The PBS complex is primarily made up of an array of coloured and highly fluorescent 35 

phycobiliproteins (PBPs) that are of commercial interest owing to a host of potentially useful 36 

properties (e.g. antioxidant, anti-inflammatory, antiplatelet, anti-cancer, antifungal and 37 

antiviral), and thus could have applications in several industries, including pharmaceuticals, 38 

nutraceuticals and cosmetics (Li et al., 2019; Kannaujiya et al., 2019; Pagels et al., 2019). 39 

Currently, PBPs are considered high value products for their pigment properties, in particular, 40 

the blue PBP phycocyanin (PC), which is a highly sought after natural colourant in the food 41 

and cosmetics industries (Kannaujiya et al., 2017). Nevertheless, the stability of PBPs 42 

remains a key issue for commercial applications. For example, PC is harvested primarily 43 

from the alkaliphilic cyanobacterium Arthrospira platensis (commonly known as Spirulina) 44 

(Sarada et al., 1999; Ogbonda et al., 2007; Pan-utai et al., 2018). Compared to synthetic blue 45 

dyes (e.g. Brilliant Blue FCF), PC from A. platensis is unstable and prone to discolouration 46 

outside of a relatively narrow range of temperature and pH conditions (Chaiklahan et al., 47 

2012). Identifying alternative sources for stable PBPs, or genetically improving the stability 48 

properties of PBPs in mesophilic species would be highly desirable and could lead to an 49 

increase in commercial uptake (Dejsungkranont et al., 2017; Falkeborg et al., 2018; Böcker et 50 

al., 2019). 51 

 52 

In this review, we first provide a brief overview of the component parts and assembly of 53 

PBSs. We then compare the performances of PBSs and PBPs obtained from 54 

hyperthermophilic, thermophilic and mesophilic organisms under high temperatures (with 55 

particular focus on the high value product PC) and discuss their structural adaptations. 56 

Finally, we discuss the current and potential commercial uses of PBPs and suggest industrial 57 

applications that could greatly benefit from the properties of PBPs from extremophile 58 

species.  59 

 60 

Overview of phycobiliproteins structure and phycobilisome assembly 61 

A typical PBP is composed of a stable heterodimer complex of an �- and β-subunit (an (�β) 62 

monomer) to which one to three linear tetrapyrrole bilin chromophores are covalently bound 63 

at well-conserved cysteine residues on each subunit via thioether bonds (Fig. 1A). The 64 

chromophores assume rigid, extended conformations when attached (Zhao et al., 2006; 65 

Scheer and Zhao, 2008). Biosynthesis of all bilin chromophores starts with the non-66 

proteinogenic amino acid δ-aminolevulinic acid, which is converted to cyclic heme in the 67 

tetrapyrrole biosynthesis pathway (Beale, 1994). Cyclic heme is cleaved by heme oxygenase 68 
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(HO) to yield linear biliverdin IX� (BV) (Fig. 1B). BV is an ancient and common bilin 69 

chromophore used by phytochrome photoreceptors in bacteria and fungi (Lamparter, 2004). 70 

In cyanobacteria and eukaryotic photosynthetic organisms, BV is further reduced by a family 71 

of ferredoxin-dependent bilin reductases, which act to decrease the number of double bonds 72 

in the π conjugation system of the subsequent chromophore. This leads to a shift in the 73 

absorption peak typical for BV adducts (ca. 700 nm) towards lower wavelengths more suited 74 

for light capture in aquatic environments (Cornejo and Beale, 1988; Cornejo et al., 1998; 75 

Lamparter, 2004; Wagner et al., 2007). 76 

 77 

Four types of bilin chromophores are found in cyanobacteria: phycocyanobilin (PCB), 78 

phycoerythrobilin (PEB), phycourobilin (PUB) and phycoviolobilin (PVB) (Fig. 1B) (Glazer, 79 

1989).  Phycocyanobilin:ferredoxin oxidoreductase (PcyA) catalyses the reduction of BV to 80 

PCB in a one-step reaction. In contrast, biosynthesis of PEB is typically a two-step reaction 81 

catalysed firstly by 15,16-dihydrobiliverdin:ferredoxin oxidoreductase (PebA), which reduces 82 

the C-15 methine bridge of BV to produce intermediate 15,16-dihydrobiliverdin (DHBV), 83 

and secondly by phycoerythrobilin:ferredoxin oxidoreductase (PebB), which reduces the A-84 

ring diene structure of DHBV to produce PEB (Dammeyer and Frankenberg-Dinkel, 2006). 85 

The majority of PBPs in cyanobacteria and red algae require specific PBP lyases for covalent 86 

attachment of the bilin chromophores to conserved cysteine residues on their cognate apo-87 

protein subunits, with the exception of the allophycocyanin core linker (ApcE) that can 88 

autocatalytically bind to PCB (for review see Scheer and Zhao, 2008). In addition to 89 

chromophore attachment, the heterodimeric lyase-isomerase, PecE/PecF, also converts PCB 90 

into the Δ4-to-Δ2 double bond isomer PVB (Zhao et al., 2000). Similarly, the lyase-91 

isomerase, RpcG, converts PEB into the Δ4-to-Δ2 double bond isomer PUB (Blot et al., 92 

2009). 93 

 94 

The classification of PBPs is based on the type and number of bilin chromophores they bind. 95 

There are three classes of PBPs: (1) allophycocyanin (APC) containing a total of two PCB 96 

chromophores with the major absorption peak at 650 nm, (2) phycocyanin (PC) containing 97 

three PCB chromophores with the major absorption peak at 620 nm and phycoerythrocyanin 98 

(PEC) containing two PCB chromophores and one PVB chromophore with the major 99 

absorption peak at 570 nm (Zhao et al., 2003) and (3) four subclasses of phycoerythrin (PE) 100 

containing a total of five or six PUB and PEB chromophores with two absorption peaks at ca. 101 

495 and 560 nm, respectively (Glazer, 1984; MacColl et al., 1996; Alvey et al., 2011; 102 
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Vásquez-Suárez et al., 2018). A prefix can be added before the PBP class to indicate specific 103 

spectral properties of the attached chromophore(s) (e.g. C-PC and R-PC) (De Marsac, 2003; 104 

Six et al., 2007; Kumar et al., 2016).  105 

 106 

The assembly of PBPs into a mature PBS complex is a multi-step process. Initially, three (αβ) 107 

monomers combine to form a trimeric (αβ)3 disk, then two (αβ)3 trimers can aggregate to 108 

form a dual-disk (αβ)6 hexamer. Subsequently, the disks are stacked and linked by linker 109 

peptides to form cylindrical structures, or rods, that assemble to form PBS complex 110 

superstructures that can associate with PSII or PSI (Fig. 1C) (Arteni et al., 2009; Liu et al., 111 

2013). Four different classes of PBS complexes have been identified, which are defined 112 

based on their shape: (1) hemi-discoidal (the most common shape) (Glazer, 1983), (2) hemi-113 

ellipsoidal (Gantt and Lipschultz, 1972), (3) bundle-shaped (Guglielmi et al., 1981) and (4) 114 

rod-shaped (Marquardt et al., 1997; Hirose et al., 2019). All PBS complexes that are 115 

associated with PSII are comprised of two substructures: a core that is always made up of 116 

