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Although immunomodulatory drugs (IMiDs), such as thal-
idomide, lenalidomide, and pomalidomide, are widely used
in the treatment of multiple myeloma (MM), the molecular
mechanism of IMiDs’ action is largely unknown. In this
review, we will summarize recent advances in the application
of IMiDs in MM cancer treatment as well as their effects on
immunomodulatory activities, anti-angiogenic activities,
intervention of cell surface adhesion molecules between
myeloma cells and bone marrow stromal cells, anti-inflam-
matory activities, anti-proliferation, pro-apoptotic effects, cell
cycle arrest, and inhibition of cell migration and metastasis.
In addition, the potential IMiDs’ target protein, IMiDs’
target protein’s functional role, and the potential molecular
mechanisms of IMiDs resistance will be discussed. We wish,
by presentation of our naive discussion, that this review
article will facilitate further investigation in these fields.
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Introduction

Multiple myeloma (MM) is a cancer of plasma cells originat-
ing in bone marrow (BM). Plasma cells are normally re-
sponsible for the production of antibodies [1]. In MM,
accumulation of the abnormal plasma cells in bones results
in bone lesions whereas accumulation in BM interferes with
the production of normal blood cells, such as MM-associated
anemia. In addition, MM, in most cases, features the produc-
tion of a paraprotein, i.e. an ineffective abnormal monoclonal
antibody from the clonal plasma cells that can cause kidney
problems and interfere with the production of normal anti-
bodies that lead to immunodeficiency [1]. Furthermore,
common problems with MM include bone pain, radicular
pain, weakness, confusion, fatigue, headache, visual changes,
retinopathy, loss of bowel control or loss of bladder control,
carpal tunnel syndrome, and other neuropathies.

MM is generally thought to be incurable, but remissions
might be induced with steroids, chemotherapy, and stem cell
transplants. In fact, the treatment of MM has a long history.
The first reported attempt, including rhubarb pill and infu-
sion of orange peel, was published in 1844 [2]. Then, phle-
botomy was used as a maintenance therapy for MM [3] and
urethane was used to decrease the number of myeloma cells
[4]. Prednisone, which was isolated in 1950 and commercial-
ly synthesized in 1955, is a synthetic corticosteroid drug that
is quite effective as an immunosuppressant drug and widely
used to treat many different diseases including MM [5–7].
Dexamethasone (DEX) is another synthetic corticosteroid
drug that is 27 fold more potent than the naturally occurring
hormone cortisol and six times more potent than prednisone.
DEX is used as a direct chemotherapeutic agent in certain
hematological malignancies, especially in the treatment of
MM, in which DEX is either given alone or in combination
with other chemotherapeutic drugs [8–11]. The development
of alkylating agent melphalan provides another chemothera-
peutic agent to treat MM [12] and the combination of melpha-
lan with prednisone yielded better outcomes than melphalan
alone [13]. Bortezomib, a proteasome inhibitor that specifical-
ly inhibits the threonine proteases of the 20S proteasome
subunit [14–16], was synthesized in 1995 and approved, due
to the promising results derived from the study of uncon-
trolled myeloma managed with proteasome inhibition therapy
(SUMMIT) [17], in the United States by the Food and Drug
Administration (FDA) for use in the treatment of MM.

The anti-angiogenic activity of thalidomide found in a
rabbit cornea micropocket assay prompted investigation of
thalidomide as an anti-cancer drug [18]. Based on this
finding, Singhal et al. [19] evaluated the efficacy of thalido-
mide in MM patients with refractory disease and found that
thalidomide can induce marked and durable responses in
some patients with MM, including those patients who
relapse after high-dose chemotherapy. Thalidomide, based
on its promising effects, was approved by FDA in 2006 in
combination with DEX for the treatment of newly diagnosed
MM. Due to adverse side-effects of thalidomide, such as
dose-limiting toxicities including somnolence, constipation,
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neuropathy, and increased incidence of venothromboembo-
lism, more potent and safer analogs, such as lenalidomide
and pomalidomide, of thalidomide were developed.
Lenalidomide, approved by FDA in 2006, and pomalido-
mide, approved by FDA in February 2013, are a series of
synthetic compounds derived by modifying the chemical
structure of thalidomide and have been found that both of
them are more potent and safer than thalidomide.

In order to further improve the outcomes of the afore-
mentioned drugs, multiple drug combinations, such as
bortezomibþDEX [8–10]; bortezomibþDEXþthalidomide
[11]; lenalidomideþDEX [20]; melphalanþprednisoneþ
bortezomib [5,6]; melphalanþprednisoneþthalidomide [7],
were actively investigated. In this review, we will focus on
the molecular mechanism of IMiDs’ action in the treatment
of MM.

