Analysis of E. coli promoter sequences

Calvin B.Harley* and Robert P.Reynolds

Department of Biochemistry, McMaster University, Hamilton, Ontario L8N 3Z5, Canada

Received August 15, 1986; Revised and Accepted January 26, 1987

Abstract

We have compiled and analyzed 263 promoters with known transcriptional start points for E . coli genes. Promoter elements (-35 hexamer, -10 hexamer, and spacing between these regions) were aligned by a program which selects the arrangement consistent with the start point and statistically most homologous to a reference list of promoters. The initial reference list was that of Hawley and McClure (Nucl. Acids Res. 11, 2237-2255, 1983). Alignment of the complete list was used for reference until successive analyses did not alter the structure of the list. In the final compilation, all bases in the - 35 (TTGACA) and -10 (TATAAT) hexamers were highly conserved, 92% of promoters had interregion spacing of $17 \pm 1 \mathrm{bp}$, and 75% of the uniquely defined start points initiated 7 ± 1 bases downstream of the -10 region. The consensus sequence of promoters with inter-region spacing of 16,17 , or 18 bp did not differ. This compilation and analysis should be useful for studies of promoter structure and function and for programs which identify potential promoter sequences ${ }^{1}$.

INTRODUCTION

Promoters are DNA sequences which affect the frequency and location of transcription initiation through interaction with RNA polymerase (1,2). Two conserved regions about 35 and 10 base pairs (bp) upstream from the transcription start (-35 and -10 regions, respectively) were identified by comparison of relatively few promoters (3-6). More extensive compilations and comparisons of promoters for genes of E. coli and its phage and plasmids supported and extended the concept of a "consensus" promoter sequence: a - 35 (TTGACA) and -10 (TATAAT) region separated by 17 bp with transcription initiating at a purine about 7 bp downstream from the 3 ' end of the -10 region (7-9). While the -35 and -10 regions show the greatest conservation across promoters and are also the sites of nearly all mutations which affect transcriptional strength, other bases flanking the -35 and -10 regions, in addition to the start point also occur at greater than random frequencies and sometimes affect promoter activity (9-12). In addition, variation in spacing between the -35 and -10 regions plays a role in promoter strength (13-16).

Promoter compilations and analyses have led to computer programs which

Nucleic Acids Research

predict the location of promoter sequences on the basis of homology either to the consensus sequence or to a reference list of promoters (17-19). Such programs are of practical significance in searching new sequences (2,20); thus promoter compilations are important beyond providing data regarding promoter structure. However, current compilations are based on sequences aligned by eye in attempts to maximize homology to the consensus sequence. Unfortunately, sequences closer to the consensus sequence may be missed thus weakening the homology between promoters and consequently reducing the predictive power of algorithms. Although promoter elements can be identified by biochemical or genetic evidence that pin-point bases which interact with RNA polymerase, such data is unavailable for most genes.

We have updated the compilation of E . coli promoter sequences and have reiteratively aligned them on the basis of a computer program which finds the sequence with greatest homology to the reference set. This compilation and reanalysis of 263 promoters should be useful in studies of promoter structure and function and in promoter search algorithms.

METHODS

Promoter Compilation

The starting point for analyses described below was the Hawley and McClure (9) compilation of 112 E. coli promoters with known transcriptional start points. Three resources were used to extend and update this compilation: Index Medicus, Dialog, and the National Institutes of Health GENBANK database on the National Biomedical Research Foundation Protein Identification Resource. Following Hawley and McClure, only promoters in which a transcriptional startpoint has been identified by biochemical or genetic means are used in the analysis. We included promoters whose start points were identified by Sl nuclease mapping (21) if additional evidence such as high resolution in vitro transcript run-off size or the site of polymerase binding supported the S 1 data.

Analysis

DNA sequences from about -50 to +10 , with respect to known transcriptional start points for genes of E. coli and its plasmids and phage were analyzed for promoter signals by a modification of the algorithm described by Staden (19). This algorithm utilizes the frequency of all bases at each position in the conserved areas of the promoter and therefore derives near maximal information about the similarity of any test sequence to the reference set of sequences. In brief, the test sequence is analyzed in all possible alignments of promoter
elements to determine the arrangement of -35 and -10 elements which maximizes similarity to known promoters on a strictly statistical basis. Each alignment yields a "promoter homology index" (PHI) derived from the weight matrix of the reference set of promoters. The weight matrix contains log frequencies for each base at each position in the -35 and -10 hexamers and \log frequencies of the occurrence of -35 and -10 hexamers separated by $15-21$ base pairs. PHI for a given alignment is the sum of \log frequencies taken from the weight matrix for the elements of the test sequence. Staden's algorithm has been shown to be operationally similar in prediction of promoter strength to an alternative algorithm of Mulligan et al. (18) which includes data on cumulative deviations from the consensus sequence (20). We chose Staden's algorithm because it seemed less arbitrary in assessment of homology.

Our program finds for each DNA sequence the 10 (or more) highest ranking alignments of all possible -35 and -10 hexamers with a spacing of $15-21$ base pairs, and flags those consistent with the transcription start data. A promoter sequence was deemed consistent with start data when the initiation point was between 4 and 12 bases from the -10 hexamer (see Results and Discussion).

The initial weight matrix was derived from the compilation and promoter alignment of Hawley and McClure (9). Null frequencies were replaced by the reciprocal of the number of entries in the weight matrix at that point to avoid complete exclusion of certain bases in, or spacing between, the -35 and -10 regions (19). Following analysis of the new promoter compilation, the weight matrix was updated using new alignments. This process was repeated until consecutive reiterations yielded identical highest ranking promoters for each sequence. To avoid chance fixation on extreme patterns in the weight matrix, frequencies were periodically smoothed artificially by reducing the frequencies of highly "conserved" bases and increasing the frequencies of highly excluded bases. This procedure was repeated on several promoter lists, including subdivisions of all promoters with 16,17 , or 18 bp spacing between the -35 and -10 regions.

RESULTS and DISCUSSION

Promoter Compilation

Table 1 shows 288 E. coli promoters aligned by reiterative application of the modified algorithm of Staden (19) (Methods). Although most of these promoters are wild type bacterial, plasmid, or phage promoters (type "b", "p", " f ", column b, respectively), some mutant promoters (type "M" or "m", column b)
are also included. Mutations which generate an entirely new promoter (type "M") are included among 263 promoters with known transcription start points used for analyses as described below. Mutants of naturally occurring promoters (type " m ") are not; transcription start data are often not available for these mutants and their inclusion would bias the weight matrix for base frequencies at the non-mutated positions. The list includes 112 promoters compiled by Hawley and McClure (9), which can be identified by reference "9" in column j. Analysis of these promoters separately or together with additional E. coli promoters yielded essentially identical results.

The algorithm makes no use of previously identified -35 and -10 regions for a given promoter; it identifies the statistically best -35 and -10 regions consistent with transcription start data using the weight matrix of 263 promoters listed in Table 1. Columns (c), (d), and (e) indicate the stable alignment of -35 and -10 regions and the spacing between them. Column (f) gives the relative promoter homology index (PHI) of the selected -35 and -10 regions: this value is the sum of the appropriate weight matrix values for each base in the -35 and -10 hexamers, plus the value for their spacing, minus the unnormalized index value of the consensus sequence (TTGACA...17...TATAAT). PHI values are from a logarithmic scale and can be interpreted loosely in terms of probability: for example, PHI $=0$ indicates that the promoter elements are identical to consensus sequence elements, i.e. the most probable arrangement of bases and spacing, while PHI = -2 indicates that the probability of occurrence of bases in these regions and the spacing between them is theoretically 100 times smaller than that of the consensus sequence. Such interpretations may not be justified since they assume that gap penalties and bases at each position are independent and that these are the only conserved elements in promoter structure. Interestingly, a correlation exists between promoter strength and homology index (18). Thus promoter strength generally decreases as PHI values become more negative. Some promoters, however, do not follow this generalization $(11,12)$.