APC and a suite of rods arising out the core, which may contain PC, PC and PEC, and/or PE 117 

depending on species and growth environment (Ho et al., 2017; 2019).  118 

 119 

For PSII-associated PBS complexes, four main groups of linker peptides have been 120 

identified: (1) rod linker proteins (27-35 kDa) that connect (αβ)6 hexamers to form a rod, (2) 121 

a rod capping linker (8-11 kDa) that terminates rod elongation at the rod-end distal to the 122 

core, (3) a rod-core linker (25-29 kDa) that connects the rod to the core, and (4) a core-123 

membrane linker (70-120 kDa) that connects the core to a thylakoid-embedded PSII (Liu et 124 

al., 2005; Gao et al., 2011; Watanabe and Ikeuchi, 2013; Zhang et al., 2017; Elanskaya et al., 125 

2018; Rast et al., 2019). Most linker proteins do not contain chromophores and are 126 

colourless. However, in species that produce PE, a unique chromophorylated rod linker 127 

protein (called the γ-subunit) sits within the PE hexamer and facilitates rod formation through 128 

interaction with rod linker proteins in neighbouring (αβ)6 hexamers (Zhang et al., 2017; 129 

Vásquez-Suárez et al., 2018). Distinct rod-shaped PBS complexes that do not contain APC 130 

have also been described in association with PSI. In this case, a unique CpcL linker protein 131 

connects the rod directly to PSI (Fig. 1C) (Watanabe et al., 2014; Hirose et al., 2019; 132 

Niedzwiedzki et al., 2019).  133 

 134 

Mesophilic PBS complexes in red algae and cyanobacteria have been shown to be mobile, 135 

and can dissociate from and re-associate with different photosystems to balance the energy 136 
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distribution between PSI and PSII (i.e. state 1-state 2 transitions) (Mullineaux et al., 1997; 137 

Kaňa et al., 2014). However, the mechanisms and regulation involved in this process remains 138 

unclear (Calzadilla et al., 2019; Liu and Blankenship, 2019). More recently, cryo-electron 139 

tomography work has revealed that PBS complexes in the model cyanobacterium 140 

Synechocystis sp. PCC 6803 (PCC 6803) cluster on the thylakoid membrane as linear arrays 141 

of up to 20 PBSs that are linked by the peripheral PC rods and APC core, suggesting the 142 

possibility of additional linkage sites between PBS complexes (Rast et al., 2019). For further 143 

details on PBS structure, assembly and function, we recommend several recent reviews (Saer 144 

and Blankenship, 2017; Bryant and Caniffe, 2018; Harris et al., 2018; Adir et al., 2019; Li et 145 

al., 2019a).  146 

 147 

Phycobiliproteins in thermophiles  148 

Temperature has a major impact on the functionality and efficiency of the components of the 149 

light reactions of photosynthesis. Nevertheless, hyperthermophilic cyanobacteria found in 150 

alkaline hot springs are the dominant primary producers and flourish near the upper 151 

temperature limits for phototrophic life (ca. 73 °C) (Castenholz, 1969; Miller and Castenholz 152 

et al., 2000; Madigan et al., 2018). Four hyperthermophilic strains of the unicellular 153 

cyanobacterium Synechococcus spp., OH28, OH29 and OH30 (isolated from Hunter’s Hot 154 

Springs, Oregon) and Synechococcus lividus sp. SyI (isolated from the lower geyser basin at 155 

the Yellowstone National Park, Wyoming) have optimal growth temperatures above 60 °C 156 

and currently hold the record for maintaining long-term autotrophic growth (i.e. active PBS-157 

associated photosystems) at 70 °C (Table 1) (Edwards et al., 1996; Miller and Castenholz et 158 

al., 2000; Pedersen and Miller, 2017). Furthermore, several other unicellular thermophilic 159 

cyanobacteria have been shown to grow optimally at 45-60 °C, including Synechococcus 160 

lividus PCC 6715, Thermosynechococcus vulcanus NIES 2134, Thermosynechococcus 161 

elongatus NIES 2133 (also known as BP-1), T. elongatus TA-1 and more recently T. 162 

elongatus PKUAC-SCTE542 (Onai et al., 2004; Leu et al., 2013; Liang et al., 2018; 2019). 163 

There are also several examples of multicellular cyanobacterial thermophiles, such as the true 164 

branching, nitrogen-fixer Fischerella thermalis (also known as Mastigocladus laminosus), 165 

which is found in microbial mats of hot springs at temperatures of up to 69 °C (Alcorta et al., 166 

2018; 2019). 167 

 168 

The thermostability of PBPs from thermophilic species has been examined both in vitro and 169 

in vivo, with PC being the most well characterised PBP. In thermophiles, the coupling of PBS 170 
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to photosystems is stronger than in mesophiles, such that thermophiles rely more on non-171 

photochemical quenching than state transitions to regulate light capture efficiency (Kaňa et 172 

al., 2014). However, prolonged exposure to extreme temperatures can still result in the 173 

reversible dissociation of PBSs from photosystems or, under severe stress, irreversible 174 

denaturation of PBP components (Pedersen and Miller, 2017; Alcorta et al., 2019). The 175 

structural state of the PBS can be inferred from the amplitudes of its PBP absorbance or 176 

fluorescence peaks, which are dependent on the rigid conformation of the attached bilin 177 

chromophore(s) in the folded biliprotein (Ma et al., 2007). When a PBP denatures the 178 

chromophore typically remains attached to protein, but its absorbance and fluorescence peaks 179 

are either significantly reduced or disappear owing to losses in chromophore rigidity (Kupka 180 

and Scheer, 2008).  181 

 182 

The concentration of PC extracted from the mesophilic species A. platensis has been shown 183 

to decline with increasing temperatures (i.e. in terms of absorbance, indicative of protein 184 

denaturation), with 22% and 48% losses following incubation at approximately 50 °C and 60 185 

°C, respectively, for 30 minutes at pH 7 (Patel et al., 2004; Chaiklahan et al., 2012; Wu et al., 186 

2016). In contrast, PC extracted from S. lividus PCC 6715 showed only a 15% loss at 60 °C 187 

for 5 hours at pH 7, and no losses at 50 °C for 4 hours within a pH range of 4 to 8 (Liang et 188 

al., 2018). Measurements based on fluorescence of PC extracted from T. elongatus TA-1 also 189 

showed minimal losses of PC (i.e. ~10%) following incubation at 50 °C for 4 hours within a 190 

wider pH range of 4 to 9 (Leu et al., 2013), indicating that PC from T. elongatus TA-1 may 191 

have more robust pH stability compared to that from S. lividus PCC 6715. Fluorescence is a 192 

more sensitive method of measuring PC stability compared to absorbance (Kupka and 193 

Scheer, 2008; Stoitchkova et al., 2007), and stability measurements between in vitro 194 

absorbance- and fluorescence-based studies may not be directly comparable, but the observed 195 

trends clearly show that PC from thermophilic species is stable for longer at higher 196 

temperatures and often in a wider pH range. To date, the most thermostable PC examined in 197 

vitro was isolated from S. lividus sp. SyI (Edwards et al., 1997). Although limited 198 

information is available regarding the testing conditions, PC extracted from S. lividus sp. SyI 199 

reportedly remained stable at ca. 70 °C.  200 

 201 

Reconstruction of the assembly pathway for PBPs in E. coli has allowed for further in vitro 202 

characterisation studies (Tooley et al., 2001), for example, of APC subunits from 203 

thermophilic species (Chen et al., 2013). Fluorescence of heterologously produced APC β-204 
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subunit from T. elongatus BP-1 showed long-term stability (i.e. no change following storage 205 

at 4 °C for 30 days) and was reduced by 30% following a 4-hour incubation at 60 °C. In 206 

contrast, the fluorescence of the APC β-subunit from the mesophilic model species PCC 6803 207 

was reduced by over 90% following either long-term storage or short-term incubation at 60 208 

