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Abstract

A sensitivity analysis in an observational study tests whether the qualitative conclusions of an analysis
would change if we were to allow for the possibility of limited bias due to confounding. The design
sensitivity of a hypothesis test quantifies the asymptotic performance of the test in a sensitivity analysis
against a particular alternative. We propose a new, non-asymptotic, distribution-free test, the uniform
general signed rank test, for observational studies with paired data, and examine its performance under
Rosenbaum’s sensitivity analysis model. Our test can be viewed as adaptively choosing from among a
large underlying family of signed rank tests, and we show that the uniform test achieves design sensitivity
equal to the maximum design sensitivity over the underlying family of signed rank tests. Our test thus
achieves superior, and sometimes infinite, design sensitivity, indicating it will perform well in sensitivity
analyses on large samples. We support this conclusion with simulations and a data example, showing
that the advantages of our test extend to moderate sample sizes as well.

1 Introduction

In the empirical study of causal effects, the use of standard statistical hypothesis tests, along with their
concomitant p-values and confidence intervals, accounts only for the uncertainty introduced by sampling
variability. However, in an observational study where treatment assignment has not been randomized,
hidden biases due to unobserved confounding can be much larger than sampling uncertainty. As such,
standard hypothesis tests may fail to be convincing if they assume the study is free of hidden bias, as a
randomized experiment would be. A sensitivity analysis addresses this problem by formally testing whether
the qualitative conclusions of a standard procedure would change if hidden bias of a certain magnitude were
present (Rosenbaum, 2002).

When an investigator plans to run a sensitivity analysis, the choice of test statistic may no longer hinge solely
on traditional measures such as Pitman efficiency. In particular, an investigator may seek a test statistic
which is least sensitive to hidden bias, and thereby most likely to successfully distinguish treatment effects
from bias, rather than one which is most likely to detect treatment effects in the absence of hidden bias.
Design sensitivity is one way to quantify this idea for a particular test statistic (Rosenbaum, 2004, 2010a).
Design sensitivity complements Pitman efficiency and other conventional means of comparing tests.

Rosenbaum (2010b) shows that a test statistic which focuses on a strongly-affected subgroup may achieve
superior design sensitivity, as compared to a statistic which uses all observations. Rosenbaum (2012) shows
that a particular test, Noether’s test, has excellent design sensitivity but poor power against small effects.
Rosenbaum then proposes an adaptive test in which the p-value is given by the minimum of two p-values
from two competing test statistics, correcting for multiple testing by analyzing the joint distribution of these
two test statistics. This adaptive test is shown to get some of the best of both worlds, in terms of good
power in small samples as well as high design sensitivity. In fact, the adaptive test attains the maximum
design sensitivity of its two component tests. Rosenbaum and Small (2017) similarly propose an adaptive
test which chooses from the better of two test statistics, one focused on a subgroup and one examining the
entire population, with correction for multiple testing.

In this paper we examine a different adaptive test for paired data, in which we may adaptively choose from a
large, highly dependent family of test statistics. We control for multiple testing using a uniform concentration
bound for the stochastic process formed by this family of test statistics. This permits adaptively choosing
among as many test statistics as we have observations, while achieving non-asymptotic, distribution-free
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error control. Our theoretical results characterize how this test achieves excellent design sensitivity, which
can be infinite against light-tailed alternatives—that is, no matter the strength of confounding, the test will
reject with probability approaching one asymptotically. We are not aware of previous discussion of such
behavior.

The structure of this paper is as follows. After summarizing Rosenbaum’s sensitivity analysis model in
Section 2, we describe our test in Section 3, proving that it achieves the promised Type I error control
in Theorem 1. We then characterize its design sensitivity with Theorems 2 and 3 of Section 4. Section 5
gives simulation results for a variety of fixed-sample and uniform tests under several light- and heavy-
tailed alternatives. We outline the handling of tied data in Section 6, while in Section 7 we illustrate the
performance of our tests on an observational dataset examining the link between fish consumption and
mercury concentration in the blood. Section 8 concludes and offers some promising avenues for future work.

2 Background and notation

2.1 Rosenbaum’s sensitivity analysis model for paired data

We begin with a review of Rosenbaum’s sensitivity analysis model for paired data (Rosenbaum, 2002).
We have n pairs of subjects. The subjects in the ith pair have control potential outcomes RCij , treatment
potential outcomes RTij , and treatment indicators Zij for j = 1, 2 and i ∈ [n]. Let F be the σ-field generated
by all the potential outcomes (RCij , RTij)i∈[n],j∈[2].

A sensitivity analysis allows us to test whether a positive conclusion of our study—that is, a rejection of the
null—holds up under the possibility of limited confounding. To operationalize this notion, for each Γ ≥ 1
we define the sensitivity analysis null hypothesis H0(Γ), which asserts that

• RTi1 = RCi1 and RTi2 = RCi2 for all i ∈ [n], i.e., Fisher’s sharp null, and

• conditional on F , treatment assignments are independent between pairs, and the treatment probabili-
ties within each pair are related by the following odds ratio bounds:

1

Γ
≤ P (Zi1 = 1 | F) /P (Zi1 = 0 | F)

P (Zi2 = 1 | F) /P (Zi2 = 0 | F)
≤ Γ, for all i ∈ [n]. (1)

At Γ = 1, this specifies that, within each pair, both units have the same (conditional) probability of treatment.
This is the standard assumption which leads to valid randomization inference in the absence of hidden bias
(Rosenbaum, 2002, §3.2).

Write Robs
ij := ZijRTij + (1−Zij)RCij for the observed outcomes and Yi = (Zi1 −Zi2)(Robs

i1 −Robs
i2 ) for the

observed treated-minus-control difference in the ith pair. Under H0(Γ) we know that Yi = ±|RCi1 − RCi2|
and

1

1 + Γ
≤ P (Yi > 0 | F , Zi1 + Zi2 = 1) ≤ Γ

1 + Γ
, (2)

where for simplicity we assume P(Yi = 0) = 0 for all i throughout this paper. In words, H0(Γ) asserts that
there is no effect of treatment for any individual, but the treatment probabilities may differ within a pair
in ways we cannot observe. This difference in treatment probabilities could introduce hidden bias into our
estimates of the effect of treatment, but the magnitude of such bias is limited by the sensitivity parameter
Γ. Again, Γ = 1 recovers the standard null hypothesis which assumes no hidden bias is present, in which
case P (Yi > 0 | F , Zi1 + Zi2 = 1) = 1/2. Throughout the rest of this paper, we implicitly condition on the
event {Zi1 + Zi2 = 1,∀i ∈ [n]}, and omit it from the notation.

This sensitivity analysis model provides a method to conduct valid hypothesis tests under limited confound-
ing, but leaves open the choice of test statistic. In order to judge the relative benefits of different test
statistics, we perform a power calculation, comparing the power of various test statistics in a test of the
sensitivity analysis null H0(Γ). As with all power calculations, we must choose a particular alternative
hypothesis under which to compute power. We define a “favorable” alternative hypothesis H1(G) for a
distribution G over R, motivated by the following scenario:
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Figure 1: The four score functions ϕ(q) used in this paper.

• RCij is an independent draw from some distribution F , for each i ∈ [n], j = 1, 2,

• RTij = RCij + τi for all i, j, where τi ∈ R is drawn from some fixed distribution for each i ∈ [n], and
is constant within each pair; and

• P (Zi1 = 1, Zi2 = 0 | F) = P (Zi1 = 0, Zi2 = 1 | F) = 1/2, with treatment (conditionally) independent
between pairs.

In words, there is a constant treatment effect within pairs and no hidden bias due to unequal treatment
probabilities. The alternative hypothesis H1(G) is then characterized by the induced distribution G of the
i.i.d. pair differences Yi = (Zi1 − Zi2)(RCi1 − RCi2) + τi; because there is no hidden bias, the mean of this
distribution (when the mean exists) is the average treatment effect Eτi. In most cases, we consider τi ≡ τ
constant across pairs, so that G is the distribution of R − R′ + τ , where R and R′ are independent draws
from F ; this distribution is symmetric about τ . We also consider a “rare effects” model in which τi is zero
for most pairs and equal to some large value for a small proportion of pairs. In this case, G is a mixture
with most mass placed on some distribution symmetric about zero, and the remaining mass on a copy of the
distribution shifted to the right.