Column (g) signals significant discrepancies between the best promoter alignment consistent with the transcription start data and the overall best alignment (indicated with double underlines) independent of transcription start data. The number in this column is the PHI value of the overall best alignment. Only discrepancies in PHI greater than 0.5 are shown. Column (h) signals discrepancies between published -35 and -10 regions (single underlines) and those selected by our analysis. The number in this column is the PHI value of the published alignment. These PHI values will be less negative than that in

TABIE 1
Aligrment of E. coli Promoter Sequences

SEQUENCE TYPE (a)	-35 (c)	-10 (d)	$\begin{gathered} \mathbf{S P} \\ (\mathrm{e}) \end{gathered}$	PHI (f)	DISCREP.(g) (h)		TS (i)	REF (j)
aceer b	ACGTACAOCIGT CITATT CACCITIC	COGOGACAG TICAAT CGGACAGEICCAG	17	-4.3		-4.4	4	24
ada b	Aacatigitigett tigcor catgetia	COOCOCACC CINAMG GCDITCOTTALCC	17	-5.5	-3.4	-4.6	4	25,26
alas b	AaOccatacgetat tTTACC TTOCCAGIC	AAGAAACT TATCIT ATICCCaCITTICAGT	18	-3.1				9
ampl b	TgCIATCCIGACAG TIGICA CGGICATT	GGIGICET TACANT CIAAOCCITCOCCAATG	16	-1.5				9
ampC/Cl6	gCIATC TIGACA GTIGICAC	GGICATTGG TATCGT TACAATCTIACOTATCO		-1.3			1,3	25
araBAD b	- TTAGOCCATCCIAC CIGACG CITITIAT	COCAACIC TGMAT GITICIOCATACOOET		-3.6		-3.7		9
araC b	GCANATNATCANTG TGGACT TTICIGCC	GIGATTATA CACACT TIIGITAC8COITITIG		-3.6				9
araE b	CIGITICOCAC CICACA CCIGCGICA	GITGITCACG TATITT TICACTAMgTCTIACIC	19	-3.2			4	28
$\operatorname{araI}(\mathrm{c}) \mathrm{m}$	ACOGCATCCIAC CIGGOG CITITIXT	COCAACIC TCNACT GITICICCATACCOGTT		-4.3			4	29
araI(c)X(c)	- AGCOCATCCIAC CTOGOG CITITTATC	CCAMGICIC TAGTAT TICICCATACOGETITT	18	-3.8			4	29
angCBH b	TITGIITITICATIG TITCACA CACOICIGG	TCATCAYEG TITCAA TATTCATOCAGTATT	18	-2.4		-2.6		9
argCBH-P1/6-m	titgititicatig tigaca caccict	gGICATA TATINT CANTATICATGCAGTAT	15	-2.0				30
$\operatorname{argCBH}-\mathrm{Pl} / \mathrm{LL}$ m	TIIGIIIIICATIG TIGACA CACCICT	gGICATCA TATINT CAnTATICaTGCAGTAT		-2.0				30
arge-P1	- TIACGGCIGGIGGG TITTAT TACCCICA	AOGTIAGIG TATITT TATICATAAATACICCA		-2.6			4	31
arge-P2 b	COECATCATIGCIT TGOCOT GAAACAGT	CAMAGOGT TATGII CATSTGOCCATOGOG	17	-3.9		-3.9	4	31
argE/Lul3 m	COCCATCATIGCTT TGOCCT CAAACAGT	CAAACOGET TNTAIT CATATGOCGATGGOG	17	-3.3				31
argF b	AITIGIGAAATGGOG TIGCAA ATGAATAA	TIACACATA TAMAT CAATTITSATICANTAA	17	-1.7			4	31,32
arg I b	b AGAC TIGCA ATGANTAA	TCATCCATA TAAATT GAMTITTAaTICATICA		-1.5			4	31
angR	b TOETOGCOGOG TITCCAG GAGCANSG	CITICACAA TAMTVA TCAGTCLassGICICOG	17	-3.2		-5.9	2,4	31
arof b	- TACCAAATATGGA TIGAAA ACITTACT	TINIGIGT TATCET TAOETCATCOTCOCIG	16	-1.9			2,4	33
aroc	b AgIGTAAACOCOG TITACA CATTCTCA	COCAMCATA ThGATT GCanglatigcatica	17	-1.6			2,4	33
arch b	b GIACTACAGAACTA GIGCAT TACCITAT	TIIIIIIGT TNICAT GCHAsccalcoccocac	16	-3.1				9
bioa	b GCCIICICCAAAAC GIGIIT TITGITGTT	AMTICGGIG TACACT TGPaasCCTAAATCT	18	-3.8	-3.4			9
biob	b TIGICATAATOCAC TIGIAA ACCAAATT	GAAMGATT TAGGTT TACANGICEACACOCAA	17	-2.2				9
bioP98 M	Y TIGTTAATICGGIG TAGACT TGIAAACC	TAAATCITT TAAATT TGGITIACAAGICOAT	17	-2.0				9
C62.5-P1	b CACOIGCICTOOC TIGANA TIATICIC	COITGICOC CNTCIC TCOCACALCOIGITIT	17	-3.3		+	4	34
carAB-P1	b ATCOCOCCATTAAG TIEACT TTIACOCC	CCATATCIC CACALT COOCOCETITGOCAGA	17	-1.9			4	35
carAB-P2	b TAACCACATTIGCA TIGATT TAOGICATC	ATIGIGMT TANTAT GCANATMAGTGAG	18	-2.4			4	35
cat b	b AOGTIGATOGOC ACGTMA CAGGTICC	AACITICAC CATXNS CAMTMAPNTCACTACC		-4.2	-2.4	-5.3		9
cit.util-379 p	P AAACACGCOSCG GICICA COOLAGTAA	COOCCAAC TGITAC CTCRATACATVATIGIG	18	-5.6	-5.2	8	3,4	36-38
cit.util-431 p	P GACAGOCACACCA TIGTAC CNTCAACIG	ATITGICOC AATMT ThasTCAMNTCAC	18	-3.4			3,4	36-38
CloDFcloacin P	P TCATATATIGACAC CIGAA ACIGCACG	AGYAGGT ANTAMT CATACIGIGTATATAT	16	-2.9	-1.5	-3.5	3	39
CloDFmaI	P ACAOSOGFITGCIC TIGAAG TGIGOGCCA	AMGICOOCC TACACT GCMMCACACATIIGG	18	-2.2				9
COIE1-B	P TIATAAMITCOLT TTGACT TITAMA	CAYYNGT THMA TAMATMCTGIAA	15	-3.4		-4.4	1,3	40
colEl-C	P TIATMAANCOIGT TIGACT TITAAAAC	ANTMGTT AMANT AMTACIGTACATATAA	16	-2.4			1,3	40
COLEl-P1	P GCAMGICCACAGTC TIGACA GOCAAAT	GCACOCSOC THCCTI TMATCOISTNTATAAM	17	-1.7				9
COIE1-P2	P TITITAACTIATIG TITYTA AAGICAMA			-1.7		-1.9		9
colEllo.13 P	P CCNCACAGTIC TIGAS TMGTGOCCC			-2.2			1,3	41
colicinE1 P3	P TITITMACIEATIG TITIM ANGICAM	GAGGATIT TATMAT CGAMACGOSGXACOT		-1.7				42
crp	b AAGOCACACACCAG CAGACA CAMSOCA	AACGRNTEC TMAAC AGTCACgATGGMCAG	17	-3.2		\%	2,3	43
cya	b GTACOSCATCITIC TITMOS GICAATCA	GCANGEIGT TAMTT CATCACEITITICACC	17	-1.8			1-3	44
dapD	b AAGTGCATCAGCOG TIGACA GACOCOCIC	AMTCCAMC CATMA CCOTGatgIGITMCIG	18	-2.8			4	45
deo-P1	b CACAACOTITTA TTOCAA CATCEATCT	CEIGIIGIET THEAT TCIAACATACCEITGC	19	-3.5				9
deo-P2	TCATGIGIA TCGAAG TGIGTIECG	GAGNAGETET TACATT ACTMACANCICOCAA	19	-3.9				9
deo-P3	b ACACCANCTGICIA TOCCOC TNTCACOG	AATHACOG TATHCT CATCIGATCATTTMA	16	-3.2			2,4	46
dive	b AAACAAATIACGOG TITMCA COCOECAT	COGCATEIT TATHGT GOGOEICATTCOOCNG	17	-1.2			1,2	47
draA-1p	b TGOCOCOLANATOS XCOCOC COICOCOCC	ACCATCOIT TICACT TMCOGAGITCIOCNA	18	-4.4		-4.9	4	48,49
drat-2p	b TCIGIGAGAACAG MAEATC TCTICOCC	AGITMASC TIITAT COGcggtococatic	17	-4.5			4	48
dnak-P1	b TITGCATCTCOCOC TTENY AOETCOITT	AOGACOCCA TITMET AGTCASCOCCAGIG	18	-3.2		-8.2	2,4	34
dnaK-P2	b ATGAATIGGGCAG TIGAMA CCACACOT	TIOECCOC T,	16	-2.4		-9.3	2,4	34
dnaQ-P1	b GOCACOCGINACG TITICT COOETCOG	OCNTMCOG TANAT ACCGCOGMACCOC	16	-2.1			2-4	50,51
Ppla-oritpx	P GAAOCACCANCEIG TIGACC CIITIIGT	CGAGIGCGT TMANT ATTTEOGCATANA	17	-2.5			2	52
Fplas-traM P	P ATTACSCEIGCIGC TACOEG COCSEIGT		17	-4.0		-5.7	2	52
Fplas-tray/2 p	P GOGTTM			-3.9	-3.0	-4.1	3	53
frdABCD b	b CATCICGTCAA ATITCA GACITMTC	CNTCAGAC TMWICT GIIGTOCOUTIANGCA		-3.2		-3.9	4	54
fuma b	b GIACTAGICICAGT TIIIGT TAMANAG		17	-3.5		-3.8	4	55-57
Y-b-toma	P ACACATIACAGCA CRGTIT THAIETGT	COCATMATT TATHAT ATTICGACOGTICCA	17	-2.4				9
y-b-tupR	P ATTCATTACANT TITIGCA A00ETCOG	AMATITIA TAAMTT ATOECACACATAANAC	16	-2.4		-3.0		9
gal-Pl	b TCCATGICACACIT TICECA TCITIGIT	ATCOENTG TLATIT CATECCATAAG	17	-3.8	-2.9	-4.0		9
gal-P2 b	b CIAATITATICCAT GTCACA CITIICOC	ATGITIGT TATCGT ATGGTRITTICATACC	16	-2.9		-3.1		9
gal-P2/mut-1 m	m TAATTIATICCAT GICaCa citilicc	ATGITIGT TATMGT ATCGITITTICATAC	16	-2.3		-4.0	3	58