°C. The APC �-subunit in T. elongatus BP-1 and PCC 6803 was relatively more stable for 209 

both species, as fluorescence decreased by 5% and 60%, respectively, following a 1-hour 210 

incubation at 65 °C (Chen et al., 2016). Notably, maximum fluorescence of the APC �-211 

subunit from T. elongatus BP-1 was observed at a slightly higher pH range (pH 7 to 9) 212 

compared to PCC 6803 (pH 5 to 7). T. elongatus species are typically found in alkaline hot 213 

springs and grow better at pH 9, which suggests that APC �-subunits can be adapted to 214 

different pH environments (Leu et al., 2013). 215 

 216 

To better understand the stability adaptations of photosystems and PBS to different thermal 217 

environments, several authors have investigated the interactions between PSII and PBS using 218 

in vivo fluorescence approaches (Pedersen and Miller, 2017). Under standard growth 219 

conditions, PBSs are tightly coupled to PSII such that excitation energy from light is directed 220 

to the photosynthetic reaction centre, and the only minimal levels of fluorescence are 221 

observed for individual PBP components (e.g. PC or APC). However, environmental changes 222 

such as increases in temperatures can lead to PSII inactivation, disassociation of PBSs, and 223 

eventually PBP denaturation, with consequent changes in the associated PBP fluorescence 224 

peaks. Notably, the temperatures required for PSII and PBS inactivation typically exceed the 225 

thermal limits for sustained growth for cyanobacterial strains, which indicates an adaptive 226 

capacity of the light reactions to short-term high temperature stress (Miller and Castenholz, 227 

2000; Allewalt et al., 2006).  In PCC 6803, PSII was fully inactivated after 5 minutes at 52 228 

°C as evidenced by a decrease in fluorescence of PSII (i.e. at 690 nm measured at 77K) 229 

(Stoitchkova et al., 2007). Subsequent dissociation of the PBS resulted in an increase in the 230 

fluorescence peaks of individual PBP components (i.e. PC at 650 nm and APC at 660 and 231 

685 nm). PBPs in PCC 6803 appeared to remain stable and highly fluorescent until 64 °C in 232 

vivo, after which fluorescence declined, indicative of protein denaturation. The latter was 233 

observed in a similar temperature range where a decline in absorbance was observed for PC 234 

from A. platensis in vitro (Chaiklahan et al., 2012). In contrast, in vivo fluorescence of PC 235 

and APC in T. vulcanus did not change following incubation at 70 °C for 5 minutes, and 236 

increased fluorescence (indicating PBS disassociation from PSII) was only observed at 80 °C 237 
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(Inoue et al. 2000). Incubation at 90 °C for 5 minutes eventually led to a significant reduction 238 

in PC fluorescence while APC fluorescence was no longer detectable. The latter result could 239 

indicate that PC is more thermostable than APC. Inactivation of PSII started at 55 °C but was 240 

only completely inactivated at 68 °C. Notably, T. vulcanus cells showed partial recovery of 241 

PSII activity from short exposure to high temperatures (i.e. up to 74 °C for 5 minutes) when 242 

cooled to 50 °C. However, in comparison to PC and APC, these results suggest that PSII in T. 243 

vulcanus is significantly more heat sensitive and thus, like PCC 6803, PSII is the more 244 

limiting factor restricting photosynthetic efficiencies at high temperatures.  245 

 246 

Whole cell in vivo fluorescence measurements of Synechococcus OH28 have shown the most 247 

remarkable adaptation to high temperatures stress with PBS and PSII inactivation occurring 248 

at 75 °C and at 80 °C, respectively (Pedersen and Miller, 2017). To date, Synechococcus 249 

OH28 is the only cyanobacterial strain identified where PSII appeared more thermostable 250 

than the PBS. The latter may be a phenotypic trait that evolved under the acutely high 251 

temperatures (ca. 70 °C) in their native habitat (Miller and Castenholz et al., 2000). However, 252 

Synechococcus OH28 also demonstrated a relative reduction in photochemical efficiencies 253 

(i.e. an increase in fluorescence) at temperatures below 60 °C, which may be due to partial 254 

PBS disassociation at lower temperatures (Pedersen and Miller, 2017). A similar 255 

phenomenon has been observed in the thermophilic red alga Cyanidium caldarium, where the 256 

PBS was coupled to PSII at 38 °C but dissociated at lower temperatures (i.e. 14 °C) resulting 257 

in a subsequent increase in PBP fluorescence (Kana et al., 2014). These data suggest a 258 

structural evolutionary trade-off between the capacity for PSII and PBS coupling and 259 

adaptation to high temperature environments (Pedersen and Miller, 2017).  260 

 261 

Structural characteristics of thermostable phycocyanin  262 

The structure and composition of PC has been extensively studied, and several studies have 263 

examined how specific residues contribute to increased structural rigidity and thermostability 264 

in thermophilic species (Adir et at al., 2001; Pittera et al., 2017; Liang et al., 2018). Notably, 265 

the degree of homology between PC �- and β-subunits from different species is high, while 266 

crystal structures from a variety of species have shown a great deal of similarity (Adir et at 267 

al., 2001). Recent sequence analysis of the differences between PC subunits from 21 cold- 268 

(i.e. 10-25 °C) and warm-adapted (i.e. 18-35 °C) marine Synechococcus strains revealed two 269 

common substitutions (Pittera et al., 2014; Pittera et al., 2017). Firstly, a glycine to alanine 270 

substitution (i.e. a more hydrophobic amino acid) was identified at residue 43 (G43A) on �-271 
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helix B of the �-subunit in warm-adapted strains (Fig. 2). Subsequent analysis of the 272 

substitution region (i.e. residues 35-45) predicted a decrease in flexibility of the peptide 273 

backbone in warm-adapted strains (Gasteiger et al., 2005), which was in agreement with the 274 

more rigid conformations observed for thermophilic strains (Akanuma et al., 2019). Notably, 275 

hyperthermophilic species also contain a hydrophobic residue (valine) at this position. In 276 

addition, residue 43 faces the β-subunit and might influence the stability of the (�β) 277 

monomer. Secondly, a serine to asparagine substitution was identified at residue 42 (S43N) 278 

on the β-subunit in warm-adapted strains. Residue 42 is located on an exposed domain of �-279 

helix C, which faces helix I of the �-subunit of a neighbouring (�β) monomer within the 280 

hexameric (�β)6 complex. The thermostability of PC assemblies (i.e. (�β)3 or (�β)6 281 

complexes) are significantly higher than the (�β) monomer (Edwards et al., 1997). Therefore, 282 

amino acid substitutions on the interface between �- and β- subunits, (�β) monomers and 283 

