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Abstract

In this paper we introduce a new framework for image registration.

Our formulation is based on consistent discretization of the optimiza-

tion problem coupled with a multigrid solution of the linear system

which evolve in a Gauss-Newton iteration. We show that our dis-

cretization is h-elliptic independent of parameter choice and therefore

a simple multigrid implementation can be used. To overcome poten-

tial large nonlinearities and to further speed up computation, we use

a multilevel continuation technique. We demonstrate the efficiency of

our method on a realistic highly nonlinear registration problem.

1 Introduction and problem setup

Image registration is one of today’s challenging image processing problems.
Given a so-called reference R and a so-called template image T , the basic idea
is to find a “reasonable” transformation such that a transformed version of the
template image becomes “similar” to the reference image. Image registration
has to be applied whenever images resulting from different times, devices,
and/or perspectives need to be compared or integrated; see, e.g. [5, 17] and
references therein.

The computation of nonrigid image registration has two main building
blocks. The first one is a distance measure D quantifying distance or sim-
ilarity of images and the second one is a regularizer S which outrules non-
reasonable solutions. Note that image registration is an ill-posed problem;
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see, e.g., [17]. Therefore, regularization is inevitable. A common treatment
of the registration problem is based on the following variational approach.
Find a transformation u minimizing the joint energy

J α[u] := D(R, T (u)) + αS(u). (1)

Here, α > 0 is a regularization parameter and compromises between similar-
ity and regularity.

The formulation (1) is common to many ill-posed inverse problems where
the data fitting term D is balanced with a regularization term using the reg-
ularization parameter α. Many authors have dealt with the optimal choice
of α using a variety of approaches; see for example [13, 21]. If the difference
between the images is associated with random noise then methods which
are based on the statistics of the noise such as GCV [8] or χ2 [19] can be
used. However, in image registration the difference between two images (at
least in most medical applications) is not associated with random noise. In
fact, the difference may be highly structured and only a trained professional
(e.g. radiologist) could determine the exact amount of regularization needed.
Therefore, we prefer to provide a sequence of registered image pairs for vari-
ous α’s and leave the final choice for an optimal α to a trained professional.

The optimization problem (1) cannot be solved analytically, in general.
Thus, numerical schemes and appropriate discretizations are required. Typi-
cally, a discretization leads to a finite dimensional non-linear problem, where
the number of unknowns can be large. For example, the discrete registration
problem for two 128× 128× 64 MRI scans results in a non-linear systems of
equations in about 3 · 106 unknowns. Thus, highly efficient algorithms are
required in order to preform the registration in a reasonable amount of time.
This applies in particular, if one is not only interested in a solution for a fixed
α but in a sequence of solutions for a variety of different α’s. Furthermore,
since we want our codes to run in clinical setting, we require only modest
computational hardware.

There are two main approaches for the discretization of the registration
problem (1). In the first so-called optimize-discretize approach one forms
the objective function, then differentiates to obtain the continuous Euler-
Lagrange equations, which are finally discretized and solved numerically;
see, e.g., [14, 6, 17]. The second approach is the so-called discretize-optimize

approach. Here, one directly discretizes the problem and then solves a finite
(but typically high) dimensional optimization problem; see, e.g.,[12]. The
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advantage of the latter approach is that standard optimization methods can
be used. We prefer the discretize-optimize approach, however, in order to
take advantage of efficient optimization techniques, all parts of the discrete
problem need to be continuously differentiable. We discuss the implications
and advantages of this necessity in the paper.