Rosenbaum’s sensitivity analysis model is only one of many possible approaches. For some others, refer
to Cornfield et al. (1923/2009); Gilbert et al. (2003); Robins et al. (2000); Yu and Gastwirth (2005). See
also Fogarty and Small (2016) for the related problem of sensitivity analysis for multiple outcomes within
Rosenbaum’s model.

2.2 Sensitivity analysis with general signed rank statistics

Let (Y(i)) denote the pair differences (Yi) ordered by absolute value, so that |Y(1)| ≤ |Y(2)| ≤ · · · ≤ |Y(n)|. A
general signed rank statistic has the form

Tn =

n∑
i=1

ϕ

(
i

n+ 1

)
1Y(i)>0 (3)

for some score function ϕ : (0, 1) → [0,∞) (Lehmann and Romano, 2005; Rosenbaum, 2010b). The score
function allows us to place more or less weight on pairs with larger or smaller observed absolute differences.
We will consider four score functions in this paper, all illustrated in Figure 1:

• The sign test uses ϕ(q) ≡ 1, so that all pairs contribute equally, regardless of rank. In this case Tn
simply counts the number of pairs in which the treated unit had a higher outcome.

• The Wilcoxon signed rank test (WSRT) is equivalent to ϕ(q) = q (Rosenbaum, 2010a), so that
pairs with larger effects contribute more to the test statistic.

• The normal scores test uses ϕ(q) = Φ−1((1 + q)/2), where Φ−1 is the standard normal quantile
function, P(Z ≤ Φ−1(q)) = q when Z ∼ N (0, 1). This score function is the quantile function of the
absolute value of a standard normal random variable, and this general signed rank test has high power
when outcomes are drawn from a normal distribution (Lehmann and Romano, 2005, §6.9-6.10).
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• Finally, we include a “redescending” score function, ϕ(q) =
∑m
l=m

l
m

(
m
l

)
ql−1(1 − q)m−l, so-called

because this function rises as q increases from zero, like the WSRT and normal scores functions do, but
falls back to zero as q approaches one, unlike the other three score functions. The resulting statistic
puts more weight on pairs with larger absolute differences, but excludes the most extreme observations,
which may be outliers. We set (m,m,m) = (20, 12, 19). This score function approximates the U -
statistic described in Rosenbaum (2011, Lemma 1), and the given values of (m,m,m) were found to
perform well in Rosenbaum’s study.

The sensitivity analysis null hypothesis H0(Γ) does not specify a single distribution for the observables
(Yi), but it does imply a single worst-case distribution for the test statistic Tn in a one-sided test which
rejects for Tn sufficiently large—that is, a distribution which maximizes P (Tn ≥ a | F) for any threshold
a, among all distributions in H0(Γ). This worst-case distribution has the n signs (1Yi>0) independent with
P (Yi > 0 | F) = Γ/(1 + Γ) for all i ∈ [n] (Rosenbaum, 2002, §4.3). Write cα,n(Γ) for the 1 − α quantile of
Tn under this worst-case distribution, so that cα,n(Γ) is the critical value of a one-sided, level-α sensitivity
analysis testing H0(Γ) with test statistic Tn; the critical value may depend on F , in the case of ties. This
critical value yields a valid (conditional) test of the sensitivity analysis null hypothesis, and is not hard to
approximate numerically or via the normal distribution. In Theorem 1 below, we build upon these ideas to
define a uniform general signed rank test, deriving closed-form critical values which guarantee non-asymptotic
Type I error control under the sensitivity null H0(Γ).

2.3 Power of a sensitivity analysis and design sensitivity

Under H1(G), the power of a one-sided, level-α sensitivity analysis for a general signed rank test with statistic
Tn is P1(Tn ≥ cα,n(Γ)), which is well-defined since H1(G) specifies the distribution of Tn completely. This
power depends on the level α, the sample size n, the sensitivity parameter Γ, the alternative distribution
G, and the score function ϕ. The design sensitivity (Rosenbaum, 2004, 2010a) of the test statistic Tn is the

value Γ̃ such that, as the sample size grows without bound, the power of a sensitivity analysis with parameter
Γ approaches one whenever Γ < Γ̃ and approaches zero whenever Γ > Γ̃:

lim
n→∞

P1(Tn ≥ cα,n(Γ)) = 1, for 1 ≤ Γ < Γ̃, and (4)

lim
n→∞

P1(Tn ≥ cα,n(Γ)) = 0, for Γ̃ < Γ <∞. (5)

Formally, the design sensitivity depends on the level α, the alternative distribution G and the score function
ϕ. In typical examples, including those considered below, the dependence on α vanishes. It is clear from
the definition that such a value is unique, if it exists, but existence must be proved as part of the deriva-
tion of design sensitivity, as in our Theorem 2. Note also that we may have Γ̃ = ∞, which means that
limn→∞ P1(Tn ≥ cα,n(Γ)) = 1 for all Γ ≥ 1; in words, the test has power approaching one against the given
alternative regardless of how large a sensitivity parameter Γ is chosen.

Proposition 2 of Rosenbaum (2010b) gives a formula for the design sensitivity of a general signed rank test
whenever the score function ϕ is piecewise continuous, nondecreasing and not identically zero:

Γ̃ =
π

1− π
, where π :=

∫∞
0
ϕ(G(y)−G(−y)) dG(y)∫ 1

0
ϕ(y) dy

. (6)

Note that G(y) − G(−y) is the CDF of |Y | under H1(G). We see that the design sensitivity of a general
signed rank test is determined precisely by the aspects of ϕ and G captured in the quantity π. In Theorems 2
and 3, we extend this result to characterize the design sensitivity of our uniform general signed rank test.
Our conditions on ϕ, while not strictly more general, do allow for the normal scores and redescending score
functions, in contrast to Rosenbaum’s conditions.

For the sign test, ϕ(q) ≡ 1, we have
∫ 1

0
ϕ(y) dy = 1 and

∫∞
0
ϕ(G(y) − G(−y)) dG(y) is exactly P(Y > 0)

when Y ∼ G. Hence π = P1(Y > 0) (cf. Rosenbaum, 2012, Proposition 1). In words, this π is simply the
probability that a pair difference Y gives evidence in favor of a positive treatment effect, under the favorable
alternative with no hidden bias.
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3 A uniform general signed rank test

We now define a general class of uniform signed rank tests which operate on a family of related test statistics
(Tn(x))x∈(0,1). Informally, our test rejects when any test statistic in the family lies above a corresponding
modified critical value. These critical values are carefully chosen to correct for multiplicity by taking ad-
vantage of the structure of the family of test statistics. The uniform nature of our test yields advantages in
terms of design sensitivity, which we describe in Section 4.

For any ϕ : (0, 1)→ [0,∞), define the family of test statistics (Tn(x))x∈(0,1) by Tn(x) = 0 for x < 1/(n+ 1),
and for x ≥ 1/(n+ 1),

Tn(x) :=

n∑
i=d(1−x)(n+1)e

ϕ

(
i

n+ 1

)
1Y(i)>0 =

n∑
i=d(1−x)(n+1)e

ci1Y(i)>0, (7)

where we have defined ci := ϕ
(

i
n+1

)
for convenience. For each x, Tn(x) is a general signed rank statistic

using the “truncated” score function ϕx(q) = ϕ(q)1q≥1−x. There are n distinct nontrivial test statistics in this
family, Tn(k/(n+1)) for k = 1, . . . , n, corresponding to the partial sums

∑n
i=k ci1Y(i)>0 for k = n, n−1, . . . , 1.

Hence the family corresponds to a random walk with n steps and step sizes determined by the function ϕ(·).

Note that, despite the generality of our construction in terms of the score function ϕ, our family always
consists of truncated versions of the full test statistic. Such truncated statistics focus on subsets of the
experimental sample with large observed effects |Yi|. As such, our test will tend to perform especially well
against alternatives with large, rare effects.

