Cloning and nucleotide sequences of the linear DNA killer plasmids from yeast

Fumio Hishinuma*, Kenzo Nakamura ${ }^{+}$, Keiko Hirai, Rei Nishizawa, Norio Gunge and Tadakazu Maeda

Mitsubishi-Kasei Institute of Life Sciences, 11 Minamiooya, Machida-shi, Tokyo 194, Japan

Received 17 April 1984; Revised and Accepted 10 September 1984

Abstract

The linear DNA killer plasmids (pGKLl and pGKL2) isolated from a Kluyveromyces lactis killer strain are also maintained and expressed its killer character in Saccharomyces cerevisiae. After these killer plasmid DNAs isolated from S. cerevisiae were treated with alkali, four terminal fragments from each plasmid DNAs were cloned separately. Using these and other cloned DNA fragments, the terminal nucleotide sequences of pGKL2 and the complete nucleotide sequence of pGKLl were determined. The inverted terminal repetitions of 262 bp and 182 bp were found in pGKL1 and pGKL2, respectively. The pGKLl sequence showed an extremely high A $+T$ content of 73.2% and it contained five large open reading frames. The largest of these open reading frame was suggested to code for a membrane-bound precursor of glycoprotein subunit of the killer toxin.

INTRODUCTION

The yeast Kluyveromyces lactis IFOl267 contains two linear DNA plasmids called pGKLl (8.9 kb) and pGKL2 (13.4 kb) (1). K. lactis harboring both plasmids produces a killer toxin that kills a certain group of yeast including Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces rouxii, Kluyveromyces lactis, Kluyveromyces thermotolerans, Kluyveromyces vanudenii, Torulopsis gabrate, Candida utilis and Candida intermedia (1). It has been shown, by curing and deletion mapping of pGKLl, that the killer toxin gene and the immuni-ty-determining gene reside on PGKLl, and pGKL2 is essential for the maintenance of pGKLl since pGKLl has never been found when pGKL2 was lost (2). These pGKL plasmids were transfered from a K. lactis killer strain into a nonkiller strain of S $_{\text {. cerevisiae }}$ by protoplast fusion and transformation. S. cerevisiae harboring both plasmids showed the same killer phenotype as the donor \underline{K}. lactis $(3,4)$.

The killer toxin coded by pGKLl is quite different from the well characterized Kl killer toxin which is coded by $\underline{\text { S }}$. cerevisiae double-
stranded linear RNA plasmid, called Ml-dsRNA (5). While the Kl killer toxin act as a protonophore causing the leakage of ATP in sensitive cells $(5,6)$, the pGKL killer toxin specifically inhibits adenylate cyclase activity and causes Gl arrest in sensitive cells (7). In contrast to the Kl killer toxin which is a small protein of 9.5 and 9.6 kilodaltons (kd) $(5,8)$, the pGKL killer toxin is a large glycoprotein with a molecular weight larger than 100 kd which can be dissociated into subunit polypeptides (9, Fujimura et al. manuscript in preparation). The kl killer toxin has been reported to be secreted from the cell by proteolytic cleavage of a larger membrane-bound glycoprotein precursor (5). The mechanism of secretion of the pGKL killer toxin is not known.

In order to determine the primary structure and the gene organization in pGKLl and pGKL2, we have cloned the entire nucleotide sequences of both plasmids into E. coli. Sequencing analysis of the cloned pGKL plasmids revealed that pGKLl and pGKL2 have terminal inverted repeat sequences of 202 and 182 bp , respectively, and that pGKLl sequence has five open reading frames larger than 100 amino acids.

MATERIALS AND METHODS

Strains, media, enzymes, and chemicals
S. cerevisiae F102-2 (a, leu2-3, 2-112, his4-519, canl, pGKL1, pGKL2) that was a fusant between \underline{K}. lactis $2105-1 \mathrm{D}(\alpha$, adel, ade 2 , leu, pGKL1, pGKL2) and \underline{S}. cerevisiae AH22 (a, leu2-3, 2-112, his4-519, canl), a sensitive strain against the pGKL killer toxin, was grown in YEPD medium and used to isolate pGKL plasmids as previously described (1). E. coli $K-12$ strains C600 (F^{-}, thi-1, thr-1, leuB6, lacY1, tonA 21 , supe44) and JA221 (F^{-}, hsdM ${ }^{+}$, hsdR ${ }^{-}$, leub6, lacY, Δ trpe5, recAl were used as host for the cloning of DNA fragments of pGKL plasmids.