(�β)3 trimers are likely to impact on the stability of the entire PBS assembly, particularly as 284 

each substitution will be repeated six times within each (�β)6 PC hexamer. 285 

 286 

Further structural comparisons of the (�β)6 PC hexamers from cyanobacterial species from 287 

different habitats revealed three symmetrical “hot spots” that potentially contribute to 288 

thermostability (Fig. 3A, 3B) (Liang et al., 2018). The hot spots included five residue 289 

substitutions located on �-helix B of the �-subunit at positions 21, 28, 33, 37 and 42, and one 290 

at position 145 (Fig. 2; Fig. 3C, 3D). In thermophilic species, these residues form additional 291 

hydrogen bonds and salt bridges either with other residues within the �-subunit, with the β-292 

subunit of its (�β) monomer, or with the �-subunit of the opposite (�β)3 trimer that is 293 

positioned in a face-to-face orientation within the (�β)6 hexamer (Fig. 3D).  294 

 295 

A further residue change in the hyperthermophilic species Synechococcus OH28 was 296 

identified on the �-subunit of PC, consisting of a glutamine (or leucine) to methionine 297 

substitution at residue 111 (Q/L111M) when compared to the slightly less thermophilic strain 298 

Synechococcus OH20 or several mesophilic species (Table 1; Fig. 2). The methionine 299 

substitution was shown to make contact with the PCB chromophore on cysteine residue 84 on 300 

the �-subunit (�84), and has been attributed to the blue shift in the absorption peak of PC 301 

(i.e. from 620 nm to 608 nm) observed in Synechococcus OH28 (a relatively unique 302 

phenotypic trait also observed in the hyperthermophile S. lividus sp. SyI) (Edwards et al., 303 

1996; Pedersen and Miller, 2017). Although the specific impact of this residue change on PC 304 
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stability is not clear, this was the only modification identified as under positive selection 305 

using a maximum-likelihood model of codon evolution in a range thermophilic 306 

Synechococcus species. 307 

 308 

Phycobiliproteins in thermoacidophiles 309 

To date, no cyanobacterial species have been identified in environments of pH less than 4 310 

(Hirooka et al., 2017). However, several eukaryotic photosynthetic species can be found in 311 

such niches. Here we have highlighted the two genera of red algae Galdieria 312 

and Cyanidioschyzon as examples of PBS-containing microorganisms that prosper in 313 

thermoacidophilic conditions (i.e. pH 0.05-5 at 42-56 °C) (De Clerck et al. 2012; Reisser, 314 

2013; Miyagishima et al., 2017; Ciniglia et al., 2019). For example, Galdieria sulphuraria is 315 

a polyextremophile with an impressive ability to survive at low pH (pH 1-5), a high 316 

temperatures (up to 56 °C), high salt (up to 10% [w/v] NaCl, three-fold higher than sea 317 

water) and in the presence of toxic metals (e.g. cadmium, mercury, aluminum, and nickel) 318 

(Weber et al., 2004; Seckbach, 2005; Reisser, 2013; Minoda et al., 2015; Hirooka and 319 

Miyagishima, 2016; Rossoni and Weber, 2019). Furthermore, G. sulphuraria can grow 320 

heterotrophically on over 50 different carbon sources, including sugars and sugar alcohols 321 

(e.g. glycerol and dulcitol). Cyanidioschyzon merolae is of interest as a model organism 322 

because of its unique position at the root of the red algal lineage as an intermediate between 323 

cyanobacteria and higher plants. In addition to a PBS complex associated with PSII, C. 324 

merolae also possesses a light-harvesting complex (LHC) associated with PSI, synonymous 325 

with the LHC present in green algae and higher plants (Nikolova et al., 2017). 326 

 327 

Thermoacidophilic red algae have also evolved PBPs with robust stability under high 328 

temperatures, comparable to that of thermophilic cyanobacteria. For example, the absorbance 329 

of PC extracted from G. sulphuraria was reduced by ca. 20% after incubation at 70 °C for 30 330 

minutes at pH 4.5 (Moon et al. 2014), while the absorbance of PC extracted from C. merolae 331 

did not decrease following incubation at 70 °С for 30 minutes at pH 5, and was reduced only 332 

by 30% after incubation at 80 °C (Rahman et al. 2017). Interestingly, the PC �-subunit of C. 333 

merolae has two extra cysteine residues at positions 27 and 73, which are also present in 334 

hyperthermophiles (Fig. 2). These residues may form covalent disulphide bonds and thus 335 

increase the stability of the protein (Fass, 2012; Rahman et al., 2017). 336 

 337 
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Acidophiles maintain an intracellular pH close to neutral (comparable to mesophilic species) 338 

through several adaptations, including a plasma membrane with reduced permeability to 339 

protons, active ATP-dependent proton export, and/or coupled export, where a symporter or 340 

antiporter uses the driving force of a different ion to remove protons (Beardall and Entwisle, 341 

1984; Messerli et al., 2005; Enami et al., 2010; Madigan et al. 2018). Thus, PBPs from 342 

acidophiles are generally not exposed to acidic environments, such that PBPs extracted from 343 

acidophilic species show similar stability characteristics to mesophilic species under low pH 344 

conditions (Patel et al., 2004; Antelo et al., 2008; Chaiklahan et al., 2012; Patel et al., 2018).  345 

 346 

PBPs from mesophilic species are typically stable at room temperature within a pH range of 4 347 

to 8, and are most stable at pH 5 when exposed to increased temperatures (Patel et al., 2004; 348 

Antelo et al., 2008; Chaiklahan et al., 2012; Patel et al., 2018). However, incubation of PC 349 

from A. platensis at pH less than 4 led to conversion of the rigid, extended conformation of 350 

the bilin chromophores into cyclic forms and subsequent chromophore protonation, resulting 351 

in a shift in a peak absorption from 620 nm to 650-700 nm and a change in pigment colour 352 

from blue to green (Falkeborg et al., 2018). Incubation at low pH (i.e. pH 3) at room 353 

temperature also led to rapid protein denaturation, as evidenced by a 70% reduction in PC 354 

absorbance (Wu et al., 2016). Similarly, PC extracted from C. merolae (grown in pH 2 355 

media) was generally stable under room temperature condition at pH 4, but the absorbance of 356 

PC rapidly dropped to 50% at pH 3 (Rahman et al., 2017). Analogous results were observed 357 

for PC from two acidophilic strains of Galdieria spp. (Carfagna et al., 2018). Thus, PBPs 358 

appear able to evolve in response to a wide range of temperature environments, but show a 359 

limited capacity to adapt to different pH conditions, particularly low pH. The latter may be 360 

due to limits in the evolutionary capacity of the PBS, or possibly because PBPs from 361 

acidophiles have not been subjected to suitable selection pressure.  362 

 363 

Applications of phycobiliproteins with increased stability 364 

PBPs may be useful in a wide variety of industrial applications. At present, only mesophilic 365 

species are used for commercial production of PBPs: two strains of red algae for the 366 

production of PE (i.e. Porphyridium sp. and Rhodella sp.), while PC is produced exclusively 367 

from the cyanobacteria Arthrospira spp. (Spolaore et al., 2006). However, many industrial 368 

processes operate under conditions that exceed the stability range of PBPs sourced from 369 

mesophiles. Here, we briefly review applications that could take advantage of the superior 370 

properties of PBPs from extremophilic species with an emphasis on the food and textile 371 
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industries. Finally, we consider some of the challenges in large scale production and 372 

purification of thermophilic PBPs. 373 

 374 

Food colourants 375 

Synthetic food colourants, such as Ponceau 4R and Allura Red AC, have been increasingly 376 

criticised for their potential negative impact on human health, and particularly for their 377 

association with the attention deficit hyperactivity disorder (ADHD) in susceptible children 378 