Our uniform test will be characterized by a threshold function fα,n(x), the uniform analogue of a critical
value. Our test rejects whenever Tn(x) ≥ fα,n(x) for any x ∈ (0, 1). As in the fixed-sample case, there
is a single worst-case distribution under H0(Γ) which maximizes the probability of rejection; we prove the
following in Appendix A.1.

Proposition 1. Fix any threshold function fα,n : (0, 1) → R>0. Among all distributions in H0(Γ), the
rejection probability P (∃x ∈ (0, 1) : Tn(x) ≥ fα,n(x) | F) is maximized when P (Yi > 0 | F) = Γ/(1 + Γ) for
all i ∈ [n].

Under this worst-case distribution in H0(Γ), each step of the random walk equals ci with probability ρΓ :=
Γ/(1 + Γ) and zero otherwise; these steps are independent. The resulting mean and variance of Tn(x) are

µn(x) := ETn(x) = ρΓ

n∑
i=d(1−x)(n+1)e

ci (8)

σ2
n(x) := VarTn(x) = ρΓ(1− ρΓ)

n∑
i=d(1−x)(n+1)e

c2i . (9)

Our threshold function requires a tuning parameter x0 > 0 to be fixed in advance, such that σ2
n(x0) > 0. If

σ2
n(x) = 0 for all x, then we cannot choose a valid x0, but in this case, Tn(x) = 0 a.s. for all x, so we cannot

reject for any reasonable bound. We then construct the following high-probability uniform upper boundary
on the random walk Tn(x):

fα,n(x) :=
1

λn

log

(
1

α

)
+

n∑
i=d(1−x)(n+1)e

log
(
1 + ρΓ(eciλn − 1)

) , where λn :=

√
2 logα−1

σ2
n(x0)

. (10)

For notational simplicity, we omit the dependence of fα,n on x0.

Theorem 1. Under H0(Γ), for any x0 > 0 such that σ2
n(x0) > 0 and any α ∈ (0, 1), we have

P (∃x ∈ (0, 1) : Tn(x) ≥ fα,n(x) | F) ≤ α. (11)

Theorem 1 justifies rejecting the sensitivity null H0(Γ) whenever Tn(x) ≥ fα,n(x) for some x ∈ (0, 1), allowing
us to adaptively choose a value of x after seeing the data, while retaining Type I error control at level α. We
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Figure 2: Illustration of Theorem 1 and the uniform bound (10) for the uniform sign test, ϕ(q) ≡ 1. Black line shows
one realization of the random walk Tn(x) for x = 1/(n+ 1), 2/(n+ 1), . . . , n/(n+ 1); here n = 50 and Γ = 2. Green
line shows the uniform upper bound fα,n(x) which is unlikely to ever be crossed by the random walk. We may think
of each value f(1/(n+ 1)), f(2/(n+ 1)), . . . as a modified critical value for the corresponding test statistic.

call this test a uniform general signed rank test. The idea is illustrated in Figure 2. Because the probability
bound in Theorem 1 holds uniformly over all x, in any given dataset we may choose the value of x which
yields the strongest inference. We can think of the resulting test as simultaneously conducting general signed
rank tests with truncated score functions ϕx(q) = ϕ(q)1q≥1−x for all values x = 1/(n + 1), · · · , n/(n + 1),
but with modified critical values given by fα,n(x). The critical value fα,n(x) is larger than the fixed-sample
exact critical value cα,n(Γ) from Section 2.2, accounting for the uniformity of our test. Note that, when we
use the sign test score function ϕ(q) = 1, the resulting truncated score functions ϕx are exactly the score
functions used in Noether’s test (Noether, 1973; Rosenbaum, 2012).

Before proving Theorem 1 we give some intuition for the bound fα,n based on the following asymptotic
approximation, which holds under mild conditions on ϕ as detailed in Appendix A.3:

fα,n(x) = µn(x) +

(
1 +

σ2
n(x)

σ2
n(x0)

)√
σ2
n(x0) logα−1

2︸ ︷︷ ︸
gα,n(x)

+O(1). (12)

The leading term, µn(x), is O(n) and accounts for the drift of the random walk. The next term is O(
√
n)

and accounts for the deviations of the random walk about its mean. As discussed in Appendix A.3, the
parameter x0 determines the value of x for which the boundary gα,n(x) is optimized, and this motivates the
choice of λn in the definition of fα,n. Theorem 1 would continue to hold with any choice λn > 0, but our
choice yields the interpretable tuning parameter x0.

The discussion in Appendix A.3 also shows that the remainder gα,n(x)− fα,n(x) is always negative, so that
gα,n(x) yields an alternative threshold function with a simpler analytical form, but the resulting test has
slightly less power. In fact, the uniform boundaries fα,n and gα,n are drawn from a broader framework for
uniform concentration of random walks described in Howard et al. (2018a,b). Other boundaries are possible
and will yield different performance; further exploration of alternative boundaries is a promising avenue of
future work. We give below a short, self-contained proof of Theorem 1 to illustrate the techniques, which
are closely related to the classical Cramér-Chernoff method (Cramér, 1938; Chernoff, 1952; Boucheron et al.,
2013, section 2.2).

Proof of Theorem 1. Throughout the proof, we condition on F , dropping it from the notation for simplicity.
Let Si := 1Y(i)>0 for i ∈ [n], so that Tn(k/(n+1)) =

∑n
i=n+1−k ciSi for each k ∈ [n]. By Proposition 1, under

the worst-case distribution in H0(Γ), (Si)i∈[n] are distributed as n i.i.d. Bernoulli(ρΓ) random variables. The
moment-generating function of the random variable ciSi is

EeλciSi = 1 + ρΓ(eciλ − 1) ∀λ ∈ R. (13)

Now define (Lk)nk=0 by L0 := 1 and, for k ∈ [n],

Lk := exp

{
λnTn

(
k

n+ 1

)
−

n∑
i=n+1−k

log
(
1 + ρΓ(eciλn − 1)

)}
=

n∏
i=n+1−k

eλnciSi

1 + ρΓ(eciλn − 1)
. (14)
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It is easy to see from (13) and (14) that E (Lk | Sn, Sn−1, . . . , Sn+2−k) = Lk−1, so that Lk is a nonnegative
martingale with respect to the natural filtration defined by the sequence Sn, Sn−1, . . . , S1. Then Ville’s
maximal inequality for nonnegative supermartingales (Ville, 1939; Durrett, 2013, Exercise 5.7.1) implies

α ≥ P
(
∃k ∈ [n] : Lk ≥ α−1

)
(15)

= P
(
∃k ∈ [n] : Tn

(
k

n+ 1

)
≥ fα,n

(
k

n+ 1

))
(16)

= P
(
∃x ∈

{
1

n+ 1
,

2

n+ 1
, . . . ,

n

n+ 1

}
: Tn(x) ≥ fα,n(x)

)
(17)

= P (∃x ∈ (0, 1) : Tn(x) ≥ fα,n(x)) . (18)

The final equality follows since the values x = 1/(n+ 1), 2/(n+ 1), . . . , n/(n+ 1) capture all of the distinct
values of both Tn(x) and fα,n(x) for x ≥ 1/(n+1), and adding the region 0 < x < 1/(n+1) does not change
the overall probability since Tn(x) = 0 over this region while fα,n(x) is strictly positive.

4 Design sensitivity of the uniform test

We have shown that the uniform test may be thought of as simultaneously conducting general signed rank
tests at all values of x with modified critical values fα,n(x). We might equivalently think of this as adjusting
the significance level α downwards, and to different values for different x, in computing critical values for a
sequence of general signed rank tests. Recalling that the design sensitivity of a general signed rank test (6)
does not depend on α, we may wonder if the uniform test has design sensitivity equal to the maximum of
the design sensitivities of the component test statistics Tn(x). This conclusion is not quite trivial, since the
“adjusted significance levels” in the uniform test vary as n grows. Nonetheless, it turns out to be true. We
prove this for score functions ϕ : (0, 1)→ [0,∞) satisfying the following properties:

(P1)
∫ 1

0
ϕ2(x) dx <∞;

(P2) ϕ is discontinuous on a set of Lebesgue measure zero;

(P3) there exists a constant a ∈ [0, 1/2) such that ϕ is nonincreasing on (0, a), nondecreasing on (1− a, 1),
and bounded on (a, 1− a); and

(P4)
∫ 1

1−x ϕ(x) dx > 0 for all x > 0.