Bacterial alkaline phosphatase, T4 DNA ligase, and polynucleotide kinase were purchased from Bethesda Research Laboratories (BRL). Terminal deoxynucleotidyl transferase was from P. L. Biochemicals (PL), Klenow fragment of E. Coli DNA polymerase I was from BoehringerMannheim (BM), and Zymolyase 60000 was from Seikagaku Kogyo (SK). The restriction endonucleases were purchased from BRL, PL, BM, SK, Takara Shuzo, and Nippon Gene. The enzymes were used as recommended by the
manufacturer. $\alpha_{-}{ }^{32} \mathrm{P}-\mathrm{dNTPs}, \gamma-{ }^{32} \mathrm{P}-\mathrm{ATP}$, and $\alpha_{-}{ }^{32} \mathrm{P}-3$ dATP were from Amersham.
Cloning of DNA fragments of pGKL plasmids in E. coli
The cleared lysate from \underline{S}. cerevisiae $\mathrm{Fl} 02-2$ was prepared by using zymolyase as described previously (1), treated with 0.1 N NaOH for 30 min at $37^{\circ} \mathrm{C}$, and neutralized with 0.1 N HCl . The alkali treated lysate was extracted three times with 0.1 M Tris-HCl (pH 8.ø) saturated phenol, and twice with ether. DNA in the aqueous phase of the final extraction was precipitated with ethanol, redissolved in TE (10 mm Tris-HCl, pH7.4, lmM EDTA), and subjected to Sephacryl S-1000 column chromatography in order to remove small RNAs. The pGKLl and pGKL2 eluted with chromosomal DNA were digested with BamHI which cuts each plasmid at a single site, and ligated with BamHI and SmaI digested pLS 354 which is a promoter-probing shuttle vector in E. coli and B. subtilis consisting PBR322, pE194 and pUBll (10). Ligated DNA was introduced to E. coli C600 and recombinant plasmids containing pGKLl and pGKL2 were identified from ampicillin resistant transformants by colony hybridization. Probes were made from the purified pGKLl and pGKL2. The plasmid DNAs were isolated from the hybridization-positive colonies and analyzed for their physical maps. Four different recombinant DNAs were identified and designated, respectively, as pGKF106 (containing the right half of pGKLl), pGKFl 07 (the left half of pGKLl), PGKF2ø1 (the right half of pGKL2) and pGKF2ø2 (the left half of pGKL2).

The plasmid pGKF219 was constructed as follows; the alkali treated pGKL2 as described above was digested with XbaI and the termini of the DNA fragments were filled in to make blunt ends with Klenow fragment of DNA polymerase I and 4 deoxynucleoside triphosphates. DNA fragments with blunt ends were inserted in a Smal site of pUC8 (11). The pGKFlol is a recombinant plasmid containing the 6.4 kb PstI fragment of pGKLl inserted into PstI site of pBR322. The restriction enzyme maps of the plasmid DNAs used here are shown in Fig. 1. DNA sequencing

DNA fragments were labeled at the 5^{\prime} ends with $\gamma-{ }^{32} \mathrm{P}-\mathrm{ATP}$ and polynucleotide kinase, and at the 3^{3} end with $\alpha-{ }^{32} \mathrm{P}-\mathrm{dNTP}$ and Klenow fragment of DNA polymerase I or $\alpha-{ }^{32} \mathrm{P}-3$ 'dATP and terminal deoxynucleotidyl transferase. Nucleotide sequences were determined by the chemical method of Maxam and Gilbert (12). The entire regions reported
here were sequenced repeatedly (more than twice) for each strands. Preparation of RNA fractions and Northern blotting

RNA was prepared from log-phase yeast cells essentially by the method of Struhl and Davis (13), except for $22 \mu \mathrm{~g}$ of zymolyase 6ø000/ original ml of culture was used for spheroplasting cells. The total RNA samples were twice precipitated by 2 MLiCl at $4^{\circ} \mathrm{C}$ for $10-16 \mathrm{hr}$ (14), and loaded on an oligo-dT cellulose (Collaborative Research) column equilibrated with $0.5 \mathrm{MLiCl}, 10 \mathrm{mM}$ EDTA, 0.2% SDS, 10 mM Tris-HCl (pH 7.5) (15). PolyA ${ }^{+}$RNA was eluted from the column by lmM EDTA, lomm Tris-HCl (pH 7.5), and precipitated with 2.5 volumes of $5 \mathrm{M} \mathrm{LiCl-}$:ethanol (l:24, by vol.). Oligo-dT cellulose column chromatography was repeated once more.