To gain additional computational efficiency and obtain a scalable algo-
rithm, one can either use a Full Approximation multigrid Scheme (FAS) or
a multilevel Newton-type scheme with an efficient solver for the linearized
systems of equations. In this paper we propose a multilevel inexact Gauss-
Newton scheme combined with a multigrid solver for a computation of a
numerical solution of (1). The latter approach has an efficiency similar to
FAS [20] but it is much more modular. Particularly, the linear solver is de-
coupled from the optimization strategy. Therefore, the code can be modified
easily such as to deal with any differentiable distance measure and/or regu-
larizer. However, for the sake of simplicity, we focus on the so-called sum of

squared differences (SSD) as a distance measure D and the elastic potential
as a regularizer S:

D[u] = 1
2

∫

Ω

(
T (x + u(x))−R(x)

)2

dx (2a)

S[u] =

∫

Ω

〈Bu,Bu〉 dx (2b)

:=

∫

Ω

λ + µ

2
‖ ∇ · u‖2 +

µ

2

d∑

i=1

‖ ∇ ui‖
2 dx.

where Ω = (0, 1)d is the registration domain and λ and µ are the Lam’e
constants.

Our discretization is based on the weak form of the problem (1) which
naturally leads to staggered grids discretization. To our best knowledge,
staggered grids discretization has been introduced to imaging in [12]. In this
paper, we proof the h-ellipticity of the discretization for the elastic potential,
independent of the problem parameters. As has already been shown in [12],
this discretization is also stable for point-wise volume preserving constraints.

Our work relates to the work of Henn and Witsch [14], Clarenz, Droske,
and Rumpf [6] and Kalmoun and Ulrich [16]. In [14], a Full Approximation
Scheme (FAS) based on the discretized optimality conditions for the continu-
ous problem is presented. In [6], a diffusive rather than an elastic regularizer
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is used. In both papers, a d-linear interpolation scheme is used to compute
the deformed template. Therefore, the objective function is not continuously
differentiable and this may lead to failure of standard optimization tech-
niques. In [16] a multigrid method is developed for the related optical flow
problem but with the diffusive regularizer.

This paper is organized as follows. In Section 2, we discuss the discretiza-
tion of the registration problem (1). Our optimization approach which is
based on a Gauss-Newton type scheme (cf., e.g., [18]) is discussed in Sec-
tion 3. In Section 4, we propose a multigrid method for a solution of the
linearized problems. Using a local mode analysis we show that our discretiza-
tion is particularly amendable to multigrid methods and suggest appropriate
multigrid treatment. In Section 5, we combine our nonlinear iteration with a
multilevel continuation method. Finally, in Section 6, we present numerical
examples that demonstrate the effectiveness of our algorithm.

2 Discretization

Choosing a stable discretization method for a system of partial differential
equations (PDE’s) with mixed derivatives is a delicate matter. Here, we use
staggered grids which are very common for stable discretizations of fluid flow
(see, e.g., [7]) and electromagnetics (see, e.g., [23, 10]) where operators such
as the gradient, curl, and divergence are discretized. It is also well known
that staggered grids are tightly connected to mixed finite elements methods
which are commonly used for elasticity [3].

In this section we shortly summarize the discretization we use. Further
discussion and details are given in [12].

2.1 Discretizing u

We assume that our discrete images have m1× . . .×md pixels, where d = 2, 3
is the image dimensionality. For ease of presentation, we also assume that
each pixel is square with lengths h. In our description we allow for half
step indices. As usual in image processing, we identify pixels/voxels with
cell centered grid points xj,k,`, which are therefore labeled with full integers
indices. Given a pixel/voxel xj,k,`, their faces are numbered with a half index,
xj± 1

2
,k,`, xj,k± 1

2
,`, and xj,k,`± 1

2

, and we discretize the ith component ui of u on

the ith face for every pixel/voxel. With some abuse of notation, we denote
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the discrete analog of the continuous vector field by u = (u1, . . . , ud)>, where
ui denotes the grid function which is approximated on the face-staggered grid.

If needed, the derivatives ∂ju
k are approximated by the short (central)

differences,

∂ju
k ≈ ∂h

j uk := 1
h
(uk

...,ij+
1

2
,...
− uk

...,ij−
1

2
,...

). (3)

Note that no boundary conditions are needed to approximate derivatives in
the normal directions (∂ju

j). For the tangential directions (∂ju
k, j 6= k) we

imposed Neumann boundary conditions.

