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ABSTRACT

The nucleotide sequence of the promoter region and the first five genes
of the atp (or unc) operon of Escherichia coli has been determined. The
first proposed gene in the operon contains four AUA codons and may be poorly
expressed; it encodes a basic but yet hydrophobic protein which could
function as a pilot protein for assembly of ATP-synthase. The three genes
that follow are structural genes for proteins comprising the proton channel
of the enzyme. The fifth gene codes for the 6-subunit of F -ATPase.

INTRODUCTION
The atp [1] or unc [2] operon contains structural genes for the ATP-

synthase complex of Escherichia coli. The bacterial enzyme is thought to be
composed of eight distinct proteins [2,3]. Three of them, called a, b and c,
are in the cytoplasmic membrane and comprise a proton translocating channel

(F0) which couples the proton potential of the membrane to ATP synthesis from
ADP and Pi [3]. The remaining five prQteins, called a, 8, y, 6 and c,
comprise an extra-membrane assembly called F -ATPase. This is intimately
associated with Fo [2,3] and protrudes into the cytoplasm; it contains the
catalytic sites of the enzyme [1,2]. Recently, we have cloned and sequenced
a region of the E. coli chromosome encompassing the genes for the a, 8, y and
e proteins, thereby establishing a gene order a: y: 8: e[4 and unpublished
results]. The cloning and sequence analysis of the remaining genes in the
operon and the promoter are described here. This sequence of 2,785 nucleo-
tides has been determined by cloning into bacteriophage M13 coupled with
sequencing by the dideoxy chain termination method [5]. The sequence analysis
has been speeded up by the use of a non-random strategy.

MATERIALS AND METHODS

Cloning and preparation of DNA

The preparation of Asn5 DNA was as described earlier [4].
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M13mp3.NH4. A HindIII digest of XAsn5 DNA (50 jig) was fractionated on a

1°o low melting agarose gel. A band of about 4 kb was recovered [5] and

ligated to HindIII-cleaved M13mp3 replicative form (RF). After transfection

into E. coli JM101 clones containing inserts were picked and single-stranded

DNA prepared [4,5]. T-Track sequence analysis revealed two sequences, one

adjacent to the HindIII site in fragment Rl (Fig. lb, lc) [1,2,6]. Single-

stranded DNA from the appropriate plaque was transfected into E. coli JM101

and a plaque transferred to a 50 ml early log phase cultuire of the same

organism. It was grown to OD590 1.0 and RF-DNA prepared by the alkaline SDS

method [6] yielding 300 ig of pure DNA. A fragment of 2.3 kb (H3R1) was

prepared from an EcoRI digest of this DNA by gel electrephoresis [5]. It

was cloned into M13mp7 and used to extend the sequence leftwards of fragment

Rl (Fig. lc). Cloning into M13 of subdigests of H3R1 with the HaeIII.

HincII, PvuII and HpaII were carried out as described [4]. A subdigest of

H3R1 with RsaI was ligated into the HincII site of M13mp7 [7].

mp7.NB4. A 4 kb fragment isolated by agarose gel electrophoresis of a

BamHI digest of xAsn5 DNA was cloned into M13mp7 and RF prepared as above.

mp3.NH1.5. The 4 kb BamHI fragment was excised from mrp7.NB4 with EcoRI

and the HindIII digest of it cloned into HindIII-cleaved M13mp3. Clones of

both orientations of a 199 bp HindIII fragment were identified from T-tracks.

A clone of the adjacent 1.5 kb HindIII fragment was identified by reference

to an extended sequence of mp7.NB4. The experiments are summarised in

Figures 1 and 2.

Nucleotide sequencing

Procedures concerning sequence analysis and computer analysis of data

have been described [4].

RESULTS

Cloning of genes in the atp operon

Our earlier studies have shown that the atp (unc) operon extends left-

wards of fragment Rl (Fig. lc) towards the origin of replication, oriC.