Development of IMiDs

IMiDs, including thalidomide, lenalidomide, and pomalido-
mide at the moment, are a group of compounds consisting of
two portions: phthalimide and glutarimide in which only the
phthalimide portion was modified (Fig. 1). The first IMiD,
i.e. thalidomide, was synthesized by the German pharma-
ceutical company Chemie Grunenthal in early 1950 and
received patent approval in 1954. Thalidomide was pre-
scribed in the 1950s to pregnant women as a treatment for
their morning sickness. However, treatment with this seda-
tive drug caused birth defects [21–23]. Due to this infamous
teratogenic effect, thalidomide was withdrawn from the
market in 1961.

After being removed from the pharmaceutical market,
thalidomide has become the subject of the research in many
fields, such as the treatment of the patients infected with
human immunodeficiency virus [24] and the patients with an

autoimmune skin disease actinic prurigo [25]. In 1964, thal-
idomide was used to treat a patient critically ill with leprosy.
This treatment resulted in the discovery of its anti-
inflammatory properties in the treatment of the patients with
erythema nodosum leprosum (ENL), a complication of
leprosy [26]. Subsequently, many years research and practice
in this field resulted in the FDA’s approval of using thalido-
mide to treat patients with ENL in 1998.

The use of thalidomide did not stop at the treatment of
patients with ENL. Further investigation found that thalido-
mide possesses anti-angiogenic properties [18]. This finding
triggered further investigation in the field of cancer treat-
ment. Indeed, the research of thalidomide’s effects on
relapsed and refractory MM resulted in the discovery of its
strong anti-cancer activity [19], leading to the FDA’s ap-
proval of using thalidomide to treat the newly diagnostic
MM patients.

Although thalidomide possesses strong anti-cancer activ-
ity, its adverse side-effects, such as teratogenesis, dose-limiting
toxicities including somnolence, constipation, neuropathy,
and increased incidence of venothromboembolism, cannot
be ignored. In order to search for more potent and safer
anti-cancer agents, a formal medicinal chemistry program was
initiated by the Celgene Corporation. Basically, the structure
of thalidomide was moderately modified to yield lenalido-
mide and pomalidomide (Fig. 1). Interestingly, these slightly
modified compounds (thalidomide analogous), such as lenali-
domide, are not only up to 50,000 fold more potent than
thalidomide in terms of tumor necrosis factora (TNFa) inhib-
ition, but also much more potent than thalidomide in their
ability to co-stimulate T-cells [27,28]. In addition, their
adverse side-effects are much less severe than thalidomide
[29,30]. Based on these criteria, lenalidomide was approved
by FDA in 2006 whereas pomalidomide, in February 2013,
for their use in the treatment of patients with MM.

Effects of IMiDs in the Treatment of MM

Immunomodulatory activities of IMiDs
IMiDs, such as thalidomide, lenalidomide, or pomalido-
mide, have a strong capacity to boost immune responses,
therefore, being referred to as immunomodulatory drugs. It
has been reported that in vitro exposure of stem cells to
IMiDs resulted in the generation and activation of murine
dendritic cells (DCs) [31]. DCs are cells that form part of the
mammalian immune system. Immature DCs constantly
sample the surrounding environment for pathogens, such as
viruses or bacteria, performed through pattern recognition
receptors, such as the toll-like receptors. Once the immature
DCs phagocytose pathogens, these cells will degrade their
proteins into small pieces and send them to their cell surface
by using major histocompatibility complex molecules.
During this activation process, these DCs up-regulate cell

Figure 1. Diagram of immunomodulatory drugs including thalidomide,
lenalidomide, and pomalidomide Black shows the common structure

whereas red shows the unique carboxyl group or amino group in each of these

compounds.
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surface receptors that act as co-receptors, such as cluster of
differentiation 80 (CD80), CD86, and CD40, in T-cell acti-
vation and also up-regulate chemokine receptor 7 that
induces the DC to travel through the blood stream to the
spleen or through the lymphatic system to a lymph node. In
this process, they act as antigen-presenting cells and activate
helper T-cells and killer T-cells as well as B-cells by present-
ing them with antigens derived from the pathogen, alongside
non-antigen-specific co-stimulatory signals. Recent observa-
tions suggest that pomalidomide and lenalidomide enhance
tumor antigen uptake by DCs with an increased efficacy of
antigen presentation [32] and potentiate the immune re-
sponse by restoring DC function and inhibiting T-cell regu-
latory activity, leading to the activation of T lymphocytes
and natural killer T (NKT) cells by increasing the production
of interleukin-2 (IL-2) and interferon gamma (IFN-g) [33].