RNA samples were denatured in 50% dimethylsulfoxide, 1 M glyoxal, 10 mm sodium phosphate ($\mathrm{pH} 7 . \emptyset$) at $50^{\circ} \mathrm{C}$ for $1 \mathrm{hr}(16)$, and separated by gel electrophoresis in a horizontal 1% agarose. Transfer of RNA from the gel to diazotized paper, pretreatment, hybridization and washing of diazotized paper were carried out as described by Alwine et al. (17). DNA fragments used as ${ }^{32} \mathrm{P}$-probe were prepared by nick translation method of Rigby et al. (18).

RESULTS

Cloning of pGKL plasmid DNAs
Two major types of terminal structures in linear DNA species are known; one has a hairpin structure and the other has a terminal protein at 5^{\prime} end of DNA. If pGKL plasmids have terminal protein(s) at the 5^{\prime} ends, they should be cloned in E. coli only after removal of the terminal protein(s). It has been known that the proteins covalently attached to linear DNAs are successfully removed by the treatment with 6.1M NaOH for 30 min at $37^{\circ} \mathrm{C}(19,20)$. Since only one BamHI cleavage site exists in either pGKLl or pGKL2 (Fig. 1), pGKL plasmid DNAs were digested with BamHl and ligated to BamHI and SmaI cleaved pLS 354. E. coli C600 was transformed with ligated DNA and the transformants carrying pGKL fragments were screened from ampicillin resistant transformants by colony hybridization using ${ }^{32} \mathrm{P}-1$ abelled pGKLl or pGKL2 as probes. Seventy-five hybridization positive clones were isolated from about 1200 ampicillin resistant colonies tested. The plasmid DNAs were isolated from 18 positive clones, and finally four different recombinant DNAs that contain each of the left and

Fig. 1 Structures of the linear killer DNA plasmids and the recombinant plasmids containing the fragments of the linear plasmid DNAs. The linear killer DNA plasmids, pGKLl abd pGKL2, were originally isolated from K. lactis IFO1267. The deletion plasmids of pGKLl, pGKLlS and F2, were isolatd from K. lactis $\mathrm{NK}^{-1}-1$ and S. cerevisiae Pdil-8, respectively. The other plasmids are the recombinant DNAs containing the DNA fragments of pGKLl and pGKL2 as indicated in the figure. The recombinant plasmids (pGKF106, PGKF107, PGKF2ø1, pGKF202, and pGKF219) were constructed by the use of pUC8 as a vector, and pGKFlol was cloned a HindIII fragment in a HindIII site of pBR322. The vectors are not shown in this figure. The following abbreviations are used for the restriction endonucleases. H: HindIII, P: PstI, N: NdeI, E: Ecori, B: BamHI, C: ClaI, X: XhoI, S: SacI
right halves of pGKLl or pGKL2 were obtained. Plasmid pGKF106 and pGKFlol contain the right and the left half of pGKLl, respectively, and PGKF2ø1 and pGKF2ø2 contain the right and the left half of pGKL2, respectively. The physical maps of these plasmid DNAs are shown in Fig. 1.