gai-P2/mut-2	m Tantilatiocar graca ciritcec	amititge tatect ategitatiticatac	16	-2.9		3	58
glnL	b CAATICICIGATGC TICGOG CIITITATC	CGIAAAMGC TATAAT GCACTIAATGGICC	19	-3.2		2,4	59
glns	b TAAAMACIAACAG TIGICA COCIGTCC	COCINTMA GATCAT AOSOCgttatacgit	17	-2.1			9
glta-P1	b ATICATICcccaca gitati heigerag	ACAAGITT AATAAT TCGCALTGCTAAGTA	16	-4.3	-4.4	4	57,60
g1tA-P2	b AGTIGITACAAACA TTACCA GCAAAAGCA	TNTMATGOG TAMAAG TTAECAAGTCGGT	18	-4.0	-1.8-2.5	4	57,60
glyA	b TCOITIGICAACAC CIGTIX TCECACAA	TGETICOET TATACT GIICgCOGTIGICC	17	-2.4		2,4	63
glyA/geneX	b ACACCAAACAAOCA TITACA TTECACOG	Cratititil tancat gcattleacatacat	18	-1.9		2,4	61
gnd	b GCATGGETAAGCIA TITATA CIITAATA	AGIACITIG TATHOT TATTIGCgAACATIOCA	17	-1.7		4	62
groE	b TITITCOCOC TTCAAG COCOCAAG	CCATCOCCA TTICIC TGETCaCCACOOCSCAA	17	-3.9	+	4	34
gycB	b CCCAOCAAAA TIOCAA CATGITIACO	TGCAAMAGG TMAAT AMOCCATEAACOCAAGT	21	-3.2		4	63
his	b ATATAAAAGTIC TIGCTT TGIAACOTG	AAMEICEIT TAGGIT AAAGACTTCAGITGAA	18	-3.6			9
hisA	b CATCIACAAACTM TTMNP AMTYGTMA	ATIMACOGT CATCAT TGTACAATGALCIGTAC	17	-3.5	-2.7-5.7		9
his ${ }^{\text {Pp }}$	b COICCAGIGCOEIG TITMA TCITIGIG	gcatcacce cattat criadercancag	17	-2.4		2,4	64
hisJ(St)	b TACANTGCITGCOC TIGIOG COCIGATT	AnTOGCAC CATAGT COCATCOCATCTG	16	-3.0	-3.6		9
hisS	b AAATAATMAOGICA TGCGAA GCOCCICO	CIICCOEIG TATCAT TCAACOCgCATGGCTC	17	-2.7		4	65,66
htepr-P1	b ACATHOSCCACTI ACOCOT CAMTANTA	AAGCEIGT TATACT CITICCUGCAATGGTT	17	-3.8		4	67,68
htepr-P2	b TICACAGGTIGCA TIGAAC TIGIGEATA	AMTCAOSG TCIGAT AAABCAgTCAATG	18	-3.7	-2.3	4	67,68
htpr-P3	b AgGITGCATIGAAC TIGIGG ATMANAC	AOCHICICA TAAAAC AGICANTGATAACCICOIL		-3.2		4	67,68
IlvGEDA	b GCCAMAMATATCT TGTAGI ATTMCAA	AMCGTATGG TAACTC TTIACOCATTCOITCCA		-4.6	-3.9-4.6		9
ilvilh-Pl	b CICIOGCIGOCA TIGGIT AACCAACA	TCCGACGGT TAATGT GITttacacatttelic	17	-3.2		2,4	69
ilvili-P2	b GAGGAITITATCOT TICHIT TCACCITT	Coiccigit tailict tattacocoeigr	17	-3.1	-3.1	2,4	69
ilvith-P3	b ATITTHCEATIM TTAAM AANTACAG	AAMTICCIG TAAGIT GICGGATTCACCOCATT	17	-2.7		2,4	69
ilviH-P4	b TGIACAATITINTT CICAAT GIGIGGEC	TGIGIATIT TAGGAT TAATTAAAAAAATACAG	17	-2.7		2,4	69
ISlins PL	p CCAGGCOCGIGATG CIGCCA ACTIACIG	AITINAGIG TATCAT GGIGLtITIGAGGIGCT	16	-2.5		1,3,4	70
ISlins FR	P ATATATACOTIA TGGINA TEAGICCA	AGTINTTEA TAGIGT TTTATGIECACATAAT	17	-3.6	-3.3	1,3,4	70
IS2I-II	M ATGIC TGGAM TNTHCECG	Canilccac thgrat tancactaTcactiait	17	-2.6			9
lacI	b GACAOCNTOCANTG GCOCAA ABCOTIIC	GOGGNIGE CNIGAT ACOGOCCgGAAGACAGT	17	-4.5			9
lacPl	b TAGGCACOCCAGSC TITACA CIITATCOT	TCOCGGICG TAIGTI GIGIOGAATIGTCACC	18	-2.0			9
lacPLIS	4 TITACAGIITATG GIICOG GGICOEMTG	TIGIGIGE TNTIGT CAGcggatascantit	17	-3.9	-2.0-4.2		9
lacP2	b ANTGIGAGTHCGT CAGICA TMGCECAC	COCACCCIT TMCAGT TEATOCLTOOCOCICO	17	-4.0	-2.6-4.3		9
1 ambdacl7	m geighatcaitia timga theatica	ATCANTIGT TATAAT TGITATCTAAGCAAAT	17	-1.4			9
lambdacin	M ThGentachatiga tigant gritcea	ATAMNTGCA TACACT ATAGGIgTgGITIAAT	17	-1.6			9
1 lambdaL57	M TCNTALCCNTCC TITITI ANANTCOCA	ACILAGRA TAAAMT AGCCAACCTGITOCACA	17	-2.4	-2.5		9