(McCann et al., 2007; Coultate and Blackburn, 2018). Subsequent marketing pressures have 379 

spurred the food industry to replace the use of synthetic colourants with biologically-derived 380 

‘natural ’pigments, such as anthocyanins and carotenoids, with an accompanying promotion 381 

of their apparent health benefits (Li et al., 2017; Eggersdorfer and Wyss, 2018). The global 382 

demand for natural food colourants is currently increasing at a significant rate, with the total 383 

market revenue expected to grow by 6% annually over the period 2015-2025 from USD 1.94 384 

billion in 2018 (Research and Markets, 2019).  385 

 386 

The two PBPs PC and PE have been extensively used as blue and red colourants, 387 

respectively. PC from A. platensis is particularly important for the food industry as it is 388 

currently the only known natural, soluble blue colourant (Coultate and Blackburn, 2018). PC 389 

has been used for colouration of many types of foods, but primarily for confectionaries and 390 

dairy products, such as ice-cream and yoghurt (Eriksen et al., 2008). A. platensis is currently 391 

the only cyanobacterium that has GRAS (generally recognised as safe) status, and the use of 392 

PBS components from A. platensis as colour additives are currently exempt from the 393 

certification by the U.S. Food and Drug Administration (FDA) in some but not all food goods 394 

(Code of Federal Regulations Title 21, 2019). A critical barrier to the commercial usage of 395 

PC or PE from thermophiles is the need for the source organism to obtain administrative 396 

approval (e.g. GRAS status from the FDA), which requires a significant capital investment to 397 

perform extensive toxicological testing. Nevertheless, the applications of A. platensis PC in 398 

the food industry remain limited due to its relatively low thermostability. For instance, low 399 

temperature or batch pasteurisation conditions typical for dairy products (e.g. 62 °C for 30 400 

minutes) would result in significant losses of A. platensis PC (Antelo et al., 2008; Chaiklahan 401 

et al., 2012). In contrast, PC from thermoacidophilic red alga C. merolae would be 100% 402 

stable under those conditions (Rahman et al., 2017).  403 

 404 
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Usage of PBPs in the food industry is also limited by pH. For example, the majority of 405 

beverages in the drinks and beverage industry have a pH below 4, which is currently beyond 406 

the long-term stability range of PC from both mesophilic and extremophilic species (Reddy et 407 

al., 2017). Nevertheless, the demand for beverages with natural blue colourants remains high 408 

(Galaup et al., 2019). Thus, the identification of native PCs or engineering of synthetic 409 

variants (e.g. using directed evolution approaches in E. coli) with improved pH stability 410 

could have significant commercial applications. 411 

 412 

Many attempts have been made to improve the stability of mesophilic PBPs using a range of 413 

additives, such as acids, sugars, salts and cross-linking agents (Table 2). The majority of the 414 

studies have utilised additives that are already widely used in the food industry and comply 415 

with FDA safety regulations. For example, the thermostability of A. platensis PC can be 416 

increased by the addition of sugars, such as fructose or glucose, which facilitate protein 417 

polymerisation via the formation of N-linked glycosidic bonds (Martelli et al., 2014; 418 

Hadiyanto et al., 2018). Common food preservatives, such as citric and benzoic acids, have 419 

also been shown to improve the thermostability of PC, which may be linked to a reduction in 420 

pH of the solution to levels that favour stability (e.g. pH 5.5) (Mishra et al., 2008; Mogany et 421 

al., 2019).  422 

 423 

Toxic additives, such as cross-linking agents (e.g. glutaraldehyde, formaldehyde and 424 

dithiobis (succinimidyl propionate)) can also significantly improve the stability of PBPs  for 425 

application uses outside of the food industry, such as fluorescent labels used in biomedical 426 

research (Cubicciotti, 1997; Fukui et al., 2004; Sun et al., 2006). Fusion proteins of PC �-427 

subunit were used to prevent dissociation of PC (�β)3 trimers into (�β) monomers at low 428 

protein concentration (Cai et al., 2001). PBPs can also be stabilised by protein fusion tags, 429 

microencapsulation techniques (e.g. using alginate and chitosan) or by the formation of 430 

nanofibers using synthetic polymers (e.g. polyethylene oxide) (Cai et al., 2001; Yan et al., 431 

2014; Braga et al., 2016; Pradeep and Nayak, 2019). Recently, improved stability of PC at 432 

pH 2 was demonstrated using sodium dodecyl sulphate (SDS) micelles, which prevented 433 

protonation of the chromophore(s) and thus preserved the blue colour (Falkeborg et al., 434 

2018). Notably, there are no studies to our knowledge that have attempted to further improve 435 

the stability of PBPs from thermophilic species. Augmenting the superior properties of PBPs 436 

from thermophilic species with stabilising additives could significantly expand the 437 

applications of PBPs in the food industry and beyond. 438 
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 439 

Textiles dyes 440 

The textile industry primarily relies on synthetic dyes produced from chemicals, petroleum 441 

by-products, and minerals. The negative environmental impact of synthetic dyes is well 442 

recognised, particularly in terms of water pollution (Kant, 2012). Natural dyes offer several 443 

advantages in terms of sustainability, including a reduced carbon footprint for the textile 444 

industry (Moldovan et al., 2017a). However, the uptake of natural dyes, such as PBPs, is still 445 

limited due to challenges in colour and shade reproduction, poor fastness (i.e. resistance to 446 

fading or running) to washing detergents and light exposure (Khatri and White, 2015). Recent 447 

studies have demonstrated that cotton fabrics coloured with PE-based dyes from the 448 

mesophilic red algae Gracilaria cornea and Gracilaria gracilis do comply with the European 449 

accepted standards (UNE-EN ISO) for textiles in terms of colour and fastness to laundering 450 

and rubbing tests (e.g. the measurement of the durability of a fabric) (Moldovan et al., 2017a, 451 

b). Furthermore, PC from A. platensis and PE from the mesophilic red macroalga Gracilaria 452 

vermiculophylla has also been used successfully for dyeing cotton and wool fabrics 453 

(Ferrandiz et al., 2016; Gorman et al., 2017).  454 

 455 

In the course of the dyeing process, textiles are often subjected to high temperatures in the 456 

dye solution (e.g. 90 minutes at 50 °C) (Ferrandiz et al., 2016). During cotton printing, the 457 

attachment of the dye to the fabric requires drying at 80 °C for 10 minutes, followed by 458 

curing at 110 °C for 2 minutes (Moldovan et al., 2017a, b). The latter process leads to a 459 

reduction in colour intensity for PE from Gracilaria sp. , indicative of PBP degradation. As 460 

an alternative, PC from thermophilic S. lividus PCC 6715 has shown robust stability under 461 

prolonged temperature stress and may remain stable upon short-term exposure to curing 462 

temperatures (Liang et al., 2018). The usage of natural dyes, such as PBPs, in the textile 463 

industry is still developing, but we hypothesise that improvements in PBP performance and 464 

access to sufficient quantities of substrate could provide an eco-friendly, biodegradable, non-465 

carcinogenic and sustainable alternative to synthetic dyes. 466 

 467 

Other potential applications 468 

PBPs could be of significant use as natural alternatives to chemical sensitising dyes in low 469 

cost photovoltaics devices, such as dye-sensitised solar cells (Bora et al., 2012; Schrantz et 470 

al., 2017; Sharma et al., 2018; Li et al., 2019a). However, long-term stability would be 471 

required under direct sunlight and at temperatures up to 80 °C. PBPs have also shown 472 
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promise in pharmaceutical research as a potent anti-oxidant (Dejsungkranont et al., 2017; Li 473 

et al., 2019b). But their applications are limited due to the loss of the anti-oxidant 474 

functionality during long-term storage (Mishra et al., 2008; Chen et al., 2016; Yang et al., 475 