2.2 Discretizing S

Since many regularizers are phrased in terms of the more complex differential
operators gradient ∇ and divergence ∇· , we introduce the notation ∇h

j

and ∇h· for the discrete analogs,

∇h
j uj = (∂h

1 uj, ..., ∂h
d uj)> and ∇h · u =

∑
∂h

j uj. (4)

Using these discrete analogs the elastic potential S (2c) is discretized as

Sh(u) = ‖Bu‖2
2 :=

λ + µ

2
‖ ∇h · u‖2 +

µ

2

d∑

i=1

‖ ∇h
j ui‖

2. (5)

In the course of the registration process we require derivatives. Upon
differentiation of the regularizer we obtain the Navier-Lamé operator

Sh
u
(u) = (λ + µ)(∇h· )> ∇h · u− µ∆hu =: Au, (6)

where ∆h is the usual seven points discrete vector Laplacian. Note that
the approach in [6] is diffusion based (i.e., setting λ = −µ in (2c) and (5)),
such that coupling terms vanishes. In contrast to [14], where the strong
form given by the product B∗B is discretized, we discretize B and build the
discrete product A := B

>
B. The advantage of the latter approach is that

the derivative Sh
u

is a true derivative of the discrete function Sh. Moreover,
boundary conditions are naturally related to those of the operator B.
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2.3 Discretizing T

If we require a continuously differentiable objective function we require to
have a continuous image model. Since the images are typically noisy but
derivatives are needed we use a smoothing B-spline to approximate the im-
age where the smoothing parameter is chosen using the Generalized Cross
Validation method (GCV) [8]. For data interpolation using B-splines see
[22]. Since the grid is regular, we can quickly evaluate the spline coefficients
using cosine a transform. The continuous smooth approximation is denoted
by T spline.

We are heading for fast and efficient optimization scheme and therefore
differentiability does play a key role. Thus, although computationally su-
perior, d-linear image approximations can not be used, since they are not
continuously differentiable.

Given the staggered grid representation of u we use averaging operators
Pj for the transfer to the cell centered positions, we set

T (u) := T spline(x1 + P1u
1, . . . , xd + Pdu

d),

see [12] for details. We denote the Jacobian of T by

Tu :=
∂T

∂u
(u) =

(
diag(P>

1 ∂1T ), . . . diag(P>

d ∂dT )
)
, (7)

where the partial derivatives ∂jT are evaluated at the spatial positions (x1 +
P1u

1, . . . , xd + Pdu
d). Note that using a spline approximation for T , Tu is a

sparse matrix with only four non-zero diagonals.

2.4 Discretizing D

Our discretization of SSD (2a) is straighforward,

D(u) := 1
2
‖T (u)−R‖2

2 and thus Du(u) = Tu(u)>(T (u)−R).

3 Optimization

The discretized analog of the image registration problem (1) for fixed α reads:

find u such that J
α(u) := D(u) + αS(u) = min . (8)
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To solve this problem numerically we use an inexact Gauss-Newton method;
cf., e.g., [18].

Starting with the initial guess u, at each step we compute the gradient
J

α
u

of (8)
J

α
u

= Tu(u)>(T (x + u)−R(x)) + αAu (9)

and approximately solve the system of linear equations

Hδu = −J
α
u
, (10)

using a multigrid technique which is described in Section 4. Here H is an
approximation to the Hessian

H = M + αA (11)

and M is an approximation to Tu(u)>Tu(u). For example, for d = 3, we
have

Tu(u)>Tu(u) =

(
(∂1T )2 (∂1T )(∂2T ) (∂1T )(∂3T )

(∂1T )(∂2T ) (∂2T )2 (∂2T )(∂3T )
(∂1T )(∂3T ) (∂2T )(∂3T ) (∂3T )2

)

Although from an optimization standpoint it is better to use M = Tu(u)>Tu(u)
using this matrix results in a more complicated multigrid solver because sim-
ple restriction cannot be used effectively (see also [16]). In order to have
a simple multigrid scheme, which uses less storage, we approximated this
matrix by

M =

(
(∂1T )2 0 0

0 (∂2T )2 0
0 0 (∂3T )2

)
.

The deformation is updated by u ← u+γδu, where γ is chosen according
to an Armijo line search, and the process is repeated until convergence, i.e.,
‖u− uold‖ ≤ tol. The algorithm is summarized in Algorithm 1.