Additionally, genetic studies had indicated that genes for membrane proteins

of ATP-synthase would lie in this region [1,2]. So the appropriate primary

fragments were cloned into bacteriophage M13 as shown in Figure ic.
Nucleotide sequence

The sequence of the region was determined rapidly from these primary

clones and subclones derived from them in a series of experiments summarised

chronologically in Figure ld. The non-random strategy employed makes use of
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Figure 1. Clones used in establishing the DNA sequence of the promoter
proximal region of the atp operon. They are aligned with genetic and restric-
tion maps [1-3]. (a) The extent of the E. coli chromosome (hatched) in XAsn5
showing genetic markers [1-3]. The scale is in kilobases. (b) A restriction
map with nucleotide numbers (kilobases) of part of region in (a) redrawn from
[3]. Arrows denote restriction sites for BamHI, v EcoRI and O HindIII.
(c) Alignment of EcoRI fragments Rl and R2 cloned previously [4] and the
primary fragments used for sequence analysis in clones mp3.NH4, mp7.NB4 and
mp3.NH1.5. (d) Chronology of sequencing experiments. Arrows show the ends
of sequenced subclones. Lengths of arrows are proportional to lengths of
sequences obtained from each subclone. 1 2.3 kb fragment H3R1 cloned into
M13mp7. * ThAs clone was recovered from a blue plaque (8-galactosidase-
positive). 2 Sequenced directly from M13mp7.NB4. 3 H3R1 was digested
with BamHI. he digest cloned into M13mp7 (BamHI-cleaved). From this, these
three clones were isolated and sequenced. (The 4.0 kb fragment, purified
from an EcoRI digest of M13mp7.NB4, was digest ed with HindIII and cloned into
M13mp3 (Methods). The sequences were determined from isolates from this
cloning. t Overlap between the HindIII clones provided by extended
squencing of the clone in 2 . 7D Following computer analysis of data from

to E) HaeIII and RsaI digests were cloned and s uences of appropriate
isolates (identified fri T-trcks) established. ( Further computer
analysis of data from Q to ( indicated that the sequence of the 2.3 kb
fragment could be comploted b appropriate PvuII, HincII and HpaII clones.
These were identified as in _.). (e) Alignment of the nine genes of the
operon with restriction map [this work, 4, and unpublished work].
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Figure 2. Digests of clones
containing primary fragments
used for sequence analysis.
Samples of the following
digests were analysed on a 1%o
agarose gel [5]. a, b, and
d: EcoRI digests of mp3.NH4,
mp3.NH1.5 and mp7.NB4 showing
release of fragments
containing a 2.3 kb HindIII-
EcoRI fragment, a 1 .5 kb
HidInII fragment and a 4.0 kb
BamHI fragment, respectively.
Each fragment contains short
M13 linker sequences at its
ends. c and e: xAsn5 DNA
digested with HindIII and
BamHI, respectively.

known cleavage sites of enzymes which cut rarely to prepare clones covering

the region of interest. These are sequenced, at least in part, revealing new

suitable restriction sites. These are used to prepare a further simple

mixture of clones from which clones appropriate for extension of the existing

DNA sequence are identified. Thus, the sequence is built up in an ordered

manner. The major advantage of this approach over a random strategy [5] is

that the isolation of many duplicate clones covering known sequence is

avoided.

The DNA sequence and an interpretation of it showing the proposed

promoter and genes is shown in Figure 3. The sequence extends from the

promoter region to the beginning of the uncA gene encoding the a-subunit of

ATP-synthase [4]. It appears to contain five genes as discussed below. Also

it resolves two ambiguities in the DNA sequence in the beginning of the uncA

gene [4].
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Figure 3. Nucleotide sequence in the promoter proximal region of the unc
operon. Ra and Rc are a binding and core binding sequences of the proposed
promoter. I is the proposed point of initiation of transcription. Underlined
sequences are potential ribosome binding sites. The boxes between genes 2
and 3 and 3 and 4 contain sequences similar to each other and to the Rc
promoter sequence of trp [8]. Their significance is obscure. ATA codons in
gene 1 are doubly underlined.
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DISCUSSION

The section of sequence of the atp or unc operon summarised in Figure 3

contains the promoter and five reading frames which could be genes for

proteins. The proposed promoter resembles the canonical promoter sequences

for a and core binding sites for RNA polymerase derived by comparison of all

known promoters [8] (Fig. 4). Transcription studies with E. coli RNA poly-

merase have confirmed the presence of an active promoter in this region of

the DNA sequence (unpublished results).