1 ambdapI	f COGITIIITCIICC GIGIM TIGOCCAG	ACITIGOCA TGXACT TCACACLTCACAGTG	17	-3.6			9
lambdapl	f TATCICIGGCOEIG TIEACA TMAMTICC	ACIGGOGET GATACT Gagcacatcaccacca	17	-1.4			9
lambdapo	f TACOICICCOCAMG TIGAGT ATIIIIEC	TGIATIIGT CAIAAT CACICOIBITCATACAT	17	-2.1			9
lambdarR	I TAACACOETCOETG TICACT ATITMCC	tGigccier catant ceitocathiactang	17	-1.4			9
lambdaPR'	f TTAMOSGCATCATA TIGACT TATIGANT	AAMATGGG TAAATT TGAGICABCGATGGGTT	17	-1.1			9
lambdaPRE	f CAGCOIOGTIGOOT TIGITT GCAOCAACC	ATATGIAAG TATIIC CITLCATAACAAT	18	-4.1	-5.7		9
lambdaPRM	f AACAOGCACOETGT TAGATA TIENTOCC	TIGOGGICA TMCATT TAAOGITICACCACAA	17	-2.6			9
lep	b TCCIOCOCICANT TITENG TGMCANT	coccocit tilat hatacacacgitant	16	-3.4		2,4	71
leu		TGIATCCAG TAACIC TAAAACCATATCOCATT	17	-2.5			9
leultrna	b TCEATAATEAACIA TTCACG AMMACIG	AAMAOCAC THEANT COCOCIOCgTGGTACCA	16	-1.5			9
lex	b TETGCAGITINTCE TICCAA ANTOCOCT	TIIGCIGIA TATACT CACAGCaTAACIGIAT	17	-1.9			9
livJ	b TGICAMATHGGX TICCA TATCATA	AnATOGGA TAIGIT TTAGCACAGTATGCT	17	-2.5		1,4	67,68
1pd	b TGITG TITAA AATIGIE	ACANTITIG TAAAAT ACOCAOCALTAGAOCA	17	-1.1		4	24,57
1 pp	b CCATCAAMAAMTA TTGICA ACATMAAM	ACIIIGIG TATTAC TIGIAACBCTACATGCA	17	-3.2	-3.3		9
$1 \mathrm{PP} / \mathrm{Pl}$	m ATCAAMAAMX TIGICA ACATMAMA	ACIIIGIGT TAMACT TGIAACECTACATGGA	18	-1.9			72
$1 \mathrm{pp} / \mathrm{P2}$	m ATCAMAMANTA TICICA ACNTNAAA	ACITIGIGT TATAAT TGIMACgCLACATGGA	18	-1.6			72
$1 \mathrm{pp} / \mathrm{Rl}$	m ATCAAAAAANT TTCACA ACNTAMAA	ACITIGIG TAATAC TIGTAAC8GTACATCGA	17	-2.7	-2.8		72
Mrna	b ATCOOCANOCOCOG GICACA ACSCOCOL	CMACCOIC TATACT COCOCOCBANCOICNCC	17	-1.2			9
macll	M COOCOSCAGEGAT CACCA GEIGETOCA	COCCECICG TATGIT GIGTCGENTIGIGACC	18	-4.1		4	76
macl2	M COCOCOCACECAT GAGEMA GETOEETOG	Acocecice thicti crincgantigicicc	18	-4.1		4	76
mac21	M COOCOSCACECAT GACCM CEICEACOT	TCOCOCIOE TAIGTT GIGIGGANTIGICACC	18	-4.1		4	76
mac3	M COOCOCCAGGEAT GAGCM GEICOETC	CACOCOIOE TATEIT GIGIGEANTIGTEAGOG	17	-3.7		4	76
mac31	M COOCOECAGEGAT GACEM GETOGOTC	GaCOCGICG TATATT GIGIGCAATIGTGAGOC	17	-3.1		4	76
malepg	b ACGCGCAnGGAGGA TGCAM GAGGTIEC	COINTMAR GMACT ACAGIOCGTITAGGIGI	16	-3.5			9
malk	b CASOCCEIGCAGGA TITMAG CCATCICC	TEATGACO CATAGT CAGOCCRTCANGANTG	16	-3.3			9
malpQ	b ATCOOOCCAGENT ACGAM GMCAMCAT	CCAGCOIGE CAMACT ACOCATIACGITGIGT	17	-4.7		2	77
malPQ/AS16P1	Im AICOCOCCAGG AITACG ACOCIGEC	AMAGNEC CATEAT AMCETIGIGIIgA	16	-4.6		2,4	78
malPQ/AS16P2	m ATCOCOECACCACO ATGACG ACOCTOGCA	AAGMGOEA TAACOT TGIGIIGAA	18	-4.6		2,4	78
malPQ/AS17/A		AGMACOEA Thacet teigiligh	16	-4.9		2,4	78
malPQ/Ppl2		COACOCIG GAAAAC TMCOCNTAACOITGIGT	17	-5.2	-5.2		77
malPe/Ppl3	m ancococcacear theran gencaicar	CGAGCOITE CAMAGT AGCENTAACOIIGIGT	18	-3.9	-4.7		77
malPQ/Ppl4	m ATCOCOECAGCAT GAGCM GGICAACA	TCEACOCIG GAMCT ACOCATSACOITGIGT	17	-4.4			77
malPQ/Ppls	m ATCOCOCACONT GMGMA COICAMCAT		18	-4.0			77
malPQ/Ppl6	m ATCOCOECAGEATA AGEAM GICAMCAT	OCAGCOICG CAMACT ACOCNTAACGITIEIGT	17	-4.7			77
malPQ/Pp18	m ATCOCOECACEATG GCEAAG GICAMCAT	COAGCOIGG CAAAGT AGCCATAACEITIEIGT	17	-4.3			77