2017). PC in particular, has been considered as a promising anti-cancer agent against multiple 476 

types of cancer cells (for a detailed review see Jiang et al., 2017). Lastly, PBPs have several 477 

important advantages relative to other fluorescent labels used in research and diagnostics, 478 

including a smaller size (i.e. 27 kDa for GFP compared to ca. 18 kDa for a PC �-subunit) and 479 

a higher quantum yield (e.g. PC �-subunit carrying PEB chromophore (0.98) compared to 480 

mCherry (0.22) or eGFP (0.60)) (Alvey et al., 2011; Wall et al., 2015; Chen and Jiang, 2018). 481 

PBPs from thermophilic species show significant promise for specific fluorescent labelling 482 

applications, such as in situ protein localisation studies where elevated temperatures are 483 

required (e.g. to study autotrophic and heterotrophic thermophiles) (Frenzel et al., 2018). 484 

 485 

Production and extraction of phycobiliproteins 486 

The levels of PC productivity from A. platensis typically vary between 14 and 125 mg L-1 d-1 487 

depending on the growth conditions (e.g. light, temperature and nitrogen availability) (Chen 488 

et al. 2013; Ho et al., 2018; Lima et al., 2018; Pagels et al., 2019). In comparison, the highest 489 

reported productivity for a thermostable PC from cyanobacteria is much lower (ca. 0.25 mg 490 

L-1 d-1, from S. lividus PCC 6715) (Liang et al., 2018). Thus, significant improvements are 491 

required to match the production capacity for commercial strains. To date, the highest yield 492 

of PBP achieved in E. coli is 56.4 mg L-1 d-1  (ca. 37% of the total cell protein) for the APC 493 

�-subunit from T. elongatus BP-1, in which 96.7% of the PBPs carried a covalently attached 494 

chromophore (Chen and Jiang, 2019). As APC concentrations are up to eight-fold lower than 495 

PC in native PBSs (e.g. from A. platensis), E. coli appears a promising chassis for 496 

heterologous production of thermostable PBP subunits. Assembly of APC (�β)3 trimers has 497 

also been demonstrated in E. coli, but potential yields have not yet been reported (Liu et al., 498 

2010). 499 

 500 

In red alga C. merolae the reported PC productivity was low (0.016 mg L-1 d-1) owing to a 501 

low PC content of 0.31 mg g-1 of cell dry weight (Rahman et al., 2017). In contrast, a 502 

remarkably high PC productivity of 2.2 g L-1 d-1 has been reported in G. sulphuraria 074G 503 

using a combination of heterotrophic and phototrophic conditions to achieve a high cell 504 

density and induce PC production, respectively (Wan et al. 2016). However, the growth 505 
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medium (pH 2.0) and high temperatures (up to 56 °C) required to cultivate G. sulphuraria 506 

can lead to rapid corrosion of commonly used stainless steel bioreactors and increased energy 507 

consumption, making large-scale production more challenging (Eriksen, 2018). 508 

 509 

Improving the productivity of PBPs from thermophilic species could be achieved by 510 

optimising growth conditions and media composition (del Rio-Chanona et al., 2015; Lima et 511 

al., 2018; Mogany et al., 2018). However, an alternative strategy could lie in engineering 512 

PBPs from extremophilic species into faster growing, genetically amenable species (e.g. PCC 513 

6803, Synechococcus elongatus UTEX 2973 or Synechococcus sp. PCC 11901) (Yu et al., 514 

2015; Włodarczyk et al., 2019), or by designing synthetic biliproteins with the necessary 515 

properties de novo (Mancini et al., 2017; Sheehan et al., 2018; Dawson et al., 2019). An 516 

increasing availability of synthetic biology tools in cyanobacteria could help to further 517 

increase PBP production as well as understand PBS stability properties (Gale et al., 2019; 518 

Vasudevan et al., 2019). Genetic engineering of novel PBP variants into A. platensis would 519 

be an ideal scenario considering its GRAS status, high achievable yields of PBPs, favourable 520 

conditions for preventing growth of contaminants (i.e. culturing at pH 8-11.5) in open 521 

raceways and the vast amount of studies regarding downstream processing and protein 522 

extraction. However, transformation of A. platensis has proved challenging due to the 523 

presence of robust native endonuclease activities, which greatly restrict transformation 524 

efficiencies and prevent the uptake of heterologous DNA (Tragut et al., 1995; Shiraishi and 525 

Tabuse, 2013; Jeamton et al., 2017). There are also several maintenance challenges 526 

associated with A. platensis cultivation. For example, A. platensis requires a high 527 

concentration of inorganic salts for optimal growth, which can decrease the solubility of CO2 528 

in the media (da Rosa et al., 2015). Furthermore, growth in an alkaline pH reduces the 529 

solubility of metal ions (e.g. Fe and Mg) that play a key role in cyanobacterial growth 530 

(Nogami et al., 2016). Therefore, production of PBPs in alternative species should be 531 

considered. 532 

 533 

Finally, strategies to improve the scale and efficiency of downstream processing for A. 534 

platensis biomass and PC extraction have been studied extensively over the past several 535 

decades (de Jesus et al., 2016). Traditional inexpensive and rapid biomass processing 536 

methods, such as spray drying (i.e. short term exposure to 150 °C) or oven drying (i.e. 7 537 

hours at 60 °C), resulted in ca. 50% losses of A. platensis PC (Sarada et al., 1999). Although 538 

comparable studies from thermophilic species are still lacking, biomass from the latter will 539 
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likely perform significantly better in extraction methods that require high-temperature 540 

conditions.  541 

 542 

Closing remarks 543 

PBSs are remarkable pigment protein complexes that have successfully evolved to maintain 544 

functionality in extreme temperature conditions. The potential roles of specific residues in the 545 

thermostability of PBPs have provided target sights for the screening of novel thermotolerant 546 

isoforms. With the vast accumulation of structural data for PBSs and PBPs, the rapid 547 

emergence of new molecular tools available for cyanobacterial research should help 548 

researchers to test the contributions of particular residues and even design new synthetic PBP 549 

variants. In this context, extremophilic species play a vital role as a source of genetic 550 

variation to develop hypotheses to test the capacity of PBS components to adapt to different 551 

environments. Moreover, several industries could benefit from taking advantage of the 552 

thermostability of PBPs from extremophiles, particularly when used in combination with 553 

other approaches that could further improve performance. 554 
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Figure legends 

Figure 1. Key components and structures of a phycobilisome complex. (A) Molecular 

structure of phycocyanin �- and β-subunits from T. vulcanus (PDB ID: 3O18), with �-helices 

labelled (A-I for the �-subunit and A-J for the β-subunit). The bilin chromophores (one for 

the �-subunit and two for the β-subunit) are shown in green. (B) Biosynthesis pathway of 

bilin chromophores from heme to biliverdin IX� (BV) to phycocyanin (PCB), 

phycoerythrobilin (PEB), phycoviolobilin (PVB) and phycourobilin (PUB). Enzymes written 

in blue are heme oxygenase (HO), phycocyanobilin:ferredoxin oxidoreductase (PcyA), 