3.1 Continuation in α

As discussed in the introduction, the optimal value of the regularization
parameter α is in general unknown a-priori. In order to estimate a reasonable
α, we follow the strategy suggested in [11]. Starting with a large α0, we
compute a sequence of solutions uαj , where αj+1 < αj. This sequence can
be viewed as a continuation with respect to the regularization parameter α.
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Algorithm 1 Gauss-Newton method for image registration:
u ← GNIR(α, u);

while true do

compute J
α
u

and H ;
approximately solve Hδu = −J

α
u
;

if ‖δu‖ < tol then

break;
end if

using a line search set u ← u + γδu

end while

For a large regularization parameter the registration problem is almost
quadratic and therefore its solution requires only a few iterations using a
Newton-type optimization technique. Let j = 0, starting with αj, we com-
pute dj := D(uαj) and expect at least the solution uα0 to under-fit the data.
We use uαj as an excellent starting guess for the computation of the solution
of the registration problem for αj+1. We stop, if a solution uαj becomes
to irregular. Irregularity has to be provide by an trained professional and
enters into the code by choosing an appropriate value of c for the data-fit.
The algorithm is summarized in Algorithm 2.

Algorithm 2 Continuation in α: [u, α] ← continuation(u, α, c)

set u0 ← u, choose η < 1;
while true do

solve (1) using Alg. 1: u ← GNIR(α, u);
if D(u) < c then

break;
end if

relax the regularization parameter: α ← ηα;
end while

4 A multigrid solution of the linear systems

The challenging part within the nonlinear optimization is the solution of the
linear systems. The system can be very large and is strongly coupled but
it has a few characteristics which are particularly amendable to multigrid
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methods. We now discuss a multigrid method for the solution of the linear
systems. General comments on smoothing, prolongation, restriction, and
coarse grid solution are given in [20].

4.1 h-ellipticity

To show that the discrete equations (10) are amendable to multigrid methods
we first analyze them by local Fourier analysis (LFA). For simplicity, we
preform the analysis in 2D but it can be directly generalized into 3D.

Recall that the Hessian for the unconstrained optimization problem reads

H = αA + M ,

where M is a non-negative diagonal matrix. A LFA with freezing coefficients
takes the worst case scenario into account, i.e. M = 0. Therefore, we need
to study the matrix A alone, which is a discretization of the Navier-Lamé
operator

A = B∗B := −µ∆− (λ + µ)∇∇ ·

=

(
(2µ + λ)∂x1,x1

+ µ∂x2,x2
(λ + µ)∂x1,x2

(λ + µ)∂x1,x2
µ∂x1,x1

+ (2µ + λ)∂x2,x2

)

where the so-called Lamé constants λ and µ reflect material properties. Stag-
gered grid discretization leads to the following four stencils for the four parts
of the operator:

S1,1 =

(
0 −a 0
−b 2(a + b) −b
0 −a 0

)
, S1,2 = c

(
1 −1
−1 1

)
,

S2,1 = (S1,2)>, S2,2 = (S1,1)>,





(12)

abbreviating a = (2µ + λ), b = µ, and c = λ + µ.

Applying the discretized operators Ah to a grid function χ(x,θ) = e
i
h

θ>x,
we obtain the symbols of our discretized operators

Ãh(θ) =

(
2aw1 + 2bw2 −4c sin θ1

2
sin θ2

2

−4c sin θ1

2
sin θ2

2
2bw1 + 2aw2

)
,

where wj := 1− cos θj = 2 sin2 θj

2
. Its determinant is given by

d(θ) = d̃(w) = 4abw2
1 + 4abw2

2 + 4(a2 + b2)w1w2 − 4c2w1w2

= 4ab(w1 + w2)
2. (13)
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Theorem 1 The h-ellipticity measures of the staggered grid discretizations (12)
is

Eh(Ah) = 1
4
,

and in particular independent of the Lamé constants.