Nucleic Acids Research

uviB-P1	b TCCAGMTAATITG TICGCA TAATEAAG	TAOCAOCAG TAAMT TECATAOCICOCOCC 17	-1.0		9
uviB-P2	b TCAGAANTATINT GICATG AncIGITIT	TITATCCAG TNTAAT TIGTIGgCATMATTAA 18	-2.5		9
uvrB-P3	b ACHGILATCCACTA TICCIG TGGATAAC	CAIGIGINT TACAGT TACAAASCAOCACOCA 17	-3.7		9
uvic	b gCOCATITGCCAGT TIGIGT CAMOGIGA	ATIGCAGAT TAITGT CATIGatcalcancg 17	-1.8	4	136
uvid	b TGCAMITICOOSC TIGGCA TGICIGAC	CICOCICA TATMAT CACCAATCIGTATNT 16	-1.1	3	137
434FR	f AMGAMAACIGINT TIGACA AACAMCAT	ACATIEINT CAMAT ACAMCAMGITIGITGA 17	-1.3		9
434PRM	f ACAATGITIGIGT TIGICA Maticagr	TIITCITGT CAMGIT TGGGGINMTAACAGA 17	-2.4		9

List of promoter sequences arranged alphabetically by name (a) and aligned with respect to optimal -35 (c) and -10 hexamer sequences (d) consistent with the transcriptional start. Column (b) designates promoter type: b, bacterial; p , plasmid or transposon; f, phage; M, mutation or fusion which generates a new promoter; m, point mutation in an existing promoter. The lower case base(s) downstream of the -10 region denotes experimentally determined transcriptional start point(s). Column (e) indicates spacing in base pairs between - 35 and -10 hexamers. Column (f) reports relative promoter homology index (PHI) of promoter elements in columns c, d, e as described in the text. Column (g) signals discrepancies between the promoter elements consistent with transcriptional start data and the best promoter elements independent of start data (indicated by double underlines). Only discrepancies for which the PHI values of these promoters differed by at least 0.5 are shown. Column (h) signals discrepancies between the computer selected promoter elements and published -35 and -10 sequences (shown by single underlines). The figures in these columns are PHI values corresponding to the underlined promoter elements. Column (i) indicates the nature of experimental data defining the transcription start: 1, total or partial RNA sequence with identification of the 5^{\prime} nucleoside triphosphate; 2, mutational or genetic identification of -35 and -10 regions; 3, high resolution sizing of in vitro transcripts; 4, high resolution S1 nuclease mapping. The 112 promoters documented by Hawley and McClure (9) are included in this compilation and can be identified by a 9 in reference column (j).
\% Only one of the -35 or -10 promoter hexamers was unambiguously identified, thus no PHI value for the published promoter can be given.

+ Underlined -35 and -10 regions for these genes represent heat shock promoter elements which are apparently recognized by a distinct heat shock sigma factor (34).
column (f) whenever a combination of -35 and -10 elements found by the computer or in the literature is (i) more consensus-like than the elements our program finds, but (ii) inconsistent with the transcription start data.

Base Distributions

Figure 1 shows the distribution of bases for analyzed promoters and indicates positions at which bases occur more frequently than chance by greater than 6 standard deviations (highly conserved, upper case bases) or 3 standard deviations (weakly conserved, lower case bases) (9). The base distribution of a compilation of random sequences is multinomial with probabilities $\mathrm{P}_{\mathrm{T}}, \mathrm{P}_{\mathrm{G}}, \mathrm{P}_{\mathrm{C}}$, P_{A}, where $P_{T}, P_{G}, P_{C}, P_{A}$ are the frequencies of occurrence of T, G, C, and A, respectively. The standard deviation for each base X is $\sqrt{\left(n p_{X}(1-p X)\right)}$ where n-number of bases at that position. This statistic applies strictly only to

Figure 1. Base distribution of 263 analyzed promoters from Table 1. (a) Frequency histogram of the most highly conserved base on the nontemplate strand from 12 bp upstream of the -35 hexamer to 11 bp downstream of the -10 hexamer. Highly conserved (upper case) and weakly conserved (lower case) bases, as defined in the text, are shown below the histogram. (b) Frequency of bases (T, G, C, A and T+A) in aligned promoters as a percentage of total number of bases (N) at each position.
non-aligned positions. Frequencies T,G,C,A are $0.284,0.225,0.217$, and 0.274 , respectively, in non-aligned positions, yielding weakly conserved bases at -11 , $-9,-6$, and +3 with respect to the -35 region, and $-2,-1$ and +1 with respect to the -10 region. Two of these bases (the A 9 bases upstream of the -35 and the G 2 bases upstream of the -10 region) were previously identified as weakly conserved by Hawley and McClure (9) using uniform base frequencies (. $25, .25, .25, .25$) and a Poisson approximation to the multinomial distribution. A similar consensus sequence was derived by Rosenberg and Court (7) from analysis of 46 promoters.

It is difficult to assign statistics to the conservation of bases in the aligned regions. However, using either the multinomial or Poisson distribution

TABLE 2
Base Distribution in -35 and -10 Regions

Frequency of bases in -35 and -10 hexamers for (a) all 263 analyzed promoters from Table 1 (a), and promoters with 16 (b), 17 (c) or 18 (d) bp separating the -35 and -10 regions. Mean clonality for each region is the arithmetic average of clonalities for each position within the region. Clonality of a base position is the square of the sum of squared frequencies at that position (138).
(which yields a larger standard deviation) and any of the base frequencies discussed above, all bases in the -35 hexamer and -10 hexamer appear highly conserved.

We did not align sequences with respect to transcription start point since in many cases this point is not precisely defined, due either to alternative initiation sites or experimental error in this determination. Nevertheless, the most probable bases $6-10 \mathrm{bp}$ downstream of the -10 region, corresponding to the transcription start area of most promoters, reflect the sequence of bases in this region (CAT).

Figure 2. Distribution of promoters with $15-21 \mathrm{bp}$ separating the -35 and -10 hexamers. The number of promoters in each group is indicated on top of the bars.

Base frequencies for -35 and -10 hexamers of all analyzed promoters are shown in Table 2a. Previous analysis of a limited compilation of promoter sequences suggested greater conservation of consensus-like sequences in promoters with -35 to -10 spacings of 16 or 18 bp than in promoters with the usual 17 bp spacing (J. McClarin and J. Hedgpeth, personal communication). To test this idea, subgroups of promoters with -35 to -10 spacing of 16,17 , or 18 bp were also tabulated (Table $2 b-d$). A composite measure of "clonality" for these regions (see Table legend) does not suggest an overall increase in conservation of bases in the -35 and -10 regions except in the -10 region of promoters with a 16 bp spacing. For these promoters, the -10 region is more consensus-like on average than the -10 region of other promoters. The statistical significance of these observations is difficult to determine since promoter sequences are not strictly independent.
Inter-region (-35 to -10) Spacing
Figure 2 shows the frequency of occurrence of promoters with 15-21 bp separating the -35 and -10 regions. As previously observed, this spacing is stringently constrained: 92% of all sequences are optimally aligned when 17 ± 1 bp separate the -35 and -10 regions. This is consistent with known severe effects of spacer mutations (13-16) and our current understanding of RNA polymerase:promoter interaction in which the protein complex contacts one side of the DNA helix (8). Inter-region spacing outside the $16-18 \mathrm{bp}$ range presumably requires unusual polymerase or DNA conformations since conserved
contact points would not lie on the same face of the DNA helix. Alternatively, the rarer inter-region distances may reflect interaction of regulatory proteins with RNA polymerase (1,2). It would be useful to obtain experimental data on interactions between RNA polymerase and DNA for promoters whose - 35 to - 10 spacing is thought to deviate significantly from 17 bp.