Theorem 2. Suppose ϕ satisfies conditions (P1-P4) above, and G is continuous. Then the design sensitivity
of the corresponding uniform general signed rank test under H1(G) is

Γ̃ϕ,unif := sup
x∈(0,1)

Γ̃(x) = sup
x∈(0,1)

π(x)

1− π(x)
, where π(x) :=

∫∞
0
ϕ(G(y)−G(−y))1G(y)−G(−y)≥1−x dG(y)∫ 1

1−x ϕ(y) dy
.

(19)

Most of the work in the proof of Theorem 2 is captured by the following pair of lemmas. The first, proved
in Appendix A.3, characterizes the asymptotic behavior of the boundary fα,n(x) as n→∞.

Lemma 1. If ϕ satisfies conditions (P1)-(P3) above, then for any x0 > 0 such that σ2
n(x0) > 0, any

α ∈ (0, 1), and any x ∈ (0, 1), we have n−1µn(x) → ρΓ

∫ 1

1−x ϕ(y) dy and fα,n(x) = µn(x) + O(
√
n) as

n→∞.

The second lemma generalizes a result of Sen (1970); we give the proof in Appendix A.4.

Lemma 2. If ϕ satisfies conditions (P1-P3) above, and Y1, Y2, . . . are drawn i.i.d. from a continuous dis-
tribution G, then

lim
n→∞

1

n

n∑
i=1

ϕ

(
i

n+ 1

)
1Y(i)>0 =

∫ ∞
0

ϕ(G(y)−G(−y)) dG(y) a.s. (20)
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Proof of Theorem 2. Let H(x) := G(x)−G(−x) denote the distribution of |Y |. Fix any x ∈ (0, 1). Applying
Lemma 2 to the truncated score function ϕx(q) = ϕ(q)1q≥1−x yields

lim
n→∞

Tn(x)

n
=

∫ ∞
0

ϕ(H(y))1H(y)≥1−x dG(y) a.s. (21)

Meanwhile, Lemma 1 implies that

lim
n→∞

fα,n(x)

n
= ρΓ

∫ 1

1−x
ϕ(y) dy. (22)

Combining (22) with (21), we conclude that

P(Tn(x) ≥ fα,n(x)) = P(n−1Tn(x) ≥ n−1fα,n(x))→ 1

if

∫ ∞
0

ϕ(H(y))1H(y)≥1−x dG(y) > ρΓ

∫ 1

1−x
ϕ(y) dy, (23)

that is, if Γ < π(x)/[1 − π(x)]. Since the uniform test rejects whenever Tn(x) ≥ fα,n(x) for some x, it will
reject with probability approaching one whenever Γ < π(x)/[1 − π(x)] for some x ∈ (0, 1). By a similar
argument, P(Tn(x) ≥ fα,n(x)) → 0 if Γ > π(x)/[1 − π(x)], so the uniform test will reject with probability
approaching zero if Γ > π(x)/[1− π(x)] for all x ∈ (0, 1). The conclusion follows.

Compare Theorem 2 to Proposition 1 of Rosenbaum (2012). Rosenbaum constructs an adaptive test choosing
between two test statistics and achieving design sensitivity equal to the maximum of the two component
tests. Theorem 2 shows that this principle may be extended to an infinite family of tests, in this case because
the family possesses a dependence structure that allows us to construct an appropriate uniform bound.

We note that all of the score functions introduced in Section 2.2 satisfy conditions (P1-P4). Most of these
are obvious; the only work required is to show that the score function for the normal scores test satisfies
property (P1), and we give the short proof in Appendix A.5.

Proposition 2. For the normal scores function, ϕ(q) = Φ−1((1 + q)/2), we have
∫ 1

0
ϕp(x) dx < ∞ for all

p ≥ 1.

Figure 3 shows π(x) as defined in Theorem 2. Each panel includes three alternative distributions G: normal
with unit variance, Laplace (double exponential) with unit scale, and Cauchy with unit scale. In the first
two panels, each distribution is centered at τ = 1/2. The bottom panel shows a “rare effects” model in which
G is a mixture of two of the given base distributions, one centered at zero receiving 90% of the total mass,
and the other centered at τ = 5 receiving 10% of the total mass. This simulates a situation in which 90% of
pairs have no treatment effect, while the remaining 10% of pairs have a large constant treatment effect, so
that the average treatment effect remains equal to 1/2.

The first two panels of Figure 3 show π(x) for the sign and WSRT score functions introduced in Section 2.2;
Appendix A.7 includes π(x) plots for the normal scores and redescending score functions, which are quali-
tatively similar to π(x) for the WSRT. For the sign test, π(x) is maximized at some value x < 1 under all
distributions, although the increase is modest for the Laplace and Cauchy alternatives. This illustrates the
benefits of truncation with the sign test. With the WSRT, we still see dramatic gains under a normal alter-
native, and indeed π(x) ↑ 1 as x ↓ 0 for all of our score functions under a normal alternative. This indicates
we can achieve infinite design sensitivity under normal tails, a fact which we prove in Corollary 1. Under
the Laplace or Cauchy alternatives, however, we do not see substantial gains in π(x) as x decreases from
one for the WSRT; the same holds true for the normal scores and redescending score functions. Under the
heavier-tailed Laplace and Cauchy alternatives, it seems, score functions which place more weight on larger
outcomes do not benefit from narrowing attention to a subset of pairs with the largest absolute differences.
Informally speaking, the higher likelihood of large outliers means less information is present in the tails.

The π(x) functions in the bottom panel, computed under a rare effects model, tells a different story. Here,
a uniform WSRT benefits from narrowing attention to a subset of pairs with large absolute differences
regardless of the alternative distribution, although gains are still more modest for the Cauchy alternative
than for the others. This confirms the intuitive fact that, when effects are large and rare, a test which
restricts attention accordingly yields lower sensitivity to hidden bias.
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Figure 3: π(x) from Theorem 2 for sign and WSRT score functions when G is standard normal, Laplace (double
exponential) or Cauchy. First two panels show alternative with τ = 1/2. Bottom panel shows rare effects model:
90% of pairs have no treatment effect, τ = 0 while 10% of pairs have a large treatment effect, τ = 5. See Figure 6
for corresponding plots with normal scores and redescending score functions, which have π(x) qualitatively similar
to that for the WSRT score function.

Figure 3 makes it clear that the best choice of x depends on the alternative distribution G and the score
function in a complicated manner. The advantage of our uniform test is that it can adapt to the alternative
at hand without prior knowledge, achieving performance equivalent to the oracle choice of x in terms of
design sensitivity. It it also notable that all four score functions exhibit identical behavior near x = 0. The
following result makes this observation precise whenever G is continuous with infinite support. We show
that the limiting behavior of π(x) as x ↓ 0 is often determined by the tails of G alone, not by the score
function ϕ, and this may be used to lower bound the design sensitivity over a broad class of score functions.