It has been reported that thalidomide is a potent co-stimulator
of primary human T-cells, synergizing with stimulation via
the T-cell receptor complex to increase IL-2-mediated T-cell
proliferation and IFN-g production [34]. Thalidomide and
thalidomide analogous co-stimulating effects and induction
of IL-2 and IFN-g production were further confirmed [35–
40]. Secretion of IL-2 and IFN-g increases the number of
natural killer (NK) cells, improves their function, and med-
iates lysis of MM cells. Further investigation indicated that
IMiDs-induced augmentation of IL-2 production is mediated
by the increase of activator protein 1 (AP-1) transcriptional
activity [37–39]. AP-1 is a transcription factor that forms
heterodimers with proteins belonging to the c-fos, c-Jun,
ATF, and JDP families and regulates gene expression in re-
sponse to a variety of stimuli, including cytokines, growth
factors, stress, and bacterial or viral infections [41].
Suppressor of cytokine signaling 1 (SOCS1) is a member of
the signal transduction and transcription (STAT)-induced
STAT inhibitor family that functions downstream of cyto-
kine receptors and takes part in a negative feedback loop to
attenuate cytokine signaling. Interestingly, the treatment of
MM cells with IMiDs down-regulated SOCS1 expression,
demonstrating that modulation of SOCS1 may enhance
immune response and efficacy of IMiDs in MM [42].
Cytotoxic T-cell antigen 4-immunoglobulin (CTLA-4-Ig) is
a protein receptor that inhibits T-cell proliferation, via block-
ing the B7-CD28 co-stimulation pathway. Interestingly,
IMiDs partially overcome the inhibitory effects of CTLA-4-
Ig on T-cell proliferation and Epstein–Barr virus or influ-
enza virus triggered IFN-g secretion [40]. In addition, IMiDs
triggered tyrosine phosphorylation of CD28 on T-cells and
followed by activation of nuclear factor kappa B (NF-kB)
[40]. Furthermore, IMiDs facilitated the nuclear translocation
of nuclear factor of activated T cell-2 (NFAT2) and AP-1 via
activation of phosphoinositide-3-kinase (PI3K) signaling,
resulted in IL-2 secretion and T-cell proliferation [38].
Taking together, these data support the notion that IMiDs

may mediate their anti-MM effect, at least in part, by modu-
lating NK cell number and function.

NKT cells are a heterogeneous group of T-cells that rec-
ognize lipids and glycolipids presented by CD1d molecules.
NKT cells, upon activation, produce large amounts of IFN-g,
IL-4, IL-2, IL-13, IL-17, IL-21, TNF-a, and granulocyte-
macrophage colony-stimulating factor. Interestingly, lenalido-
mide enhances antigen-specific expansion of NKT cells in
response to the NKT ligand a-galactosylceramide in both
healthy donors and patients with MM [43]. NKT cells, acti-
vated in the presence of lenalidomide, have greater ability to
secrete IFN-g. Antigen-dependent activation of NKT cells
was greater in the presence of DEX plus lenalidomide than
with DEX alone. Therapy with IMiDs also led to an increase
in NKT cells in vivo in patients with MM and del5q myelo-
dysplastic syndrome [43]. Taking together, these data support
the notion that IMiDs may mediate their anti-MM effect by
modulating NKT cells.

Regulatory T-cells (Tregs) are a component of the immune
system that suppresses immune responses of other cells. In
other words, accumulation of Tregs will suppress immune
responses whereas decreased Tregs will argument immune
responses. Therefore, Tregs play an important role in ‘self-
check’ built into the immune system. Tregs were elevated in
patients with MM, leading to suppress the function of naive
T-cells [44]. Regulatory function for Tregs is provided by the
expression of the forkhead family transcription factor fork-
head box p3 (FOXP3). It has been shown that lenalidomide
and pomalidomide strongly inhibit Tregs proliferation via
decreased FOXP3 mRNA expression [45]. Therefore, IMiDs
may be ideal anti-cancer drugs showing features including
marked immune stimulatory properties as well as being able
to inhibit Tregs. Nevertheless, contradictory results have been
observed, i.e. the treatment of the newly diagnosed (untreated)
MM patients with IMiDs increased the number of Tregs cells
[46,47]. Therefore, further investigation is needed to solve
these controversial results.

Anti-angiogenic activities of IMiDs
Angiogenesis is a process of generating new blood vessels.
In many cancers, this process can nurture tumor cells and in-
crease the growth and metastasis of tumors. In MM, the
interaction between the indigenous bone marrow stromal
cells (BMSCs) and MM cells significantly increased the
levels of pro-angiogenic cytokines, such as vascular endo-
thelial growth factor (VEGF) and basic fibroblast growth
factor (bFGF) [35,48–54]. VEGF and bFGF are growth
factors that, once activated by binding to their receptors,
mediate the formation of new blood vessels. In response to
these factors stimulation, BMSCs and microvascular endo-
thelial cells produce IL-6 that stimulates the growth of malig-
nant plasma cells. It has been found that IMiDs decreased
the expression of VEGF and bFGF [50], thereby inhibiting

Cereblon-mediated immunomodulatory drug’s effects

Acta Biochim Biophys Sin (2014) | Volume 46 | Issue 3 | Page 242



new blood vessel formation and decreasing the tumor
growth. Indeed, microvessel growth in the IMiDs treated
samples was significantly less than in the control [31,55–
59]. From this point of view, the inhibition of tumor growth
by anti-angiogenic properties of IMiDs is independent of
their immunomodulatory effects [18,55,56].