Although we do not know exactly whether the termini of the pGKL plasmids are blunt ends or 5^{\prime} (or 3 ') protruding ends, we conclude from the success to clone the termini in SmaI site as mentioned above that they are blunt ends.
Nucleotide Sequences of the terminal regions of pGKL plasmids
In order to determine nucleotide sequences of pGKLl and pGKL2, the fine restriction maps were made (Fig 2a). These maps suggested that pGKL plasmids might have inverted terminal repetitions (ITR) since AluI-XhoI-TaqI-HinfI sites in pGKL2 or two Rsal sites in pGKLl exist at same distance in the left and the right termini of each plasmid. The nucleotide sequences determined by Maxam and Gilbert method (12) confirmed this, that is, terminal 202 bp of the left and right termini of pGKLl were entirely identical (Fig. 3), and 182 bp

Fig. 2 The restriction enzyme maps of the entire sequence of pGKLl (a) and the terminal regions of pGKL2 (b). The maps were obtained by analysis of cloned pGKLl and pGKL2 fragments.
of both terminal sequences of pGKL2 showed also inverted repetition (Fig. 4) except that the sequence of the right side of pGKL2 was 2 bp $\binom{\mathrm{AA}}{\mathrm{TT}}$ longer than that of the left side. To examine whether this 2 bp difference comes from an artifact during cloning or whether the left side is truly 2 bp shorter than the right side in pGKL2, we isolated independently a recombinant plasmid (pGKF219) containing the left terminal region of pGKL2 using pUC8 (1l) as a vector. Nucleotide sequence of pGKF219 showed that the terminal sequence begins with TTTCC. This sequence is still one bp shorter than that of the right (PGKF 201). Thus, the number of $A-T$ base pairs of the left terminus in pGKL2 could not be settled in this report. If it is $4 \mathrm{~A}-\mathrm{T}$ base pairs as the right terminus, the ITR sequence of pGKL2 shall be 184 bp . The conclusion must wait until the nucleotide sequence of the native pGKL2 is determined.

ACACATAACA TAGGGGAGAG TACTAAAAGT GAGATTATTG GAAGATTAGT ACGTCTCCAT TTTTTTCTGT TTTTTTGTTT TTATATATTA GGTTATTTTT TTTCAGTTIT ATATCAACTC TGTATAACAA GTCTATTTTY TTATATTTTA AGTCTATTTT ACACTTTTGA CCTATAAGTC ATTTTATTAT ACACATTTTTC CAACTATAAT ATHGEATPA CATPATPAAT TTAAAAATGG ATTACAAAGA TAAGGCTTTA AATGATCTAA GAAATGTATA TGCCGACTTT GATTCACTTC
 ATATGCAGA TATTTAAAAC AATCAGAAAT ACCAGAACGA ATATCTTTGC CTAACATTAA AAGACATAAA GGTGTTTCTA TATCTTTTGA AGAAACATGA

Nucleic Acids Research

| |
| :--- | :--- | :--- |

Fig. 3 Nucleotide sequence of the entire pGKLl. The cleavage sites for restriction endonucleases, $2 \emptyset 2 \mathrm{bp}$ of the ITR (large boxes), and the location of start and end of five open reading frames (small boxes and arrows) are indicated.

The ITR of both pGKLl and pGKL2 are AT rich : 76.2% for pGKLl and 69.8% for pGKL2, and contain many A or T clusters. The clusters more than 4 consecutive A or T stretches are 12 in ITR of pGKLl and 9 in ITR of pGKL2. No apparent homology was found between the ITR sequences of pGKL1 and pGKL2 by a computer analysis (21).
(a)

 (b)

 tataatctat atctaga

Fig. 4 Nucleotide sequence of the terminal regions of pGKL2. The restriction enzyme cleavage sites and the ITR sequence regions are indicated. (a) The left terminal of pGKL2. (b) The right terminal of pGKL2.

Fig. 5 Translation stop codons in pGKLl. The positions of trinucleotide sequences (TAA, TAG, and TGA) are marked in 6 different frames. Arrows show the direction of translation.

Sequence organization in PGKLI

The killer toxin and the resistance or immunity to the killer is coded by pGKLl, while pGKL2 is required for the maintenance of pGKLl in a cell ($2,3,4$). Two deletion mutants of pGKLl which affect the killer phenotype have been obtained in our laboratory, and their restriction enzyme maps are shown in Fig. 1. Deletion mutant pGKLls is defective in killer secretion, but retains resistance to the killer (2), while F 2 has lost not only the ability to secrete killer but also the resistance to the killer (4). Details of deletion mapping of pGKLlS, F2 and its tail-to-tail dimer, F1 (4), will be described elsewhere. These deletion mapping data indicate that a structural gene for the killer and the resistance gene locates at its middle and the right portion of pGKLl, respectively, shown in Fig. 1.