Theorem 3. Suppose ϕ satisfies conditions (P1-P4) above, and suppose G has positive density g(x) with
respect to Lebesgue measure for all x ∈ R. Then

Γ̃ϕ,unif ≥ lim inf
q↑∞

g(q)

g(−q)
. (24)

Proof. Write qx for the x-quantile of |Y | when Y ∼ G, so that qx is defined by the equation G(qx)−G(−qx) =
x. We shall require the derivative of qx below, which we find by implicit differentiation:

dqx
dx

=
1

g(qx) + g(−qx)
. (25)

Now observe that, using the definition of qx, we may write π(x) from Theorem 2 as

π(x) =

∫∞
q1−x

ϕ(G(y)−G(−y)) dG(y)∫ 1

1−x ϕ(y) dy
. (26)

We apply the generalized form of L’Hôpital’s rule, which says that lim sup f/g ≥ lim inf f ′/g′ when lim f =
lim g = 0, to the formula (26) for π(x) to find

lim sup
x↓0

π(x) ≥ lim inf
x↓0

d
dx

∫∞
q1−x

ϕ(G(y)−G(−y)) dG(y)

d
dx

∫ 1

1−x ϕ(y) dy
(27)

= lim inf
x↓0

ϕ(1− x)g(q1−x)

ϕ(1− x)
· 1

g(q1−x) + g(−q1−x)
, (28)
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where the equality uses the fundamental theorem of calculus and (25). Condition (P4) on ϕ implies ϕ(q)
must be positive on a neighborhood q ∈ (1 − ε, 1) for some ε > 0, which ensures the limit is well-defined.
Reparametrizing in terms of q = q1−x, and noting that q1−x ↑ ∞ as x ↓ 0 since g is positive throughout R,
we have

lim sup
x↓0

π(x) ≥ lim inf
q↑∞

1

1 + g(−q)
g(q)

. (29)

Hence lim supx↓0
π(x)

1−π(x) ≥ lim infq↑∞
g(q)
g(−q) . The conclusion follows from Theorem 2.

Plugging the normal density into Theorem 3 for g(x) confirms the fact suggested by Figure 3:

Corollary 1. If G = N (τ, σ2), then Γ̃ϕ,unif =∞. That is, no matter what value of Γ is used in a sensitivity
analysis with a uniform general signed rank test, the power under H1(G) tends to one as n→∞.

5 Simulations

Figures 4 and 5 illustrate Theorem 2 with simulations under standard normal, Laplace and Cauchy alter-
natives; in each case τ = 1/2, except for the “rare effects” panels in Figure 4 which use the rare effects
model described in Section 4. We simulate both standard, fixed-sample tests and uniform tests based on
Theorem 1, with the four score functions introduced in Section 2.2. All tests are run with level α = 0.05 and
plots are based on 10,000 replications.

The results are consistent with our findings above. Figure 4 compares power for each uniform test to the the
corresponding fixed-sample test based on the same score function. In the normal case, the uniform test does
not indicate finite design sensitivity, as we expect from Corollary 1, and all uniform tests show substantial
gains over their fixed-sample counterparts for n ≥ 1,000. In the Laplace and Cauchy cases, the uniform sign
test still shows gains, but uniform tests based on other score functions often fail to outperform their fixed-
sample counterparts, as we expect from Figure 3. With large sample sizes, however, the uniform tests at
least remain competitive in nearly all cases. Finally, the “rare effects” case again confirms our expectations
from Figure 3, showing that each uniform test improves substantially on its fixed-sample counterpart, even
with Cauchy noise. Though not shown, the gains for normal and Laplace noise under the rare effects model
are even more dramatic, as one would expect by Figure 3.

Figure 5 compares power between uniform tests with different score functions. Tests tend to perform similarly
with small sample sizes, but clear distinctions emerge with large sample sizes. In the normal case, the normal
scores test dominates while the redescending score function substantially underperforms. As we have seen,
under normal noise the outliers contain the most information, and a score function which places more weight
upon pairs with large absolute differences will attain higher power as a result. Conversely, in the Cauchy
case, the normal scores tests performs the worst, while the sign test performs the best. Here the extreme
tails yield less information, as indicated by Figure 3. The Laplace case is a middle ground in which the tails
yield no more or less information than most of the rest of the distribution, as we have seen in Figure 3. Here
the choice of score function makes little difference.

We close by noting that the uniform sign test shows considerable promise for use in practice. It is competitive
in all cases and is the strongest performer of the four tests considered here in a number of cases. This is
particularly interesting since the fixed-sample sign test is arguably the least attractive among the fixed-
sample tests we have considered. It seems the landscape of uniform general signed rank tests is qualitatively
different from that of their fixed-sample counterparts.

6 Handling ties

Under the assumption that outcomes are drawn from a continuous distribution, ties among outcome obser-
vations occur with probability zero. In practice however, tied outcome data may arise in a variety of settings.
In this section we discuss how to adapt the results of the paper to the setting of ties.
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10,000 replications. “Cauchy rare effects” panels show “rare effects” alternative model based on Cauchy distribution,
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1/2 and unit scale. All tests use α = 0.05.
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under alternative model H1(G) with G as indicated, having center 1/2 and unit scale. All tests use α = 0.05.

Let Y(1), . . . , Y(n) be the outcome data ordered in any way so that |Y(1)| ≤ |Y(2)| ≤ . . . |Y(n)|. Note that this
ordering is not unique when ties are present; in such cases, choose one such ordering arbitrarily. We may
still apply the methods described in the paper directly to conduct a test. The test statistic and the uniform
bound are clearly defined given our chosen ordering of outcomes, and Theorem 1 holds since no aspect of
its proof depends on the absence of ties. We remark that it is reasonable to expect P(Yi = 0) > 0 in the
presence of ties; however, this only reduces P (Yi > 0 | F), so Proposition 1 and Theorem 1 continue to hold.

However, the version of our uniform test in Theorem 1 depends on the ordering we choose, perhaps arbitrarily,
for (Y(i)). To remove this undesirable feature of the procedure, we may instead use a generalization of Tn(x)
which is invariant to the specific choice of ordering in the tied setting. We write T ?n(x) for this new test
statistic. The intuition for T ?n comes from recognizing that when ties are present, one or more test statistics
in the family (Tn(x))x∈(0,1) are partial sums that include some terms with a particular absolute value but
exclude others with the same absolute value, and that the scores associated with these terms may be different
from one another. We obtain the family (T ?n(x))x∈(0,1) by replacing the score for each tied value by the average
of scores for all indices involved in the tie, and by adding all these terms together to the partial sum rather
than allowing partial sums that contain some terms but not all.

Formally, define Ji =
{
j ∈ [n] :

∣∣Y(j)

∣∣ =
∣∣Y(i)

∣∣}, the set of ranks with equal absolute pair differences to the

ith ranked pair. Let m(i) = minJi, the lowest rank within the tied group containing the ith ranked pair.
Now define the test statistic

T ?ϕ(x) :=
∑

{i:m(i)≥(1−x)(n+1)}

c?i 1Y(i)>0, where c?i = |Ji|−1
∑
j∈Ji

ϕ

(
j

n+ 1

)
. (30)

When a group of pairs share the same absolute outcome value, this test statistic treats all these pairs as a
single unit, including either all or none of them in the partial sum, and assigning each a score equal to the
average score across all members in the tied set. Note that if there are only k < n distinct absolute outcome
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values, there are only k distinct nontrivial values for T ?n(x); however, if no ties are present, T ?n is identical
to Tn.

We obtain a uniform boundary for T ?n(x) by substituting c?i for ci in (9) and (10), yielding new quantities
σ?n

2(x) and f?α,n(x). In the absence of ties, the quantities σ?n
2, and f?α,n coincide with the original quantities

σ2
n, and fα,n. However, the quantities (c?i )

n
i=1 are random, unlike (ci), hence σ?n, and f?α,n are random as

well. This requires no real change to the analysis, since these quantities are F-measurable and we condition
on F throughout the proof of Theorem 1. As the reader may expect, the new boundary f?α,n yields a valid
uniform test of the sensitivity null H0(Γ) using the order-invariant test statistic T ?n .

Theorem 4. Under H0(Γ), for any F-measurable x0 > 0 such that σ?n
2(x0) > 0 a.s., and any α ∈ (0, 1),

we have P
(
∃x ∈ (0, 1) : T ?n(x) ≥ f?α,n(x)

∣∣ F) ≤ α.

Proof. Write T̃n(x) :=
∑n
i=d(1−x)(n+1)e c

?
i 1Y(i)>0; this is the same as Tn(x) with c?i substituted for ci. Re-

peating the proof of Theorem 1 with σ?n and f?α,n in place of their unstarred counterparts, we obtain

P
(
∃x ∈ (0, 1) : T̃n(x) ≥ f?α,n(x)

∣∣∣ F) ≤ α. (31)

Since m(i) ≤ i and ci ≥ 0 for all i, we have T ?n(x) ≤ T̃n(x) for all x, which implies the result together with
(31).