Effects of IMiDs on the interaction between MM cells
and BMSCs
MM is a cancer of malignant plasma cells residing in BM
microenvironment by adhering to extracellular matrix (ECM)
proteins and the proteins on BMSCs. The proteins involved in
the interactions between MM cell and ECM or between MM
cell and BMSCs include CD44, very late antigen 4 (VLA-4),
VLA-5, leukocyte function-associated antigen 1 (LFA-1,
CD11a), neural cell adhesion molecule (NCAM, CD56), inter-
cellular adhesion molecule 1 (ICAM-1, CD54), vascular cell
adhesion molecule 1 (VCAM-1, CD106), syndecan (CD138),
and monocyte chemoattractant protein 1 [60].

The initial homing of MM cells to the BM milieu is
mediated by binding of the stromal-derived growth factor
(SDF-1a) in BM to its receptor C-X-C chemokine receptor
type 4 (CXCR-4, CD184) located on MM cells. The inter-
action between MM cells and BMSCs promotes MM cell
survival via cell–cell contact and cytokines. The interaction
between MM cells and BMSCs leads to increased produc-
tion of IL-6, a myeloma cell growth and survival factor, and
other growth factors [61,62]. In addition, SDF-1a also modu-
lates the expression of cell surface adhesion molecules
VLA-4, LFA-1, VCAM-1, and ICAM-1 that favors the adhe-
sion between MM cells and BMSCs. Furthermore, adhesion
of MM cells to BMSCs enhanced NF-kB activity that further
up-regulates IL-6 and VEGF [50,62,63]. TNFa, secreted by
MM cells, enhances the expression and secretion of IL-6 from
BMSCs [64]. TNFa also activates NF-kB and induces the
expression of LFA1, ICAM-1, VCAM-1, VLA-4, and
MUC-1 on MM cell lines as well as VCAM-1 and ICAM-1
on BMSCs [64].

It has been reported that IMiDs, such as thalidomide, in
contrast to the co-stimulation effects in certain T lympho-
cytes [31,36,65–67], inhibited production of TNFa [28,68–
79], suggesting that the treatment with IMiDs might decrease
the production of IL-6 and the cell surface adhesion mole-
cules between MM cells and BMSCs including LFA1,
ICAM-1, VCAM-1, and VLA-4. Indeed, the expression of
IL-6, upon treatment with IMiDs, was significantly
decreased [28,50,80–102]. Furthermore, the expression of
cell surface adhesion molecules, upon treatment with IMiDs,
is also significantly decreased [103–113], meaning that
IMiDs can inhibit the adhesion of MM cells to BMSCs and
overcome cell surface adhesion-mediated drug resistance by
down-regulating the expression of these adhesion molecules.

Anti-inflammatory effects of IMiDs
It has been found that IMiDs, such as thalidomide, inhibited the
production of TNFa [28,68–79]. TNFa is a pro-inflammatory
cytokine that affects a wide variety of cells to induce many
similar inflammatory reactions, including fever, production
of other cytokines, endothelial gene regulation, chemotaxis,
leukocyte adherence, and activation of fibroblasts. In fact,
IMiDs also inhibit the production of other pro-inflammatory
cytokines, such as IL-1, IL-6, and IL-12, and increase the se-
cretion of anti-inflammatory cytokines, such as IL-10
[28,37,114]. Furthermore, IMiDs are able to inhibit the ex-
pression of cyclooxygenase 2 (COX-2) [115], but not
COX-1, in lipopolysaccharide-TNFa and IL-1b stimulated
peripheral blood mononuclear cell (PBMC) [114]. COX-2 is
an enzyme that catalyzes arachidonic acids into various
pro-inflammatory prostaglandins (PGs). Thus, the decreased
expression of COX-2 may lead to decreased production of
PGs. Indeed, the treatment of PBMCs with IMiDs decreased
the production of PGE2 [114]. Therefore, IMiDs possess
significant anti-inflammatory effects.