In order to analyze the gene organization in $\operatorname{pGKL} 1$, the entire nucleotide sequence of pGKLl was determined by the use of the cloned DNA fragments of pGKLl (Fig. 3). The number of total nucleotides of pGKLl was 8876 bp and its $\mathrm{A}+\mathrm{T}$ content was 73.2% which is consistent with the low buoyant density of pGKLl DNA (1).

When we analyzed the termination codons (TAA, TAG TGA) of translation in 6 different frames, five open reading frames (Pl to P 5) being able to code for proteins with more than 100 amino acids were found in pGKLl (Fig. 5, Table 1). All of these open reading frames were terminated with TAA codon. Since we could not find in pGKLl the consensus sequence for splicing in yeast (TACTAAC) (22), these regions may be translated independently if they are transcribed.

Among the five open reading frames, only P3 overlapped with both of the sequences deleted in pGKLlS and F2 defective in killer secretion. Especially, a 2.7 kb deletion of pGKLls located entirely inside

TABLE 1 : The open reding frames and the characteristics of the predicted proteins from them in pGKLl

	Nucleotide No.	A + T (\%)	No. of Amino Acids	Molecular Weight
P1	$213-1973$	$75 . \varnothing$	586	68579
P2	$2048-32 ø 2$	72.4	384	45042
P3	$3232-6672$	76.3	1146	$12872 \varnothing$
P4	$7941-869 \varnothing$	72.7	249	28709
P5	$7929-6643$	77.5	428	50873

The open reading frames in pGKLl were analyzed in six different frames. The results revealed that 5 protein coding regions ($\mathrm{Pl}-\mathrm{P} 5$) were expected in pGKL1. The number of amino acids and the molecular weight of each possible protein were calculated by computer analysis using MRC program (42). It was assumed that the protein is translated from the first ATG codon of each reading frame.
of P3. The location of ATG initiation codons within P3 indicate that P3 can code for a polypeptide with the maximum number of amino acid residues of 1146 (Table 1). These results suggest that P3 codes for killer toxin polypeptide(s).

In order to examine whether the P 3 region of pGKLl is actually expressed in yeast cells, we analyzed RNA transcripts by Northern blotting. A 2.6 kb EcoRI-HindIII fragment of pGKLl (from 3973 to 6561) covering most of the P 3 (Fig. 2a) hybridized to a poly A^{+}mRNA from S. cerevisiae Flø2-2 carring pGKL plasmids (Fig. 6, lanes 7-9), which migrated to the same position as 25 S rRNA (3360 ± 80 bases; 23). We could not detect any hybridization of the same probe neither to total and poly A^{-}RNA from the same strain (Fig. 6, lanes 1-6), nor to poly A^{+}mRNA from S. cerevisiae AH22 lacking pGKL plasmids (data not shown). A 660 bp DdeI fragment located adjacent to the left side of the EcoRI site (from 3307 to 3971) also hybridized to a . cerevisiae Flø2-2 poly A^{+}mRNA with the same electrophoretic mobility as 25 S rRNA (data not shown). These results indicate that almost the entire region of P3 is actually transcribed into a mRNA of about 3.4 kb in S . cerevisiae Flø2-2.

DISCUSSION

After treatment of the pGKL plasmids with alkali, the four fragments of the plasmid DNAs containing the each terminal were cloned.

Fig. 6 Northern blott analysis of mRNA transcribed from the P3 portion of pGKLl. Total RNA, poly A^{-}RNA and poly A^{+}RNA fractions from S. cerevisiae Flø2-2 carring pGKL plasmids were analyzed by Northern blotting with 2.6 kb EcoRI-HindIII fragment of pGKLl as a 32 p-probe. The position of $25 \bar{S}$ and $\overline{18 S}$ rRNAs are indicated by thin arrows, and the position of RNA hybridized with the probe is indicated by thick arrow. The amount of RNA applied to each lane are, $1: 5 \mu \mathrm{~g}$, 2: $10 \mu \mathrm{~g}, \mathrm{3:} 20 \mu \mathrm{~g}, 4: 5 \mu \mathrm{~g}, 5: 10 \mu \mathrm{~g}, 6: 20 \mu \mathrm{~g}, 7: 2 \mu \mathrm{~g}, \mathrm{8}: 4 \mu \mathrm{~g}, \mathrm{9}$: $8 \mu \mathrm{~g}$.