7 Application: impact of fish consumption on mercury concentra-
tion

Mercury can be harmful to human health when concentrated too heavily in the bloodstream. There is a
substantial body of evidence that consuming large amounts of fish can lead to elevated levels of mercury in the
blood (Mahaffey et al., 2004). To study the impact of a high-fish diet on mercury concentration in the blood,
we use data from the National Health and Nutrition Examination Survey or NHANES (Centers for Disease
Control and Prevention (CDC) National Center for Health Statistics (NCHS), 2017), which records detailed
information about respondents’ diets and also contains analysis of blood samples, including a measure of total
mercury concentration. We identified all 1,672 NHANES respondents from 2007 to 2016 who consumed an
average of 15 or more servings of fish monthly, and matched each one to a similar respondent who consumed
two or fewer servings of fish per month. Respondents were matched only to respondents from the same
two-year period (2007-2008, 2009-2010, etc.). Within these groups, pairs were chosen by optimal matching
with respect to a robust Mahalanobis distance (Rosenbaum, 2010a, sec. 8.3) computed from respondent age,
household income, gender, ethnicity, cigarettes smoked per day, and indicators for high school graduation,
missing high school graduation status, and smoking more than 7 cigarettes per day. Matches were also
required to obey a propensity score caliper of 0.2 standard deviations based on a propensity score fitted to
these same variables (Rosenbaum and Rubin, 1985). The final matched sample of 1,672 pairs achieved a high
degree of balance on covariates, as shown in Table 1. Matching was conducted using R packages rcbalance
and optmatch with package cobalt used for balance checking (Pimentel, 2016; Hansen and Klopfer, 2006;
Greifer, 2018). For more discussion on the optimal construction of matched samples see Rosenbaum (1989),
Hansen (2004), Zubizarreta et al. (2014), and Pimentel et al. (2015).

Note that although the balance on observed variables in Table 1 is very close, individuals with high-fish diets
may differ from individuals with low-fish diets on many unobserved attributes correlated with mercury levels.
Accordingly, we are interested not only in whether a test assuming an absence of unobserved confounders
rejects the null hypothesis, but in how sensitive such a result is to potential bias from unobserved confounders.

In each of the 1,672 pairs formed, we computed the difference in total mercury concentration (in micrograms
per mole) between the respondent with the high-fish diet and the respondent with the low-fish diet. The
average concentration for matched individuals with high-fish diets and low-fish diets were 3.76 and 1.02
respectively, yielding an average pair difference of 2.73 micrograms per mole. We next tested the sharp null
of no effect of treatment in any pair. Mercury measurements were rounded to two decimal places which led
to some ties, so for each test we used the test statistic T ?n(x) of Section 6 and x0 = 1/3 in Theorem 4.

The first three columns of Table 2 show the results of sensitivity analysis in the matched data for the four
general signed rank tests considered in this paper. For each of these test statistics, the näıve test with
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Average attribute values Standardized
Variable 15+ fish servings / mo 0-2 fish servings / mo difference

Age 43.73 43.63 0.005
Household Income/(2x poverty line) 2.99 2.96 0.017

Female 0.46 0.46 0.004
Hispanic 0.19 0.18 0.002

Black 0.22 0.22 0.001
Smoker 0.44 0.42 0.011

Cigarettes/Day 4.09 4.04 0.011
High School Graduate 0.80 0.80 0.000

Missing HS Graduation Status 0.03 0.03 0.000

Table 1: Balance table for 1,672 matched pairs formed from NHANES data. Each pair contains one individual who
consumed ≥15 servings of fish in the previous month, and one who consumed no more than two. The first two
columns give the sample means in the matched samples for various attributes of interest, and the third gives the
standardized difference, which is computed by dividing the difference in group sample means by the pooled standard
deviation estimate from the full dataset before matching.

Γ = 1 produces results highly significant at the 0.05 level, and the numbers in the table describe the smallest
amount of unmeasured bias necessary to explain the observed effects assuming there is no true effect of
treatment—that is, the minimum value of Γ at which we fail to reject the sensitivity analysis null. For
example, the fixed-sample sign test ceases to reject the null when we allow for an unobserved confounder
which increases the odds of a high-fish diet by a factor of Γ = 4.82; in contrast, the uniform sign test requires
an unobserved confounder which increases the odds of a high fish diet by Γ = 10.51 before it ceases to reject.

1,672 pairs 190 pairs
Score function Fixed-sample Uniform Fixed-sample Uniform
Sign 4.82 10.51 3.72 8.29
Wilcoxon Signed Rank 8.06 10.47 6.04 8.09
Normal Scores 8.55 10.36 6.52 7.95
Redescending 9.68 9.97 7.26 7.58

Table 2: Sensitivity analysis for matched data. Each cell of the table represents a different test statistic for testing
the null of no effect of a fish diet on mercury concentration; the first two columns give results for the full matched
sample of 1,672 pairs, while the third and fourth columns give results for the smaller sample from 2015-2016 alone.
The number in each cell is the smallest degree of unmeasured confounding Γ necessary in the sensitivity analysis
model before the test no longer rejects at the α = 0.05 level.

Note that repeating the same test many times with different test statistics, as in Table 2, is not recommended
in practice. To avoid issues with multiple testing and Type I error control, one should select a single test
statistic in advance, possibly based on a pilot sample as described in Heller et al. (2009). We show the results
of several tests here to illustrate the impact of the choice of test statistic and complement the discussion in
Section 5.

Several interesting patterns are clear in the full-sample results of Table 2. First, regardless of the score
function used, the uniform version of the test is less sensitive to unmeasured bias than the fixed-sample
version. This pattern is consistent with Theorem 2, which tells us that in large samples the uniform test
should perform at least as well as any fixed-sample test it incorporates. Second, the performance of the
uniform test across score functions varies much less than the performance of the fixed-sample version across
score functions. In particular, the sign test performs substantially worse than any other test examined in
the fixed-sample case, but it is comparable to (and even slightly better than) the other score functions in
the uniform setting, corroborating the evidence from simulations in Section 5. In this dataset, as in the
simulations, adapting over many different truncated statistics appears to compensate for the deficiencies of
the fixed-sample sign test.

Finally, we briefly consider the importance of sample size by analyzing the subset of the matched dataset
consisting only of those respondents from the final two-year period (2015-2016), a total of 190 pairs. The
final two columns of Table 2 repeat the analysis for this smaller dataset. The same pattern of results is
observed, with the uniform test outperforming the fixed-sample test for each score function, and the sign
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test performing best among uniform tests. Although the benefits of uniform testing articulated in Theorem 2
relate to asymptotic performance in large samples, uniform tests may also offer substantial improvement in
datasets of only moderate size.

8 Conclusion and future work

We have described a new test for causal effects in a paired observational study, the uniform general signed
rank test. This test provides non-asymptotically valid inference under Rosenbaum’s sensitivity analysis
model and yields qualitative improvements in design sensitivity relative to existing methods. Our simulation
results indicate that the advantages of this test extend from the asymptotic regime down to moderate sample
sizes under a variety of alternative hypotheses, as well as to real-world studies.

Though we have described a sensible method for handling ties, we have focused our study on continuous
outcomes. When ties are present but rare, as in the data example of Section 7, our findings should continue to
hold. However, the study of outcomes with relatively few unique values may require alternative methodology.
In such cases, the random walk (T ?n(x))x∈(0,1) will have relatively few steps, at most the number of unique
values of the outcome, with each step comprised of many individual observations, namely all those pairs
with absolute outcome equal to a given value. In the sequential analysis literature, such random walks are
handled well by group sequential designs (Pocock, 1977; O’Brien and Fleming, 1979; Lan and DeMets, 1983;
Jennison and Turnbull, 2000). An application to uniform general signed rank tests may yield promising
future results.