Proof: Following [20, §8.3.2],

Eh(Ah) :=
min{| det Ãh| : θ ∈ T high}

max{| det Ãh| : −π < θj ≤ π}
.

From (13), we see that the min and max are independent of λ and µ.

max{d(θ) : −π < θj ≤ π} = max{d̃(w) : 0 ≤ wj ≤ 1}

= d̃(1, 1) = 16ab = 16µ(2µ + λ),

min{d(θ) : θ ∈ T high} = min{d̃(w) : 1
2
≤ |wj| ≤ 1}

= d̃(1
2
, 1

2
) = 4ab = 4µ(2µ + λ).

¥

Remark 1 The above theorem is remarkable because as the ratio λ/µ be-

comes larger, the system becomes more ill-conditioned. Nevertheless, the

Theorem suggests that an appropriate multigrid implementation works well

regardless of that ratio.

4.2 Smoothing

The h-ellipticity of our discretization (independent of choices of the Lamé
constants λ and µ) guaranties that, for example, Kacztmart’s relaxation has
smoothing properties. Here we have implemented a damped Jacobi smoother
with damping parameter of 2/3. Since we want our code to run on modest
computational architecture such as a Laptop, our implementation does not
generate the matrix and only matrix vector products are calculated.

4.3 Prolongation and restriction

To fulfill the relation between the order of the differential operator and the
sum of the orders of prolongation and restriction, we use linear interpolation
for prolongation and its transpose for the restriction.
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4.4 Coarse grid operator

Although it is possible to use a Galerkin coarse grid operator for building
the coarse grid system AH , a straightforward implementation requires either
additional memory or additional computations. For problems, with uniform
and structured grids, one can use re-discretization to get a faster implemen-
tation. However, since re-discretization can not be applied to the diagonal
matrix Mh, we choose the following approach leading to a diagonal MH .
In the first stage we extract the diagonal entries of Mh, this corresponds to
a vector with the same dimensions of uh. Second, we generate the diagonal
matrix MH by restricting this vector and setting the diagonal elements of
MH to the restricted values.

4.5 Multigrid-cycles

The above components are linked together to a V - or a W -cycle. In our
implementation we use only a single V -cycle for each non-linear iteration.
As we show in the numerical experiments, a V (3, 1)-cycle is very effective
and decrease the residual in one or two orders of magnitude.

5 Multilevel continuation

Image registration can be highly non-linear and therefore, one may require
many iterations to achieve a solution. An important method to save compu-
tational work and to deal with non-linearities is to use a multilevel continu-
ation. Multilevel continuation is well established for optimization problems
and systems of non-linear equations; see, e.g., [1, 2]. However, in image regis-
tration it has an additional advantage. Similar to [9, 4], we use the multilevel
approach to efficiently identify the relevant range of α’s. Thus, our multilevel
approach uses continuation in both the grid and regularization parameter.
Note that even for approaches where the images may not be smooth, the
desired solution uα is. Therefore, multilevel methods provide an effective
tool for the continuation problem.

Given an initial upper bound C for the image distance, using a secant
method, we compute a parameter αC , such that

D(uαC ) ≈ C. (14)
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After αC is computed, we use Algorithm 2 on the fine grid to obtain a
sequence of solution uα, where c ≤ D(uα) ≤ C. We summarize the multilevel
algorithm in Algorithm 3.

Algorithm 3 Multilevel image registration: u ← MLIR

choose u on the coarsest grid;
while true do

solve the registration problem u = GNIR(u, α); cf. Alg. 1;
if |D(u)− C| ≥ tol then

adjust α using one a secant method;
end if

if on finest grid then

return;
end if

prolongate u to the finer grid: u ← prolongate(u);
end while

6 Numerical examples

In this section we preform numerical experiments that demonstrate the ef-
fectiveness of our algorithm. We present a registration of three-dimensional
MRI scans of a human knee (images provided by Thomas Netsch, Philips
Medical Solution, Hamburg, Germany). The problem is known to be hard
because large nonlinear deformations are needed in order to perform the
registration; see also [15].