Other Analyses

We did not include weakly conserved bases flanking the - 35 and -10 regions in the weight matrix since this would limit the range of possible alignments for the -35 and -10 regions. The significance of weakly conserved bases has not been well studied and the apparent conservation of some of these bases may reflect chance. Furthermcre, an analysis of our compilation using a weight matrix based on an extended -35 and -10 region (the 9 most highly conserved positions in each region) produced results similar to those shown in Table 1 (unpublished data). Stronger homology might exist in these flanking bases if slight variability in their spacing from the -35 and -10 regions were allowed.

We also did not use weakly conserved bases near the transcription start in our weight matrix because mutation studies have not supported a role for this region in promoter recognition by RNA polymerase $(22,23)$. However, initiation points were used to validate computer-selected -35 and -10 regions by disqualifying promoters whose -10 region was not within $4-12 \mathrm{bp}$ upstream of the start point. A relatively wide range of separation between these regions was allowed since experimental error in determining the start point is often $\pm 2 \mathrm{bp}$ and actual constraints dictated by promoter/polymerase interactions are not known. Despite the weak constraint on promoter position imposed by the program 75% of optimal promoter alignments were $7 \pm 2 \mathrm{bp}$ from the -10 hexamer (Fig. 3). This strengthens the notion that transcription initiation occurs 5-9 base pairs downstream from the -10 region. However, in 30 cases (column g), the program identified best-fit promoters inconsistent with the reported transcriptional start point. Such discrepancies have been noted for other, similar analyses $(17,18,20)$ and have been attributed to either inadequacies in the computer algorithm for detecting promoters or inadequacies in experimental determination of transcriptional start points. These are likely explanations here as well, but since there have been few determinations of both polymerase contact points and sites of transcription initiation, a third possibility is that the true range of distance between the -10 and transcription start point has been underestimated.

McClure (2) outlined four generalizations of E. coli promoters from analysis of 112 promoters: (i) all promoters using sigma factor 70 have at least two of

Figure 3. Distribution of promoters with transcription start points initiating 4-12 bases downstream of the -10 hexamer. Only promoters with uniquely defined start points are included in this analysis.
the three most highly conserved bases in the -10 region (TA...T), (ii) all promoters have at least one of the most highly conserved TTG residues in the35 region, (iii) most promoters with poor homology to the consensus sequence in in the -35 region are positively regulated, and (iv) promoters using sigma factor 32 during heat shock have similar, non-consensus-like -10 regions. Our analysis supports these generalizations although some exceptions exist: 4 promoters (ada, cit.util-379, dapD, and ppc) listed in Table 1 break rule (i) and 2 promoters (lacP2 and pyrB1-P1) break rule (ii). Exceptions such as these are expected in larger compilations, but also might reflect differences in search algorithms. We have compared the ranking of the 112 promoters of Hawley and McClure (9) analyzed with the program of Mulligan et al. (16) with the ranking generated by our program. The correlation using Hawley and McClure's alignment was relatively high (Spearman rank-correlation coefficient $=0.81$), but increased only slightly when our alignment was used (coefficient $=0.83$). Therefore, there is no significant difference in the method by which the promoter homology score is derived.

SUMMARY

We have compiled and analyzed 263 promoter of E. coli including 112 studied by Hawley and McClure (9). The major difference in our approach is in the reiterative alignment of promoter regions to select -35 and -10 regions most consistent with the reference list of promoters and with known transcriptional
start points. The consensus sequence defined by this alignment (c.a..t.....TTGACA..t.............ggTATAATg) is identical in sequence to that of previous reports in the highly conserved -35 and -10 hexamer regions (7,9), but differs in some of the weakly conserved bases. Most aligned promoter elements are identical to those identified by Hawley and McClure (9) or the investigators reporting the promoter sequence. However, in 64 cases - 35 and10 regions were selected which were more consensus-like in sequence or interregion spacing than those proposed in the initial publication. Of these, 15 differed from that of the computer-selected promoter by more than one PHI unit corresponding to a factor of 10 in statistical similarity to the consensus promoter. The computer generated alignment of promoter elements is derived from and consistent with our current knowledge of promoter sequence and thus should provide the best indication of promoter structure.

Although this compilation and analysis is an improvement over previous analyses, it too suffers the limitation that without experimental data confirming points of interaction between RNA polymerase and -35 and -10 regions, it is not possible to align these regions by existing methods without introducing bias from the initial alignment. Assuming promoter regions are defined by restricted sequence data, the consensus sequence should be identified by a program which examines all possible alignments of all sequences. Execution of an exhaustive alignment algorithm is not presently feasible for large sequence compilations such as E. coli promoters. However, we suspect that such an analysis would not significantly alter the consensus promoter sequence as defined here.

ACKNOWLEDGMENTS

We thank A.B. Futcher, J. Hedgpeth, and H. Ghosh for helpful discussion and reading of the manuscript. Supported by grants to CBH from the Medical Research Council and the National Cancer Institute of Canada.
1^{1} The promoter compilation will be provided upon receipt of a blank $5 \frac{3}{4}$ " disk.
*To whom correspondence should be addressed