Another interesting avenue is the evaluation other theoretical properties, beyond design sensitivity, of uniform
general signed rank tests. For example, Lehmann and Romano (2005, Chapter 6) discuss the locally most
powerful property of general signed rank tests against particular families of alternatives determined by the
function ϕ. The uniform test is adaptively choosing from among a family of related ϕ functions, and it
would be interesting to understand what the implications are for local optimality in the sense discussed by
Lehmann and Romano.
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A Additional proofs

A.1 Proof of Proposition 1

Throughout the proof, we condition on F , dropping it from the notation for simplicity. For each i ∈ [n],
write Si := 1Y(i)>0, Xi := Tn(i/(n+ 1)) =

∑n
j=n−i+1 cjSj , and ai := fα,n(i/(n+ 1)). Under H0(Γ), the (Si)

are independent with 1/(1 + Γ) ≤ P(Si = 1) ≤ Γ/(1 + Γ). Let pi := P(Si = 1). We wish to show that the
rejection probability P(∃i ∈ [n] : Xi ≥ ai) is maximized when pi = Γ/(1 + Γ) for all i ∈ [n].

Write S := (S1, . . . , Sn)T , a random vector in {0, 1}n. Note that, for s ∈ {0, 1}n, P(S = s) =
∏n
i=1 p

si
i (1 −

pi)
1−si . Let R :=

{
s ∈ {0, 1}n :

∑n
j=n−i+1 cjsj ≥ ai for some i ∈ [n]

}
. This set represents the rejection

event, in the sense that the test rejects if and only if S ∈ R. We will show that P(S ∈ R) is increasing in pi
for each i ∈ [n], from which it follows that the rejection probability is maximized when pi is maximized for
each i.

We claim that if s ∈ R and s′ ≥ s elementwise, then s′ ∈ R. To see this, observe that s ∈ R implies that we
can choose i ∈ [n] such that

∑n
j=n−i+1 cjsj ≥ ai. Then

∑n
j=n−i+1 cjs

′
j ≥

∑n
j=n−i+1 cjsj ≥ ai, so s′ ∈ R.

Now write P(S ∈ R) =
∑
s∈R

∏n
i=1 p

si
i (1− pi)1−si , and differentiate with respect to pk for any k ∈ [n]:

d

dpk
P(S ∈ R) =

∑
s∈R

(2sk − 1)
∏
i 6=k

psii (1− pi)1−si

 (32)

=
∑
s∈R
sk=1

π(k)(s)−
∑
s∈R
sk=0

π(k)(s), (33)

where π(k)(s) =
∏
i 6=k p

si
i (1− pi)1−si . For each s ∈ R with sk = 0, there corresponds an s′ which is identical

except for s′k = 1, i.e., s′i = si1i 6=k+1i=k, and this s′ ∈ R by the claim above. Also, π(k)(s) = π(k)(s′). Hence
each term in the second sum of (33) is canceled by a term in the first sum. We conclude d

dpk
P(S ∈ R) ≥ 0,

as desired.

We remark that an alternative proof could use Holley’s inequality for distributions over finite distributive
lattices (Rosenbaum, 2002, Sections 2.10, 4.7.2). We have opted for the direct proof above to keep the paper
more self-contained.

A.2 A technical result on Riemann sums

The following result ensures convergence of certain Riemann sums for some unbounded functions, and is
necessary to analyze the asymptotic behavior of fα,n.

Lemma 3. Suppose ϕ : (0, 1) → [0,∞) is discontinuous on a set of measure zero,
∫ 1

0
ϕ(x) dx < ∞, and

there exists a constant a ∈ [0, 1/2) such that ϕ is nonincreasing on (0, a), nondecreasing on (1 − a, 1), and
bounded on (a, 1− a). Then

lim
n→∞

1

n

n∑
i=1

ϕ

(
i

n+ 1

)
=

∫ 1

0

ϕ(x) dx. (34)

Proof. Write ϕ = ϕ1 + ϕ2 + ϕ3 where ϕ1(x) := ϕ(x)1x<a, ϕ2(x) := ϕ(x)1a≤x≤1−a, and ϕ3(x) := ϕ(x)1x>a.

Since ϕ2 is bounded, it is Riemann integrable, so n−1
∑n
i=1 ϕ2(i/(n+1))→

∫ 1

0
ϕ2(x) dx by standard Riemann
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integration theory, noting that i/(n + 1) ∈ ((i − 1)/n, i/n) for each i ∈ [n]. For ϕ1 and ϕ3, we appeal to

Lemma 4 below to conclude that n−1
∑n
i=1 ϕk(i/(n+ 1))→

∫ 1

0
ϕk(x) dx for k = 1, 3. The result follows by

linearity.

Lemma 4. Suppose ϕ : (0, 1)→ [0,∞) is monotone and
∫ 1

0
ϕ(x) dx <∞. Then

lim
n→∞

1

n

n∑
i=1

ϕ

(
i

n+ 1

)
=

∫ 1

0

ϕ(x) dx. (35)

Proof. Suppose first that ϕ is nondecreasing, and for each n ∈ N define ϕn(x) := ϕ(i/(n+ 1)) for i/(n+ 1) ≤
x < (i+ 1)/(n+ 1), i = 1, . . . , n, and ϕn(x) = 0 for x < 1/(n+ 1). Then |ϕn| ≤ |ϕ| for all n by construction,
since ϕ is nonnegative and nondecreasing. Furthermore, since ϕ is monotone, it is discontinuous at a
countable number of points (Knapp, 2007, p. 344), so ϕn(x) → ϕ(x) pointwise almost everywhere. So the
dominated convergence theorem implies

lim
n→∞

1

n+ 1

n∑
i=1

ϕ

(
i

n+ 1

)
= lim
n→∞

∫ 1

0

ϕn(x) dx =

∫ 1

0

ϕ(x) dx. (36)

The conclusion follows since (n + 1)/n → 1 as n → ∞. If ϕ is instead nonincreasing, apply the above
argument to x 7→ ϕ(1− x).

A.3 Proof of Lemma 1

The limit n−1µn(x) → ρΓ

∫ 1

1−x ϕ(y) dy follows directly from Lemma 3 applied to the function q 7→ ϕ(1 −
q)1q≤x. The bulk of the work is in proving that fα,n(x) = µn(x) +O(

√
n). For this, fix ρ ∈ [1/2, 1) and let

h(x) := ex/[1 + ρ(ex − 1)]2. We require the following technical lemma, proved below.

Lemma 5. For any ρ ∈ [1/2, 1), 0 ≤ h(x) ≤ 1 for all x ≥ 0.

To prove Lemma 1, we use a first-order application of Taylor’s theorem about λ = 0, which yields, for any
c ≥ 0, λ ≥ 0,

log
(
1 + ρ(ecλ − 1)

)
= ρcλ+

ρ(1− ρ)h(ξ)c2λ2

2
, (37)

for some ξ ∈ [0, cλ]. Since Γ ≥ 1, we are assured ρΓ ≥ 1/2, as assumed above. So combining the definition
(10) of fα,n with the expansion (37), we have

fα,n(x) =
logα−1

λn
+ µn(x) +

ρΓ(1− ρΓ)λn
2

n∑
i=d(1−x)(n+1)e

h(ξi)c
2
i , (38)

where ξi ∈ [0, ciλn] for each i = 1, . . . , n. Now Lemma 5 implies

0 ≤ ρΓ(1− ρΓ)λn
2

n∑
i=d(1−x)(n+1)e

h(ξi)c
2
i ≤

λnσ
2
n(x)

2
, (39)

so that

0 ≤ fα,n(x)− µn(x) ≤ logα−1

λn
+
λnσ

2
n(x)

2
. (40)

Applying Lemma 3 to the function q 7→ ϕ2(1− q)1x≤x, which is integrable by (P1), we see that n−1σ2
n(x) =

O(1) for each x ∈ (0, 1). Together with the definition (10) of λn, we conclude

0 ≤ fα,n(x)− µn(x)√
n

=
1√
n

(
logα−1

λn
+
λnσ

2
n(x)

2

)
=

√
σ2
n(x0)

2n
+

√
2n logα−1

σ2
n(x0)