The reading frames shown in Figure 3, called genes 1-5, are

characterised by an initiation codon ATG or GTG preceded by a sequence

complementary to the 3' end of 16S rRNA which would serve as a ribosome

binding site [9] and followed by a coding sequence ending with a stop codon.

With the exception of gene 3, which has two consecutive stop codons, TAG and

TAA, all genes in this section of the operon terminate with stop codon TAA

which is presumed to be the major stop codon in E. coli [10].

Gene 1 has been tentatively assigned to the first reading frame following
the promoter. The putative gene product would be a hydrophobic protein of

molecular weight 14,183 daltons with a net positive charge of 11 (assuming an

unblocked amino terminus). These parameters do not correspond to any of the

proteins characterised as constituents of the ATP-synthase complex nor to any

of the abundant proteins produced by expression studies of the unc operon in

vivo [11-13] or in vitro [13]. However, gene 1 contains four of the six AUA

codons to be found in the entire operon [4 and unpublished results]. This
codon is infrequently used in E. coli [14], the corresponding tRNA has a low

abundance [15], and the presence of four AUA codons may be indicative of

expression at low levels [14]. A possible function for this protein consis-

tent with its hydrophobicity, positive charge and expression would be to

function as a pilot protein to guide assembly of the membrane sector of the

enzyme complex.

Gene 2. This codes for a hydrophobic protein of molecular weight 30,267

unc TGTTTGAAATCA 13 bp TATAATT 5 bp G

"ideal" TGTTGACAATTT 12-14 bp TATPuATPu 5-6 bp Pu

R R Ia c

Figure 4. Comparison of the proposed unc promoter with "ideal" promoter
sequences [8].
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daltons. The predicted protein sequence is homologous in the carboxy terminal
region with ATPase-6 gene product of human mitochondria [16] as shown in

Figure 5, which has been identified from its homology with the corresponding
yeast protein [17]. These properties suggest that gene 2 codes for protein a
by gel electrophoresis in the presence of dodecyl sulphate. However, the

molecular weights of other hydrophobic proteins (e.g. bacteriorhodopsin [18]
and cytochrome oxidase subunit I [16]) have been similarly underestimated.

Gene 3. The predicted protein sequence is identical to the sequence of
the proteolipid or protein c described by Hoppe, Schairer and Sebald [19].

Gene 4. This encodes a protein of molecular weight 17,212 daltons. Its
sequence is very striking: residues 1-32 contain only one charged amino acid,
lysine 23, and are otherwise hydrophobic; in contrast the rest of the protein
is highly charged. This suggests that the amino terminal region of the

protein (approximately 1-30) is buried in the lipid bilayer. The rest of
the sequence which is predicted to be almost entirely a-helical (unpublished
work) would protrude from the membrane. It would be envisaged that this

protein might play a central role in the enzyme providing a central charged

domain anchored to the membrane, around with the F1 proteins could assemble.

It would also play a role in proton translocation from the membrane proton
channel to the catalytic sites.

Gene 5. The predicted protein has a molecular weight of 19,310 daltons
and a net charge of -7.5. These properties correspond to the 6-protein which
has been genetically mapped to a position upstream of uncA [2].

CONCLUSION
This sequence taken with the sequence of the genes for the a, 8, y and e

subunits [4 and unpublished work] shows that the atp or unc operon probably

191 200 210
E. coli FlVNLjL[Q LSK|VG R F IF IMAGILL

Human _PMLVIIISITISIQ_A NI A LM LIGSAT

240 260
E. coli PW W WI VPWAFI 7I ITLQA FMVqTI VL SMASEEH
Human LA TI PSTLIjTIL LLTIL I VAiIQAUVFTLLVSLYLTHDNT

Figure 5. Comparison of the sequences of gene 2 protein with ATPase-6 of
human mitochondria in the carboxyl terminal region of the proteins. The
numbering is based on the E. coli protein.
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contains nine genes in the order genes 1-4: s, a, y, B, c. Eight are

structural genes for the proteins of ATP-synthase complex, a ninth may be a

pilot to direct. membrane assembly.
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