REFERENCES

1. von Hippel, P.H., Bear, J.D., Morgan, W. and McSwiggen, J.A. (1984) Ann. Rev. Biochem. 53, 389-446.
2. McClure, W.R. (1985) Ann. Rev. Biochem. 54, 171-204.
3. Pribnow, D. (1975) Proc. Natl. Acad. Sci. USA 72, 784-788.
4. Schaller, H., Gray, C. and Herrmann, K. (1975) Proc. Natl. Acad. Sci. USA 72, 737-741.
5. Takanami, M., Sugimoto, K., Sugisaki, H. and Okamoto, T. (1976) Nature 260, 297-302.
6. Seeburg, P.H., Nusslein, C. and Schaller, H. (1977) Eur. J. Biochem. 74, 107-114.
7. Rosenberg, M. and Court, D. (1979) Ann. Rev. Genet. 13, 319-353.
8. Siebenlist, U., Simpson, R.B. and Gilbert, W. (1980) Cell 20, 269-281.
9. Hawley, D.K. and McClure, W.R. (1983) Nucl. Acids Res. 11, 2237-2255.
10. Youderian, P. Bouvier, S. and Susskind, M. (1982) Cell 30, 843-853.
11. Deuschle, U., Kammerer, W., Gentz, R. and Bujard, H. (1986) EMBO J. 5, 29872994.
12. Kammerer, W., Deuschle, U., Gentz, R. and Bujard, H. (1986) EMBO J. 5, 29953000.
13. Mandecki, W. and Reznikoff, W.S. (1982) Nucl. Acids Res. 10, 903-912.
14. Stefano, J.E. and Gralla, J.D. (1982) Proc. Natl. Acad. Sci. USA 79, 1069-1072.
15. Russell, D.R. and Bennett, G.N. (1982) Gene 20, 231-243.
16. Aoyama, T., Takanami, M., Ohtsuka, E., Yaniyama, Y., Marumoto, R., Sato, H. and Ikehara, M. (1983) Nucl. Acids Res. 11, 5855-5864.
17. Harr, R., Haggstrom, M., and Gustafsson, P. (1983) Nucl. Acids Res. 11, 29432957.
18. Mulligan, M., Hawley, D., Entriken, R., and McClure, W. (1984) Nucl. Acids Res., 12, 789-800.
19. Staden, R. (1984) Nucl. Acids Res. 12, 505-519.
20. Mulligan, M. and McClure, W. (1986) Nucl. Acids Res. in press.
21. Berk, A.J. and Sharp, P.A. (1977) Cell 12, 721-732.
22. Aoyama, T. and Takanami, M. (1985) Nucl. Acids Res. 13, 4085-4096.
23. Tachibana, H. and Ishihama, A. (1985) Nucl. Acids Res. 13, 9031-9042.
24. Spencer, M.E. and Guest, J.R. (1985) Mol. Gen. Genet. 200, 145-154.
25. Demple, B., Sedgwick, B. Robins, P., Totty, N., Waterfield, M.D. and Lindahl, D. (1985) Proc. Natl. Acad. Sci. 82, 2688-2692.
26. Nakabeppu, Y., Kondo, H., Kawabata, S-i, and Sekiguchi, M. (1985) J. Biol. Chem. 260, 7281-7288.
27. Olsson, O. Bergstrom, S. and Normark, S. (1982) The EMBO J. 1, 1411-1416.
28. Stoner, C. and Schleif, R. (1983) J. Mol. Biol. 171, 369-381.
29. Horwitz, A.H., Garrett Miyada, C. and Wilcox, G. (1984) J. Bacteriol. 158, 141. 147.
30. Piette, J., Cunin, R., Boyen, A., Charlier, D., Crabeel, M., Van Vliet, F., Glansdorff, N., Squires, C. and Squires, C. (1982) Nucl. Acids Res. 10, 80318049.
31. Cunin, R., Eckhardt, T., Piette, J., Boyen, A. and Glansdorff, N. (1983) Nucl. Acids Res. 11, 5007-5019.
32. Moore, S.K., Garvin, R.T. and James, E. (1981) Gene 16, 119-132.
33. Hudson, G.S. and Davidson, B.E. (1984) J. Mol. Biol. 180, 1023-1051.
34. Cowing, D.W., Bardwell, J.C.A., Craig, E.A. Woolford, C., Hendrix, R.W. and Gross, C.A. (1985) Proc. Natl. Acad. Sci. 82, 2679-2683.
35. Piette, J., Nyunoya, H., Lusty, C.J., Cunin, R., Weyens, G., Crabeel, M., Charlier, D., Glansdorff, N. and Pierard, A. (1984) Proc. Natl. Acad. Sci. 81, 4134-4138.
36. Sasatsu, M., Misra, T.K., Chu, L., Laddaga, R., and Silver, S. (1985) J. Bacteriol., 164, 983-993.
37. Ishiguro, N. and Sata, G. (1985) J. Bacteriol. 164, 977-982.
38. Ishiguro, Sasatsu, Misra and Silver (1986) personal communication.
39. van den Elzen, P.J.M.,Maat, J., Walters, H.H.B. Veltkamp, E. and Nijkamp, H.J.J. (1982) Nucl. Acids Res., 10, 1913-1928.
40. Parker, R.C. (1983) Gene 26, 127-136.
41. Chan, P. T., Lebowitz, J. and Bastia, D. (1979) Nucl. Acids Res. 7, 1247-1262.
42. Chan, P.T. and Lebowitz, J. (1983) Nucl. Acids Res. 11, 1099-1116.
43. Aiba, H. Fujimoto, S. and Ozaki, N. (1982) Nucl. Acids Res. 10, 1345-1361.
44. Aiba, H., Kawamukai, M. and Ishihama, A. (1983) Nucl. Acids Res. 11, 3451-3465.
45. Richaud, C., Richaud, F., Martin, C., Haziza, C. and Patte, J-C. (1984) J. Biol. Chem. 259, 14824-14828.
46. Valentin-Hansen, P., Hammer, K., Larsen, J.E.L. and Svendsen, I. (1984) Nucl. Acids Res. 12, 5211-5224.
47. Tamura, F., Nishimura, S. and Ohki, M. (1984) EMBO J. 3, 1103-1107.
48. Hansen, F. G., Hansen, E.B. and Atlung, T. (1982) EMBO J. 1, 1043-1048.
49. Ohmori, H., Kimura, M., Nagata, T. and Sakakibara, Y. (1984) Gene 28, 159-170.
50. Maki, H., Horiuchi, T. and Sekiguchi, M. (1983) Proc. Natl. Acad. Sci. 80, 7137-7141.
51. Nomura, T., Fujita, N. and Ishihama, A. (1985) Nucl. Acids Res. 13, 7647-7661.
52. Thompson, R., Taylor, L., Kelly, K., Everett, R. and Willetts, N. (1984) EMBO J. 3, 1175-1180.
53. Fowler, T., Taylor, L. and Thompson, R. (1983) Gene 25-26, 79-89.
54. Jones, H.M. and Gunsalus, R.P. (1985) J. Bacteriol. 164, 1100-1109.
55. Miles, J.S. and Guest, J.R. (1984) Nucl. Acids Res 12, 3631-3642.
56. Miles, J.S. and Guest, J.R. (1984) Gene 32, 41-48.
57. Guest, J.R. personal communication.
58. Busby, S., Truelle, N., Spassky, A., Dreyfus, M. and Buc, H. (1984) Gene 28 , 201-209.
59. Ueno-Nishio, S., Mango, S., Reitzer, L.J. and Magasanik, B. (1984) J. Bacteriol. 160, 379-384.
60. Hull, E.P., Spencer, M.E., Wood, D. and Guest, J.R. (1983) FEBS Letters, 156 , 366-370.
61. Plamann, M.D. and Stauffer, G.V. (1983) Gene 22, 9-18.
62. Nasoff, M.S., Baker, H.V. and Wolf Jr., R.E. (1984) Gene 27-28, 253-264.
63. Adachi, T., Mizuuchi, K., Menzel, R. and Gellert, M. (1984) Nucl. Acids Res. 12, 6389-6395.
64. Grisolia, V., Riccio, A. and Bruni, C.B. (1983) J. Bacteriol. 155, 1288-1296.
65. Freedman, R., Gibson, B., Donovan, D., Biemann, K., Eisenbeis, S. Parker, J. and Schimmel, P. (1985) J. Biol. Chem., 260, 10063-10068.
66. Eisenbeis, S.J. and Parker, J. (1982) Gene 18, 107-114.
67. Landick, R., Vaughn, V., Lau, E., VanBogelen, R.A., Erickson, J.W. and Neidhardt, F.C. (1984) Cell 38, 175-182.
68. Vaughn, V., personal communication
69. Haughn, G.W., Squires, C.H., DeFelice, M., Largo, C.T. and Calvo, J.M. (1985) J. Bacteriol. 163, 186-198.
70. Machida, C., Machida, Y. and Ohtsubo, E. (1984) J. Mol. Biol. 177, 247-267.