15,16-dihydrobiliverdin:ferredoxin oxidoreductase (PebA), phycoerythrobilin:ferredoxin 

oxidoreductase (PebB) and two lyases-isomerases (PecE/PecF and RpcG). The structural 

differences between linear tetrapyrroles relative to PCB are highlighted with red. The 

approximate colour of individual bilin chromophores is shown when attached to the PC �-

subunit of Synechocystis sp. PCC 6803 following heterologous production in E. coli (Alvey 

et al., 2011). Lyases required for the attachment of PCB and PEB to their cognate apo-

proteins (indicated here by the Cys-binding site) are not shown. (C) Schematic structures of 

the hemi-discoidal phycobilisomes in T. vulcanus (left) (Nganou et al., 2016) and 

Synechocystis sp. PCC 6803 (middle), and the rod-shaped phycobilisome from Leptolyngbya 

sp. PCC 6406 that attaches to photosystem I (PSI) via linker peptide CpcL (right) (Hirose et 

al., 2019). Evidence suggests that hemi-discoidal phycobilisomes can attach to photosystem 

II (PSII) or PSI (Arteni et al., 2009; Liu et al., 2013). Abbreviations: APC, allophycocyanin; 

PC, phycocyanin; PE, phycoerythrin. 

 

Figure 2. Comparison of the phycocyanin �-subunit peptide sequences of cyanobacteria that 

grow in different environments. The predicted average flexibility of amino acids are shown 

for different habitat classes including hyperthermophiles, thermophiles, thermoacidophiles, 

mesophiles, and cold-adapted species (as in Table 1). Flexibility values were calculated 

using the Expasy tool ProtScale (average flexibility scale, window size 9) (Gasteiger et al., 

2005). The average flexibility for hypethermophiles was shifted two residues to the right 

starting from position 74 to account for a common truncation (position 74 and 75). A 

multiple sequence alignment is shown for species described in this study (generated using T-

Coffee, EMBL-EBI), including hyperthermophiles (dark red), thermophiles (light red), 

thermoacidophiles (orange), mesophiles (green) and cold-adapted species (blue) (UniProt 

IDs: U3SBH4, W0FL73, Q85G43,A0A1L6BXH4, P50032, Q54715, P00306, P72509, 
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A0A2D2Q3Q2, Q9AM02, Q2JT28, A0A1L6BXJ3). Incomplete sequences for 

Synechococcus OH28 and OH20 are marked with asterisks. Due to the unavailability of 

complete sequences for Synechococcus OH28 and OH20, the full sequence of Synechococcus 

sp. JA-3-3Ab was added for comparison (100% identity match with Synechococcus OH20 

based on the available sequence). Alignments were coloured using the Clustal X colour 

scheme (www.clustal.org). The predicted locations of �-helices are taken from the crystal 

structure of T. vulcanus (PDB ID: 3O18), and are labelled in light red. The phycocyanobilin 

binding site (C84) is labelled in blue (PCB). The key amino acid substitutions that are 

predicted to contribute to thermostability are marked based on study in red (Liang et al., 

2018), blue (Pittera et al., 2017), green (Rahman et al., 2017) or dark grey arrows (identified 

here based on the average flexibility analysis). 

 

Figure 3. Molecular structure of phycocyanin showing key amino acid substitutions that 

could influence thermostability. (A) Top view of the structure of the (�β)6 PC hexamer from 

A. platensis (PDB ID: 1GH0). The locations of three hot spots that contribute to 

thermostability are marked with black rectangles (Liang et al., 2018). (B) A side-view of the 

(�β)6 hexamer from A. platensis showing the top and bottom (�β)3 trimer, (C and D) The 

structure of a single hot spot within the (�β)6 hexamer from (C) A. platensis or (D) T. 

elongatus (PDB ID: 3L0F). The residues of �-helix B from two PC �-subunits located in the 

top and bottom (�β)3 trimer within the (�β)6 hexamer (i.e. one of the three hot spots) are 

shown in cartoon. The key residues at the positions 21, 28, 33, 37, 42, 43 and 145 highlighted 

by Liang et al. (2018) are shown in sticks, labelled and highlighted with either orange or 

green for the bottom or top (�β)3 trimer, respectively. Polar interactions (i.e. hydrogen bonds 

and salt bridges) for key residues are shown in magenta for the bottom (�β)3 trimer or cyan 

for the top (�β)3 trimer. More specific details for residue interactions are described in Liang 

et al. (2018). 
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Table 1. Growth conditions for cyanobacteria and red algae species from different habitats. 

The recorded minimum temperature for growth (Tmin), optimal temperature for growth (Topt) 

and maximum temperature for growth (Tmax) are shown. Hyperthermophilic, thermophilic (or 

thermoacidophilic) and mesophilic species have optimal growth temperature above 60, 40 

and 15 °C, respectively. In contrast to mesophiles, cold-adapted species are able to tolerate 

temperatures below 15 °C (with optimal growth temperature at ca. 20 °C).  

 

Type Species Tmin Topt Tmax References 
      

Hyperthermophile Synechococcus sp.  
JA-3-3Ab 

40 55 65 Allewalt et al. (2006) 

 Synechococcus sp. OH20 50 57 62 Miller and Castenholz 
(2000); Pedersen and 
Miller (2017) 

 Synechococcus sp. OH28 50 65 70 Miller and Castenholz 
(2000); Pedersen and 
Miller (2017) 

Thermophile Thermosynechococcus  
elongatus BP-1 

30 45-55 55 Onai et al. (2004); Liang et 
al. (2018) 

 Thermosynechococcus  
elongatus PKUAC-
SCTE542 

45 55 60 Liang et al. (2019) 

 Thermosynechococcus  
vulcanus NIES 2134 

30 50 55 Onai et al. (2004); Liang et 
al. (2018) 

 Synechococcus lividus  
PCC 6715 

   -  50 55 Liang et al. (2018) 

Thermoacidophile Galdieria sulphuraria 25 40-50 56 Hirooka and Miyagishima 
(2016); Rossoni and 
Weber (2019) 

 Cyanidioschyzon merolae 25 40-45 50 Sumiya et al. (2014); 
Nikolova et al. (2017) 

Mesophile Synechocystis PCC 6803 25 30 40 Inoue et al. (2001) 
 Arthrospira platensis 20 35 40 Kumar et al. (2011) 
 Synechococcus M16.1 18 32 35 Pittera et al. (2017) 

Cold-adapted Synechococcus MVIR-18-1 10 22 25 Pittera et al. (2017) 
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Table 2. Studies investigating the effect of additives or genetic modifications on the stability of phycobiliproteins or phycobilisomes from 

different mesophilic species. The ranges of temperatures, pH, buffers and incubation conditions under which phycobilisomes (PBPs) or 

phycobiliproteins (PCBs) were tested are indicated where available. Buffer abbreviations: AB, acetate buffer; CP, citrate phosphate; PB, 

phosphate buffer; SGF, simulated gastric fluid; SIF, simulated intestinal fluid. Methods abbreviations: ABS, absorbance spectroscopy; AOA, 

antioxidant activity; CD, circular dichroism; DLS, dynamic light scattering; DOR, dynamic oscillatory rheology; DSC, differential scanning 

calorimetry; DU, denaturation with urea; FAN, fluorescence anisotropy; FS, fluorescence spectroscopy; KS, kinetics study; LAB, CIELAB 

colour space; PD, proteolytic digestion; PHB, photobleaching; V, viscometry. Additives abbreviations: AS, ascorbic acid; BA, benzoic acid; 

BEP, beet pectin; CA, citric acid; DSP, dithiobis(succinimidyl propionate); FA, formaldehyde; FRU, fructose; GA, gluteraldehyde; GAR, gum 

arabic (primarily arabinogalactan); GG, guar gum; GLU, glucose; GLY, glycerol; hisMBP, his6-maltose-binding protein; LAC, lactose; MAL, 

maltose; MGO, methylglyoxal; MH, manuka-honey; PEO, polyethylene oxide; SAL, sodium alginate; SDS, sodium dodecyl sulphate; SOA, 

sorbic acid; SOR, sorbitol; SSPS, soluble soy polysaccharides; SUC, sucrose. 