Anti-proliferation effects of IMiDs
[3H]-thymidine uptake by human MM cell lines or cells
derived from MM patients was significantly decreased upon
treatment with thalidomide or its analog [51], suggesting that
the cell proliferation might be inhibited by IMiDs or the
cells might be killed by IMiDs. In considering the fact that:
(i) IMiDs inhibit the production of TNFa [28,68–79], a
factor that may not directly induce growth of neoplastic
cells, but binds to a TNFa response element of the IL-6 pro-
moter in BMSCs and induces expression of IL-6
[28,50,64,80–102], a growth factor for the proliferation of
myeloma cells [116]; (ii) IMiDs inhibit the activity of
NF-kB [101,102,110,117–137], a factor that is retained in
the cytoplasm with IkBa as an inactive form and is activated
by a wide variety of stimuli including stress, cytokines, free
radicals, ultraviolet irradiation, and bacterial or viral antigens
and followed by its translocation to the nucleus where it
functions as transcription factor; (iii) IMiDs inhibit the activ-
ity of PI3K/Akt pathways [59,88,131,138–144] that plays a
key role in multiple cellular processes including cell prolifer-
ation; it is most likely that the IMiDs possess anti-
proliferation effects in MM cells. In addition, the treatment
of MM cells with IMiDs down-regulated CCAAT/enhancer-
binding protein b (C/EBPb), resulting in abrogation of cell
proliferation [145]. In fact, IMiDs did not alter C/EBPb
mRNA levels or protein stability, but blocked C/EBPb trans-
lation through interfering eukaryotic translation initiation
factor 4E (eIF4E) [145]. IMiD-induced decrease of C/EBPb
protein resulted in decreased production of interferon regula-
tory factor 4 (IRF4) [145], a transcription factor that is critic-
al for MM cell growth and survival [146]. IMiD-mediated
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down-regulation of IRF4 was also observed by other investi-
gators [147–151].

Pro-apoptosis effects of IMiDs
Apoptosis is triggered by either extrinsic signals, including
toxins, hormones, growth factors, nitric oxide, or cytokines,
or intrinsic signals such as radiation- or hypoxia-caused
damage or increased intracellular calcium concentration.
Multiple factors are involved in the apoptosis process. For
example, pro-apoptotic factors, such as Bcl-2 antagonist of
cell death (BAD), Bcl-2 associated X protein (BAX), and
Bcl-2 antagonist killer 1 (BAK), can form a pore on mito-
chondria so that small mitochondria-derived activator of cas-
pases and/or cytochrome c can be released from
mitochondria to cytosol where they activate caspases that
mediate apoptosis, whereas anti-apoptotic factors, such as
B-cell lymphoma protein 2 (Bcl-2), Bcl-2 related protein,
long isoform (Bcl-xL), and/or myeloid cell leukemia 1
(Mcl-1) inhibit the pore formation. Protein kinase B (or Akt)
phosphorylates pro-apoptotic BAD protein on Ser136 that
leads to BAD dissociation from the Bcl-2/Bcl-xL complex,
resulted in preventing initiation of apoptotic process.
Therefore, decreased Akt activity by IMiD will play a
pro-apoptotic role. Akt can also activate NF-kB via regulating
IkB kinase. Once NF-kB is activated, it enhances the expres-
sion of many genes involved in cell survival, such as inhibitor
of apoptosis protein (IAP) [119,152] or cellular FLICE-like
inhibitory protein (cFLIP) [119,152]. In addition, IL-6
enhanced the expression of anti-apoptotic factors Bcl-xL
[153] and Mcl-1 [154,155]. Thus, the decreased NF-kB activ-
ity or the decreased expression of IL-6 by IMiD will also play
a pro-apoptotic role. Furthermore, the fact that IMiDs trig-
gered activation of caspase 3 [88,138,156–167], caspase 8
[119,158,162–164,167,168], caspase 9 [138,158,159,162–
165,168], and caspase 12 [163], the increased expression of
pro-apoptotic factors BAX and BAK [169] and the decreased
expression of anti-apoptotic factors Bcl-2 [169], cFLIP, and
Bcl-xL [170] indicates that IMiDs possess significant
pro-apoptotic effects.

Cell cycle arrest effects of IMiDs
It has been reported that IMiDs up-regulated the expression
of cyclin-dependent kinase (CDK) inhibitor 1 (CIP or p21/
waf1) [149,164,171,172]. P21/waf1 is a key cell cycle regu-
lator that modulates the activities of CDKs and reduces the
phosphorylation of retinoblastoma proteins, thereby, causing
cell cycle arrest at the G0/G1 phase. In addition, IMiD-
mediated growth inhibition has been found to be associated
with the induction of CDK inhibitors p15, p16, and p27 and
tumor suppresser genes, such as early growth response
protein 1 (Egr1), Egr2, and Egr3 [164]. The increased ex-
pression of p21/waf1 has been proved to be associated with
a switch from methylated to acetylated histone H3 on p21/

waf1 promoter region [172]. Although the mechanism of
IMiD-mediated switch from methylated to acetylated histone
H3 is unknown, the up-regulation of p21/waf1 correlated
well with the inhibition of CDK2, CDK4, and CDK6 activ-
ities [171]. The inhibition of these CDKs resulted in cell
cycle arrest [171] and this IMiD-mediated cell cycle arrest
has also been found in a wide variety of cancer cells
[51,142,147,160,165,169,173–181].