As apparent from Fig. 1, the reference shows the knee in an almost
straight position and the template shows the knee in a bent position. The
deformation is thus expected to be highly non-linear. For the registration
results shown in Fig. 1, we choose α = 10−3, which balances similarity and
regularity with respect to our eyeball-norm. Fig. 1 (a,b,c) show a 3D view of
the straight (R), bent (T ), and registered bent knee (T (uα)). As it is appar-
ent from Fig. 1 (c), the overall registration is reasonable. We also analyze the
results in terms of a pairwise comparison of image slices. A 2D view of the
generic slice 40 of a total of 64 is shown in Fig. 1 (d,e,f). We add a regular
grid to R and T and the deformed grid to T (uα). Though highly non-linear,
the deformation appears to be sufficiently smooth, as can be seen from the
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3D
v
ie
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a. reference R b. template T c. T (uα)

2D
v
ie

w
s

d. reference R e. template T f. T (ufinal)

M
IP

g. MIP |R− T | h. MIP: |R− T (uα)|

Figure 1: Registration results for two 128× 128× 64 MRI scans of a human
knee; 3D views of R (a), T (b), and T (uα) (c); the generic slice 40 with grid
for R (d), T (e), and T (uα) (f); maximum intensity projections for |R − T |
(g) and |R− T (uα)| (h).
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Table 1: Reductions in the SSD (in %), and iterations (in #) for the multilevel
elastic registration, image size is n3/2.

level n Iter SSD
5 8 #13 17.2%
4 16 # 16 17.8%
3 32 # 9 17.9%
2 64 #8 17.2%
1 128 #6 17.2%

deformed grid. Finally, Fig. 1 also shows Maximum Intensity Projections
(MIP’s) of the distances |R − T | and |R − T (uα)|, respectively. The image
distance has been reduced to 17.2%,

D(uα)

D(0)
≈ 17.2%, for α = 10−3.

As common to many other registration algorithms we use a two phase
registration. In the first phase a multilevel linear preregistration is done
followed by a second phase multilevel non-linear registration. The linear
registration managed to reduce the image distance to 50.1% and the rest was
done using our nonlinear registration.

The computations are performed using MATLAB 6.1 on a 2.2GHz Lap-
top with 1GB of RAM. The overall time for the registration was about 118
minutes including the computation for the B-spline coefficients (≈ 11 min-
utes).

In our computations, about one third of the time is needed for the linear
part and about two third is needed for the non-linear part. Within the non-
linear part, 66% are needed for the computation of T (u) and Tu(u) and 24%
are needed to solve the linear system. An overview with respect to levels is
presented in Tab. 1.

Running our scheme with a regularization parameter α = 10−2 leads to
visually indistinguishable results but to a much higher distance (reduction to
25.3% instead of 17.2% for α = 10−3). On the other hand, choosing α to small
(α ≤ 10−4 in this example) results in non-physical deformations which are
visible by looking at the deformed grid. Therefore, it is easy to derive a lower
bound for α. However, choosing an “optimal” regularization parameter α is a
delicate matter since it requires a quantification of “physically meaningful”.
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We do not believe in an automatic detection and therefore leave the final
choice to an expert.

To observe the effectiveness of our multigrid algorithm solver we record
the reduction of the residual for each of the Gauss-Newton iterations on the
finest grid. Note that for each iteration we have a different approximation
to the Hessian characterized by the different M ’s. In our experiment, the
multigrid solver was very effective and after only a single V (3, 1)-cycle our
residual is decreased by approximately two orders of magnitudes. On average,
the reduction factor was 2.1 · 10−2.

7 Summary

In this paper we have developed a multilevel registration scheme for image
registration based on a variational formulation. The scheme is based on a
multilevel inexact Gauss-Newton scheme with a multigrid solver for the lin-
earized systems. We make extended use of numerical optimization techniques
and therefore pay special attention to differentiability issues. We use smooth-
ing B-splines to compute the solution to the forward problem and staggered
grids to discretize the transformation. We prove that the discretization is
h-elliptic and therefore is amendable to multigrid methods. The numerical
experiments support our theoretical prediction and show that we can solve
large scale problems using modest computational tools like MATLAB.
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