· σ
2
n(x)

n
= O(1), (41)

as desired.
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Note that, if we further assume
∫ 1

0
ϕ3(x) dx < ∞, then we have the second-order expansion mentioned in

Section 3,

fα,n(x) = µn(x) +

(
1 +

σ2
n(x)

σ2
n(x0)

)√
σ2
n(x0) logα−1

2
+O(1). (42)

To prove (42) we follow an analogous argument starting from

log
(
1 + ρ(ecλ − 1)

)
= ρcλ+

ρ(1− ρ)c2λ2

2
− ρ(1− ρ)h2(ξ)c3λ3

6
, (43)

for some ξ ∈ [0, cλ], where

h2(x) :=
ex[ρ(1 + ex)− 1]

[1 + ρ(ex − 1)]3
(44)

satisfies 0 ≤ h2(x) ≤ 1 for all x ≥ 0. By the same argument which led from (37) to (41), we find

0 ≤ logα−1

λn
+ µn(x) +

λnσ
2
n(x)

2
− fα,n(x) ≤ ρΓ(1− ρΓ)λ2

n

6

n∑
i=d(1−x)(n+1)e

c3i = O(1). (45)

Substituting the definition of λn shows that

logα−1

λn
+ µn(x) +

λnσ
2
n(x)

2
= µn(x) +

(
1 +

σ2
n(x)

σ2
n(x0)

)√
σ2
n(x0) logα−1

2
=: gα,n(x). (46)

Note that the chosen value of λn is the minimizer of the left-hand side of (46) when x = x0, justifying the
claim that λn is chosen to optimize the bound gα,n(x) at x = x0.

Proof of Lemma 5. That h(x) ≥ 0 for all x ≥ 0 is clear from the definition. To see that h(x) ≤ 1, observe

h′(x) = ex
(

1− ρ(1 + ex)

[1 + ρ(ex − 1)]3

)
. (47)

Now the inequality ex ≥ 1 + x implies 1 − ρ(1 + ex) ≤ 1 − 2ρ ≤ 0 by our assumption ρ ≥ 1/2, while
1 + ρ(ex − 1) ≥ 1 > 0. Hence h′(x) ≤ 0 for all x ≥ 0. Together with h(0) = 1, the conclusion follows.

A.4 Proof of Lemma 2

Let H(x) := G(x)−G(−x). Fix any ε > 0. Because bounded, continuous functions with compact support are
dense in Lp (Hewitt and Stromberg, 1965, Theorem 13.21), we can find a continuous function ϕc : [0, 1] →
[0,∞) such that

∫ 1

0
|ϕ(x)− ϕc(x)|dx < ε, and ϕc(x) = 0 for all x ∈ [0, b) ∪ (1 − b, 1] for some 0 < b < a.

Now write

τ :=

∫ ∞
0

ϕ(H(x)) dG(x) and (48)

τc :=

∫ ∞
0

ϕc(H(x)) dG(x). (49)

We will show

lim sup
n→∞

1

n

∣∣∣∣∣
n∑
i=1

ϕ

(
i

n+ 1

)
1Y(i)>0 −

n∑
i=1

ϕc

(
i

n+ 1

)
1Y(i)>0

∣∣∣∣∣ < ε, a.s., (50)

1

n

n∑
i=1

ϕc

(
i

n+ 1

)
1Y(i)>0

a.s.→ τc, and (51)

|τc − τ | < ε, (52)
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from which we conclude lim supn→∞

∣∣∣n−1
∑n
i=1 ϕ

(
i

n+1

)
1Y(i)>0 − τ

∣∣∣ < 2ε a.s. Since ε was arbitrary, the

conclusion follows.

To obtain (50), use the triangle inequality to write

1

n

∣∣∣∣∣
n∑
i=1

[
ϕ

(
i

n+ 1

)
−

n∑
i=1

ϕc

(
i

n+ 1

)]
1Y(i)>0

∣∣∣∣∣ ≤ 1

n

n∑
i=1

|ϕ− ϕc|
(

i

n+ 1

)
(53)

=
1

n

n+1∑
i=1

|ϕ− ϕc|
(

i

n+ 1

)
− |ϕ− ϕc| (1)

n
(54)

→
∫ 1

0

|ϕ− ϕc| (x) dx < ε, (55)

where the limit uses Lemma 3, noting that |ϕ− ϕc| is bounded on [b, 1 − b] and monotone elsewhere, and
final inequality follows from our choice of ϕc.

The second step (51) follows from Theorem 1 of Sen (1970) applied to ϕc, which we partially restate. See
Appendix A.6 for an explanation of why our statement differs from Sen’s.

Lemma 6 (Sen, 1970, Theorem 1). Suppose ϕc ∈ L1(0, 1) is bounded and continuous, and suppose Y1, Y2, . . .
are drawn i.i.d. from a continuous distribution G. Then

1

n

n∑
i=1

ϕc

(
i

n+ 1

)
1Y(i)≥0

a.s.→
∫ ∞

0

ϕc(H(x)) dG(x). (56)

Finally, to see (52), use the triangle inequality to write

|τc − τ | ≤
∫ ∞

0

|ϕc − ϕ| (H(y)) dG(y) (57)

≤
∫ ∞

0

|ϕc − ϕ| (H(y)) dH(y), (58)

since H ′(y) = G′(y) +G′(−y) ≥ G′(y) and the integrand is nonnegative. From this we conclude

|τc − τ | ≤
∫ 1

0

|ϕc − ϕ| (u) du < ε, (59)

by our choice of ϕc.

A.5 Proof of Proposition 2

Fix any p ≥ 1. A standard Cramér-Chernoff tail bound for the normal distribution (Boucheron et al., 2013,

Section 2.2) gives 1− Φ(x) ≤ e−x2/2, which implies Φ−1(q) ≤
√

2 log(1− q)−1. Hence∫ 1

0

|ϕ(q)|p dq ≤ 2p/2
∫ 1

0

[log(2/(1− q))]p/2 dq (60)

= 21+p/2

∫ ∞
log 2

yp/2e−y dy (61)

using the substitution y = log(2/(1 − q)). The final integral is upper bounded by Γ(1 + p/2), using the
definition of the Gamma function and non-negativity of the integrand, which completes the proof.

A.6 Discussion of Theorem 1 from Sen (1970)

Sen (1970) assumes only that ϕ ∈ L1(0, 1) is continuous. Denoting ϕn(x) := ϕ(i/(n + 1)) for (i − 1)/n <
x ≤ i/n, i = 1, . . . , n, their proof (p. 2141) claims that

lim
n→∞

∫ 1

0

|ϕn(x)|dx =

∫ 1

0

|ϕ(x)|dx. (62)
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Figure 6: π(x) from Theorem 2 for additional score functions not included in Figure 3, when G is standard normal,
Laplace (double exponential) or Cauchy, and τ = 1/2.

The conclusion (62) is not true for all continuous ϕ ∈ L1(0, 1), as the counterexample below shows. However,

noting that
∫ 1

0
ϕn(x) dx = n−1

∑n
i=1 ϕ(i/(n + 1)), our Lemma 3 shows that (62) is true under stronger

conditions, and in particular is true for bounded ϕ. This is the reason we require boundedness in our
restatement of Sen’s result, Lemma 6.

Let ϕ(x) = n for 1/(n+1) ≤ x ≤ 1/(n+1)+1/(n2n+1), n ∈ N. Then
∫ 1

0
ϕ(x) dx =

∑∞
n=1 2−n−1 = 1/2, hence

ϕ(x) ∈ L1. But n−1
∑n
i=1 ϕ(i/(n+1)) ≥ n−1ϕ(1/(n+1)) = 1 for all n, so lim infn→∞ n−1

∑n
i=1 ϕ(i/(n+1)) ≥

1 > 1/2 =
∫ 1

0
ϕ(x) dx, showing (62) does not hold. This ϕ is not continuous, but may be replaced with a

continuous approximation by standard arguments.

A.7 Additional plots of π(x)

Figure 6 plots π(x) as defined in Theorem 2 for additional score functions not included in Figure 3.
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