IMiDs’ effects on cell migration and metastasis
Metastasis is a complex process involving cell dispersion
from the primary site, migration, adhesion, and growth in the
new sites (organs). It has been reported that the treatment
with IMiDs, such as thalidomide or its analogs, inhibits or
attenuates cancer metastasis process in animal models
[109,124,141,182–186]. The detailed mechanisms for me-
tastasis inhibition remain unclear. However, the effects of
IMiDs on the factors involved in cancer cell migration and
metastasis may provide a clue. Matrix metalloproteinases
(MMPs) are a group of zinc-dependent endopeptidases
that are thought to play a major role on cell behaviors includ-
ing cell proliferation, dispersion, migration, adhesion, differ-
entiation, angiogenesis, apoptosis, and host defense. Focal
degradation of ECM, catalyzed by MMPs, is the first step
in the invasion of cancer cells. It has been reported that
the treatment with IMiDs, such as thalidomide or its analog,
decreased the production of MMPs [130,167,187–190],
thereby inhibiting the degradation of ECM. NFAT is a tran-
scription factor that is implicated in the process of cell motil-
ity at the basis of metastasis formation. One such example is
that NFAT3 functions as an inhibitor of cell motility [191].
IMiDs activate NFAT transcriptional pathways [125], thereby
inhibiting cancer cell migration. In addition, the treatment
with IMiDs decreased the expression of integrin subunits and/
or integrin receptors [192–196]. Since integrins are crucial
for cell–matrix interactions and mediate cell adhesion to
endothelium, decreased the expression of integrins, upon
treatment with IMiD, will result in inhibition of cell migra-
tion. Other cell adhesion molecules, such as ICAM, VCAM,
NCAM, LFA, or VLA, which play an important role in the
interactions between cancer cells and stromal cells, also con-
tribute to cancer cell migration and metastasis process.
Thereby, upon treatment with IMiDs, the altered expression
of the cell adhesion molecules [103–106,108–113,193] will
affect the cancer metastasis processes.

IMiDs’ Target Protein in MM Cells

As mentioned in the previous section, the expression of
many genes is altered upon treatment with IMiDs. We have
found that 1036 genes were down-regulated whereas 1236
genes were up-regulated in MM cells upon treatment with
lenalidomide [148]. Although the treatment with IMiDs
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affected so many genes, the molecular mechanism of the
IMiD-mediated gene regulation in MM cells is not well elu-
cidated.

By using thalidomide-conjugated ferrite-glycidyl meth-
acrylate (FG) beads, Ito et al. [197] pulled down cereblon
(CRBN) and damaged DNA-binding protein 1 (DDB1).
They had also found that the development of pectoral fins
and otic vesicles in thalidomide-treated zebrafish embryos
was disturbed. The embryos injected with an anti-sense oligo-
nucleotide against zebrafish Crbn yielded specific defects in
fin and otic vesicle development, which is similar to those of
the thalidomide-treated embryos. These defects were rescued
by co-injection of zebrafish Crbn mRNA [197]. In addition,
thalidomide treatment of zebrafish embryos over-expressing
Y374A/W376A-mutated zebrafish Crbn, which prevents thal-
idomide binding, did not significantly affect otic vesicle size
[197]. Thus, CRBN was considered as a direct target protein
for thalidomide teratogenicity [197–200].

IMiDs, such as thalidomide, lenalidomide, or pomalido-
mide, are profoundly active in the treatment of MM and
related diseases. What is the direct target protein of IMiDs in
the treatment of these diseases? We have found that wild-
type CRBN expression is required for the anti-myeloma ac-
tivity of IMiDs [148]. By using thalidomide-conjugated FG
beads, Lopez-Girona et al. [149] could pull down CRBN
and DDB1 from U266 myeloma cell extracts and pre-
incubation of the U266 cell extracts with either lenalidomide
or pomalidomide completely blocked the pull-down. Thus,
although whether CRBN is the sole IMiDs target protein
remains unknown, CRBN is definitely an IMiDs’ direct
target protein in the treatment of patients with MM.