 

Source 
organism 

PBS/PBP Temperatures 
(°C) 

pH and buffers Additive or modification Testing methodology References 

Arthrospira 
platensis 

PBS 30-180 4.5, 7.0 and 9.0 in  
Tris–HCl (100 mM) 

CaCl2 (4, 20 mM), SUC  
(30%, 50% [w/v]) 

ABS, DSC, DOR, V Chronakis 
(2001) 

  - 7.0 in PB (500 mM) DSP ABS, FS, UD  
(4 M for 8-hour) 

Fukui et al. 
(2004) 

  45, 50 and 55 Microencapsulation using SAL (0.7-
2.1% w/w) and chitosan (0.5-3.0% 
w/w) 

GAR KS, ABS measured after 
5-hour incubation, PHB 

Jespersen et 
al. (2005) 

  60 and 100 7.0 in PB (50 mM) FA (2.5% [v/v]) SDS-PAGE after 
incubation for 10 
minutes or 3 hours 

Sun et al. 
(2006) 

  50-65 5.0 in AB (10 mM), 
6.0-7.0 in PB (10 mM)  

SOR (10-50% [w/w]) KS, ABS during 30-min 
incubation 

Antelo et al. 
(2008) 
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  0 and 35, 20-80 7.0 in PB (0.1 M) 
 

CA, SUC, CaCl2 (all 4 mg/ml) ABS measured during 
45-day incubation,  
DSC, DU (0-10.0 M) 

Mishra et al. 
(2008) 

  4, 26-75 5.0-7.0 in CP GLU (0-40% [w/v]), SUC (0-
40% [w/v]), SOR (200 mg/ml), 
NaCl (0-40% [w/v]), AA (4 
mg/ml), SA (4 mg/ml),  
NaN3 (0.5 mg/ml) 

KS, ABS measured 
during 30-min, 4-hour or 
120-day incubation 

Chaiklahan et 
al. (2012)  

  25-100 7.2 in PB (0.1 M) MGO, MH (80% [w/v]), FRU 
(62% [w/v]), GLU (37% [w/v]), 
SUC (54% [w/v]), LAC  
(14% [w/v]), MAL (42% [w/v]) 

ABS measured after  
30-min incubation 

Martelli et al. 
(2014)  

  25, 40 and 50  7.0 in PB (0.1 M) 1.2 in SGA (0.1-
0.15 M), 7.4 in SIF (~70 mM) 

Microencapsulation using SAL 
(0.7-2.1% [w/w]) and chitosan 
(0.5-3.0% [w/w]) 

ABS measured during 
40-day incubation 

Yan et al. 
(2014) 

  25-75 3.0-8.0 in CP (50 mM) SUC, GLU, NaCl  
(all 20% [w/v]) 

KS, ABS measured 
during 30-min 
incubation, PHB 

Wu et al. 
(2016) 

  55-75 6.5 in water with 20% ZSM PEO nanofibers (6% [w/v]), 
SUC (20% [w/v]), GLU  
(20% [w/v]), NaCl (2.5% 
[w/v]), SOR (50% [w/v]) 

KS, ABS Braga et al. 
(2016) 

  - 1.9-7.0 in CP (~40 mM) SDS (0-1.1% [w/w])  ABS, LAB Falkeborg et 
al. (2018) 

  40, 60 and 80 6.0 in CP (0.1 M) GLU, FRU , SUC 
(all 10 and 15% [w/w]) 

KS, ABS measured 
during 60-min 
incubation, LAB and 
AOA measured after  
60-min incubation 

Hadiyanto et 
al. (2018) 

  40 and 80 6.0-7.0 in water GLY (0, 40% and 100% [v/v]) KS, FS measured during 
60-min incubation, FAN 

Toong et al. 
(2018) 

  40, 50, 65, 80 
and 90 

6.8 in CP (50 mM) BEP, GG, SSPS (all 2% [w/w]) LAB measured after 20 
or 45-min incubation, 
PD 

Selig et al. 
(2018) 
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  80 7.0 in PB (0.1 M) CA (4 mg/ml) ABS measured during 
60-min incubation 

Pan-utai et al. 
(2018) 

  40-80 4.5-7.0 in PB Microencapsulation using SAL 
(1.5-2.5% [w/v]) 

ABS measured during 2-
hour incubation 

Pradeep and 
Nayak (2019) 

Callithamnion 
rubosum 

R-PE 5-90 5.7 in MES buffer (10 mM), water CdS nanoparticles ABS, CD Bekasova et 
al. (2013) 

 R-PE 15-90 water Ag0 nanoparticles ABS, FS, CD, DLS Bekasova et 
al. (2016) 

Porphyridium 
cruentum 

B-PE 4 and 25, 20-95 1.1-13.6 in PB (20 mM) SUC, NaCl (all 4 mg/ml); ABS, FS, CD, PHB 
measured during 18-day 
incubation 
 

González-
Ramírez et al. 
(2014) 

 PBS RT  6.8-7.5 in PB (0.75-750 mM)  FA, GA, SUC (1 M) ABS, FS Cubicciotti 
(1997) 

Synechocystis sp. 
PCC 6803 

C-PC (�-
subunit) 

4 and 25  5.5-6.5 in MES-KOH (25 mM), 6.5-
7.5 in MOPS-KOH (25 mM), 7.4 in 
PB (50 mM), 7.5-8.5 in Tris-HCl (25 
mM), 8.5-10.0 in glycine-KOH (25 
mM) 

HisMBP fusion tag ABS, FS measured 
during 5-day incubation, 
PHB 

Liu et al. 
(2009) 

 PBS (in 
vivo, in 
vitro) 

20-120 7.0 in PB (0.75 M) SUC (0.5-0.75 M) ABS, DSC Petrova et al 
(2018) 

Pseudanabaena 
sp. 

C-PE 0 and 35  7.2 in PB (0.1 M), 2.0-12.0 in PB (50 
mM) 

CA, SUC, CaCl2 (all 4 mg/ml) ABS measured during 
45-day incubation 

Mishra et al. 
(2010) 

Nostoc sp. 
HKAR-2  

PC; PE 4, 25 and 40  7.0 in PB (50 mM) BA, CA, SUC, AA, CaCl2 

(all 0.5-5 mM) 
KS, ABS measuring 
during 30-day 
incubation 

Kannaujiya 
and Sinha 
(2016) 

Euhalothece sp. PBS 4 and 25, 25-65 4.0-9.0 in PB (100 mM) Citric acid (0.4% [w/v]), NaN3 
(0.005% [w/v]) with EDTA 
(1 mM), NaCl (20% [w/v]) 

ABS and AOA 
measured after 2-hour or 
during 24-hour and 42-
day incubation 

Mogany et al. 
(2019) 
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