71. March, P.E. and Inouye, M. (1985) J. Biol. Chem. 260, 7206-7213.
72. Inouye, S. and Inouye, M. (1985) Nucl. Acids Res. 13, 3101-3110.
73. Kamio, Y., Lin, C-K., Regue, M. and Wu, H.C. (1985) J. Biol. Chem. 260, 56165620.
74. Miller, K.W. and Wu, H.C., personal communication.
75. Cassan, M., Ronceray, J. and Patte, J.C. (1983) Nucl. Acids Res. 11, 6157-6166.
76. Vidal-Ingigliardi, D. and Raibaud, 0. (1985) Nucl. Acids Res., 13, 5919-5926.
77. Gutierrez, C. and Raibaud, 0. (1984) J. Mol. Biol. 177, 69-86
78. Raibaud, O., Gutierrez, C. and Schwartz, M. (1985) J. Bacteriol. 161, 12011208.
79. Michaeli, S., Mevarech, M. and Ron E.Z. (1984) J. Bacteriol. 160, 1158-1162.
80. Duchange, N., Zakin, M.M., Ferrera, P., Saint-Girons, I., Park, I., Tran, S.V., Py, M-C. and Cohen, G.N. (1983) J. Biol. Chem. 258, 14868-14871.
81. Saint-Girons, I., Duchange, N., Zakin, M.M., Park, I., Margarita, D., Ferrera, P. and Cohen, G.N. (1983) Nucl. Acids Res. 11, 6723-6732.
82. Matsuyama, S-I., and Mizushima, S. (1985) J. Bacteriol. 162, 1196-1202.
83. Mizuno, T., Chou, M-Y, and Inouye, M. (1984) Proc. Natl. Acad. Sci. 81, 19661970.
84. Dean, G.E., MacNab, R.M., Stader, J., Matsumura, P. and Burks, C. (1984) J. Bacteriol. 159, 991-999.
85. Goosen, N., van Heuvel, M., Moolenaar, G.F. and van de Putte, P. (1984) Gene 32, 419-426.
86. Womble, D.D., Sampathkumar, P., Easton, A.M., Lucknow, V.A. and Rownd, R.H. (1985) 181, 395-410.
87. Grindley, J.N. and Nakada, D. (1981) Nucl. Acids Res. 9, 4355-4366.
88. Ishii, S., Kuroki, K. and Imamoto, F. (1984) Proc. Natl. Acad. Sci. 81, 409413.
89. Ishii, S., Ihara, M., Mackawa, T., Nakamura, Y., Uchida, H. and Imamoto, F. (1984) Nucl. Acids Res. 12, 3333-3342.
90. Movva, R.N., Nakamura, G.K. and Inouye, M. (1981) FEBS Letters 128, 186-190.
91. Inokuchi, K., Furukawa, H., Nakamura, K. and Mizushima, S. (1984) J. Mol. Biol. 178, 653-668.
92. Wurtzel, E.T., Chou, M.-Y., and Inouye, M. (1982) J. Biol. Chem. 257, 1368513691.
93. Selzer, G., Som, T., Itoh, T. and Tomizawa, J.-i. (1983) Cell 32, 119-129.
94. Rodriguez, R.L., West, R.W., Heyneker, H.L., Bolivar, F. and Boyer, H.W. (1979) Nucl. Acids Res. 6, 3267-3287.
95. Gragerov, A.I., Smirnov, O.Y,m Mekhedov, S.I., Nikiforov, V.G., Chuvpilo, S.A. and Korobko, V.G. (1984) FEBS Letters 172, 64-66.
96. Harley, C.B., Lawrie, J., Betlach, M., Crea, R., Boyer: H.W. and Hedgpeth, J., submitted.
97. Bindereif, A. and Neilands, J.B. (1985) J. Bacteriol. 162, 1039-1046.
98. Daldal, F. (1983) J. Mol. Biol. 168, 285-305.
99. Daldal, F. (1984) Gene 28, 337-342.
100. §chwartz, I., Klotsky, R.A., Elseviers, D., Gallagher, P.J., Krauskopf, M., Siddiqui, M.A.Q., Wong, J.F.H. and Roe, B.A. (1983) Nucl. Acids Res. 11, 43794389.
101. Izui, K., Miwa, T., Kajitani, M., Fujita, N., Sabe, H., Ishihama, A. and Katsuki, H. (1985) Nucl. Acids Res. 13, 59-77.
102. Churchward, G., Linder, P. and Caro, L. (1983) Nucl. Acids Res. 11, 5647-5659.
103. Linder, P., Churchward, G. and Caro, L. (1983) J. Mol. Biol. 170, 287-303.
104. Pannekoek, H., Maat, J., van den Berg, E. and Noordermeer, I. (1980) Nucl. Acids Res. 8, 1535-1550.
105. Turnbough, C.L., Hicks, K.L. and Donahue, J.P. (1983) Proc. Natl. Acad. Sci. 80, 368-372.
106. Larsen, J.N. and Jensen, K.F. (1985) Eur. J. Biochem. 151, 59-65.
107. Poulsen, P., Jensen, F., Valentin-Hansen, P., Carlson, P. and Lundberg, L.G. (1983) Eur. J. Biochem. 135, 223-229.
108. Poulsen, P., Bonekamp, F. and Jensen, K.F. (1984) EMBO J. 3, 1783-1790.
109. Sakamoto, H., Kimura, N. and Shimura, Y. (1983) Proc. Natl. Acad. Sci. 80, 6187-6191.
110. Taylor, W.E., Straus, D.B., Grossman, A.D., Burton, Z.F., Gross, C.A. and Burgess, R.R. (1984) Cell 38, 371-381.
111. Hsu, L.M., Zagorski, J. and Fournier, M.J. (1984) 178, 509-531.
112. Boros, I., Csordas-Toth, E., Kiss, A., Kiss, I., Torok, I. Udvardy, A., Udvardy, K. and Venetianer, P.(1983) Biochim. Biophys. Acta 739, 173-180.
113. Csordas-Toth, E., Boros, I. and Venetianer, P. (1979) Nucl. Acids Res. 7, 21892197.
114. Venetianer, P., personal communication.
115. Wood, d., Darlison, M.G., Wilde, R.J., and Guest, J.R. (1984) Biochem. J. 222, 519-534.
116. Sancar, A., Williams, K.R., Chase, J.W. and Rupp, W.D. (1981) Proc. Natl. Acad. Sci. USA 78, 4274-4278.
117. Chase, J.W., Merrill, B.M. and Williams, K.R. (1983) Proc. Natl. Acad. Sci. USA 80, 5480-5484.
118. Prosen, D.E. and Cech, C.L. (1985) Biochem. 24, 2219-2227.
119. Mulligan, M.E., Brosius, J. and McClure, W.R. (1985) J. Biol. Chem. 260, 35293538.
120. Brosius, J., Erfle, M. and Storella, J. (1985) J. Biol. Chem. 260, 3539-3541.
121. Saint Girons, I. and Margarita, D. (1985) J. Bacteriol. 161, 461-462.
122. Bertrand, K.P., Postle, K., Wray,Jr., L.V. and Reznikoff, W.S. (1983) Gene 23, 149-156.
i23. Schollmeier, K. and Hillen, W. (1984) J. Bacteriol. 160, 499-503.
123. Chen, S.T. and Clowes, R.C. (1984) Nucl. Acids Res. 12, 3219-3234.
124. Lund, P.A., Ford, S. and Brown, N.L. (1986) J. Gen. Microbiol. 132, 465-480.
125. Misra, T.K., Brown, N.L., Fritzinger, D., Pridmore, R.D., Barnes, W.M., Haberstroh, L., and Silver, S. (1984) Proc. Natl. Acad. Sci. 81, 5975-5979.
126. Misra, T.K., personal communication
127. Gay, N.J., Tybulewicz, V.L.J. and Walker, J.E. (1986) Biochem. J. 234, 111-117.
128. Postle, K. and Good, R.F. (1983) Proc. Natl. Acad. Sci. 80, 5235-5239.
129. Smith, C.A., Shingler, V. and Thomas, C.M. (1984) Nucl. Acids Res. 12, 36193630.
130. Thomas, C.M., personal communication
131. Wallace, B.J. and Kushner, S.R. (1984) Gene 32, 399-408.
132. Travers, A.A., Lamond, A.I., Mace, H.A.F. and Berman, M.L. (1983) Cell 35, 265 273.
133. Jones, H.M., Brajkovich, C.M. and Gunsalus, R.P. (1983) J. Bacteriol. 155, 1279-1287.
134. Walker, J.E., Gay, N.J., Saraste, M. and Eberle, A.N. (1984) Biochem. J., 224 , 799-815.
135. van Sluis, G.A., Moolenaar, G.F. and Backendorf, C. (1983) EMBO J. 2, 23132318.
136. Easton, A.M. and Kushner, S.R. (1983) Nucl. Acids Res. 11, 8625-8640.
137. Smith, G.P. (1973) Cold Spring Harbor Symp. Quant. Biol. 38, 507-514.