Functional Role of CRBN

CRBN and DDB1 were pulled down by using thalidomide-
conjugated FG beads [149,197], indicating that CRBN dir-
ectly binds DDB1 protein. The DDB1, CUL4, and really
interesting new gene (RING) or ring box 1 (RBX1) or regu-
lator of cullin 1 (ROC1) complex is an identified
cullin-RING E3 ubiquitin ligase that regulates virtually all of
the aspects of cellular function, such as DNA repair [201–
207], DNA replication [208–211], and transcription [212].
Although DDB1 in this complex might directly recruit sub-
strates to the E3 ubiquitin ligase, ubiquitination of several
known substrates suggested that this ubiquitination process
requires additional cellular factors [204,213]. In searching
for additional cellular factors that might participate in ubi-
quitination in E3 ubiquitin ligase complex, CRBN, along
with many other proteins, was identified as a potential factor
or substrate receptor contributing to ubiquitination of cellular
proteins and named as DDB1-CUL4-associated factor
(DCAF) [214,215].

Although DCAF proteins were suggested to be factors
serving as the substrate-recruiting modules or substrate
receptors for the E3 ubiquitin ligase machinery [214–216],
the functional role of CRBN in this complex is still
unknown. Given the fact that CRBN also binds to a large-
conductance Caþþ-activated potassium channel (BKCa)
a-subunit [217,218], a voltage-gated chloride channel-2
(ClC-2) [219], and an a1 subunit of AMP-activated protein
kinase (AMPK) [220], it is possible that CRBN might func-
tion as a substrate receptor to bind to these proteins for ubi-
quitination by the E3 ubiquitin ligase machinery, leading to
proteasome-mediated degradation.

However, even if it is the case that binding of BKCa,
ClC-2, and AMPK to CRBN leads to ubiquitination and
proteasome-mediated degradation, it is still not clear
whether CRBN will directly bind to all those factors men-
tioned in the previous section or not. In other words, regard-
less of whether there is/are mono-target or multiple targets
for IMiDs, the question of how IMiDs regulate so many
genes remains unsolved. However, the results derived from
IRF4, a transcription factor that is critical for MM cell
growth and survival [146], may give us a clue. The treatment
with IMiDs down-regulate the expression of IRF4 [147–
151], perhaps via IMiD-induced decrease of C/EBPb protein
[145], meaning that CRBN may not directly bind to IRF4. It
has been reported that knockdown of IRF4 with IRF4 small
hairpin RNA (shRNA) altered the expression of a set of
genes that were consistently down-regulated (435 genes) or
up-regulated (410 genes) [221]. Thus, it is possible that
some of the CRBN direct downstream substrates (Fig. 2)
could be the factors associated with transcription (activation
or suppression), RNA splicing, and/or translation and deg-
radation of these factors, via ubiquitination by E3 ubiquitin
ligase and proteasome-mediated degradation, might alter the
expression of multiple sets of genes.

IMiDs Resistance in MM Cells

Although treatment with IMiDs has dramatically improved
the survival for MM patients, majority of the MM patients
treated with IMiDs develop resistance over time by mechan-
isms that remain unknown [222]. Fortunately, recent work
has gradually uncovered the mechanism of the action of
IMiDs. As discussed in the previous section, CRBN has
been considered as one of the IMiDs’ direct target proteins.
We have found that the expression of IMiDs’ target protein
CRBN is required for their anti-myeloma activity [148]. It
has also been reported that high expression of CRBN is asso-
ciated with improved clinical response in patients with MM
treated with IMiDs [223,224], further confirming that the ex-
pression of IMiDs’ direct target protein CRBN is required
for their anti-myeloma activity. Notably, CRBN shRNAs
decreased the CRBN expression and conferred them
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resistant to IMiDs [148,149]. However, these cell lines had
similar sensitivity to melphalan, DEX, and bortezomib
[148], demonstrating a requirement of CRBN for the activity
of IMiDs, but not other commonly employed anti-myeloma
therapeutics. In addition, a majority of the lenalidomide-
resistant MM patients expressed significantly lower CRBN
level than the IMiDs sensitive patients [148,223], suggesting
that the dysregulation of IMiDs’ direct target protein CRBN
(Fig. 3) confers them resistant to the IMiDs. Furthermore,
introducing wild-type CRBN back to the IMiD-resistant MM
cells restored their sensitivity to IMiDs (manuscript in prepar-
ation), further confirming that the expression of IMiDs’ target
protein CRBN is required for their anti-myeloma activity.

Of note, CRBN shRNAs decreased CRBN expression and
also myeloma cell viability [148]. Interestingly, however,
once a CRBN-knocked down cell line is established, the
growth rate of these cells is similar to their parental cells, im-
plying that the expression of CRBN direct downstream sub-
strates and/or indirect downstream factors might be altered.
This hypothesis is supported by the finding that some of the
MM patients have high levels of CRBN, but resistant to

IMiDs treatment [148], suggesting that the dysregulation of
CRBN’s indirect downstream factors (Fig. 3) might confer
them resistant to IMiDs.

In fact, it has been reported that the over-expression of
IRF4, a CRBN indirect downstream factor, confers the acti-
vated B-cell-like diffuse large B-cell lymphoma cells resistant
to IMiDs [151,221]. We have also found that the over-
expression of CRBN indirect downstream factors, such as
IRF4 or Myc, in IMiD-sensitive MM cells reduced their sen-
sitivity to IMiDs (manuscript in preparation). Over-expression
of C/EBPb, a transcription factor that is down-regulated by
IMiDs, rescued MM cells from IMiD-induced inhibition of
proliferation [145]. The treatment of MM cells with lenalido-
mide significantly increased the expression of b-catenin
[225], suggesting that b-catenin might be an IMiDs’ target
protein’s indirect downstream factor. Although the mechan-
ism of lenalidomide mediated up-regulation of b-catenin
remains unsolved, the over-expression of b-catenin conferred

Figure 3. Diagram of immunomodulatory drug (IMiD) effects Upon

IMiD binding, the binding of CRBN direct downstream substrates could be

altered. If the binding of IMiD to CRBN decreases the binding of CRBN

direct downstream substrates, it will prevent ubiquitination of these

substrates, leading to accumulation of these CRBN direct downstream

substrates. However, if the binding of IMiD to CRBN enhances the binding

of CRBN direct downstream substrates (the diagram did not show this

enhancement effect), it may facilitate ubiquitination of these substrates,

leading to degradation of these CRBN direct downstream substrates.

Altered steady state of the CRBN direct downstream substrates may affect

the expression of CRBN indirect downstream factors that may elicit variant

effects including immunomodulatory activity, anti-angiogenic activity,

intervention of cell surface adhesion molecules, pro-apoptotic effect, cell

cycle arrest, inhibition of cell migration and metastasis, anti-inflammatory

activity and anti-proliferation activity, etc.

Figure 2. Diagram of E3 ubiquitin ligase complex-mediated degradation
of CRBN direct downstream substrates CRBN recognizes its direct

downstream substrates and recruit them for E3 ubiquitin ligase-mediated

ubiquitination. These mono-ubiquitinated substrates will be further

poly-ubiquitinated, leading to proteasome-mediated degradation. Cul 4

represents Cullin 4A or Cullin 4B; Rbx1, ring box 1; E2, E2 ubiquitin-

conjugating enzyme; Ubi, ubiquitin; DDB1, damaged DNA-binding

protein 1; CRBN, cereblon; Sub A, B, C, CRBN direct downstream

substrates A, B, or C.
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them resistant to IMiDs [225]. Furthermore, consequence of
the enhanced b-catenin expression resulted in the over-
expression of hyaluronan-binding protein CD44 [226] that
conferred cell adhesion-mediated drug resistance.

All the data mentioned above support the notion that the
dysregulation of IMiDs’ direct target protein, such as
CRBN, CRBN direct downstream substrates and/or CRBN
indirect downstream factors might affect the sensitivity to
IMiDs. Interestingly, down-regulation of CUL4A, a CRBN
upstream factor that plays a scaffold role in the E3 ubiquitin
ligase complex [214], conferred resistance to thalidomide,
whereas ectopic CUL4A expression greatly enhanced the
sensitivity to this drug [227], implying that the dysregulation
of CRBN upstream factors, such as DDB1 and/or CUL4,
might also affect the sensitivity to IMiDs.

Clarifying the molecular mechanisms of IMiDs’ resist-
ance might provide a possibility to overcome the corre-
sponding IMiD resistance. As such, Bjorklund et al. [226]
tested this possibility and found that blockade of CD44 with
monoclonal antibodies, free hyaluronan, or CD44 knock-
down reduced adhesion and sensitized them to lenalidomide.
In addition, Wnt/b-catenin suppression by FH535, a revers-
ible dual inhibitor of Wnt/b-catenin, enhanced the activity of
lenalidomide [226]. Furthermore, all-trans-retinoic acid
down-regulated b-catenin and CD44, reduced adhesion of
lenalidomide-resistant myeloma cells, and enhanced the ac-
tivity of lenalidomide in a lenalidomide-resistant murine
xenograft model [226].

Concluding Remarks

The introduction of IMiDs, especially in combining with
other anti-cancer drugs, into the MM treatment regimens
dramatically improved the outcome of the patients with
MM. Unfortunately, majority of the patients treated with
IMiDs will eventually develop resistance to these drugs.
Therefore, developing a novel therapeutic approach to over-
come this drug resistance is urgently needed. Recent work
[226] indicates that it is possible to overcome, by blockade
of CRBN function, CRBN direct downstream substrates,
and/or CRBN indirect downstream factors, the acquired
IMiD resistance. Therefore, future dissection of CRBN
direct downstream substrates and CRBN indirect down-
stream factors will help to delineate the underlying mechan-
isms of IMiD action and identify new biomarkers for
prediction of IMiD response/resistance as well as developing
a novel therapeutic approach to treat the patients with MM.
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