Since the treatment of the plasmid DNAs with 0.1 M NaOH at $37^{\circ} \mathrm{C}$ for 30 min does not probably affect polynucleotide linkages, one can assume that the termini of the pGKL plasmid DNAs are blunt ends, and is associated with alkali labile material(s) at their 5' ends.

Some of the linear DNA species other than chromosomes have been found and characterized for their terminal structures in order to understand the mechanisms of DNA replication. There are two major types of linear DNA species. The first type posseses the terminal protein at 5^{\prime} ends of DNA like adenovirus DNA (24), phages $\varnothing 29, \phi 15$, $M 2 Y$, and N_{f} from Bacillus subtilis (19, 20, 25) and the linear plasmids from Streptomyces rochei (pSLAl and pSLA2) (10). All these DNAs have been characterized to carry ITR sequences. The second type has a hairpin structure, like rDNA of Tetrahymena $(26,27)$ that contains 2070 repeats of the hexanucleotide CCCCAA at or near the DNA terminus. Similar structures have been found in rDNA molecule of Physarum in which the repeating unit is CCCTA (28). The telomeres of \underline{S}. cerevi-
siae chromosomes seem to be similar in structure to rDNA of Tetrahymena (20 , 30).

The nucleotide sequences of pGKL1 and pGKL2 clearly revealed that these plasmid DNAs have the ITR sequences. These structures are very similar to the termini of adenovirus DNAs where 102 to 162 bp of the ITR sequences have been found and the terminal protein is associated at their 5^{\prime} ends (31-34). The yield of pGKL plasmid DNA was drastically reduced when the cleared lysate from S. cerevisiae F102-2 was extracted with phenol. These observations suggest that some protein is associated to the pGKL plasmid DNAs. Recently, we have detected peptide(s) associated at or near their 5^{\prime} ends (35). This indicates that the DNA replication in pGKL plasmids might be initiated by a protein priming mechanism as reported for adenovirus DNA. It is, however, noteworthy to point out that the consensus sequences for the initiation origin of DNA replication (ars) in S. cerevisiae (${ }_{T}^{A} \mathrm{~A}^{2} T A_{G}^{A} \mathrm{TTT}_{\mathrm{T}}^{\mathrm{A}}$; 36) are found once (139-149) in the ITR sequences of both pGKL plasmids. Then, it is interesting to test whether the ITR sequences have an activity of the initiation of DNA replication in $\underline{S}_{\text {. }}$ cerevisiae and K. lactis.

In the course of preparation of this paper, Sor et al. (37) reported the sequence of the terminal 227 bp of pGKLl and pGKL2 determined with the native plasmid DNAs isolated from K. lactis. Since 5' ends of the plasmid DNAs are not labeled by kination, they deduced their sequence of $5^{\prime \prime}$ terminus from that of the opposite strands. Their sequences, however, were identical to our results, but they suggested that 5^{\prime} ends of the plasmid DNAs might be protruding. We do not know the reason why their prediction is different from ours, and it may be explained by the difference of origins of plasmid DNAs analyzed. In our case, the pGKL plasmids were prepared from S. cerevisiae Fl02-2 which is a fusant between \underline{K}. lactis 2105-1D and $\underline{\text { S }}$. cerevisiae AH22.

The right end of pGKL2 begins with AAAAGG, whereas the left terminus begins with AAGG in PGKF2g2 and AAAGG in pGKF219. The difference in the number of $A-T$ base pairs might reflect the state of this plasmid DNA in S. cerevisiae, or come from an artifact during cloning in E. coli. Since Sor et al. (37) reported that the both termini of pGKL2 begin with AAAAGG, it might be possible that the terminal structure of the pGKL plasmids are not exactly identical in

EGKTFKFAEALQKININKSKNFDNLNEFERIRFFRSKLGKVKHCGS

Fig. 7. Amino acid sequence of a polypeptide which can be coded by P3. The amino acid sequence starting from the first ATG codon is deduced from the DNA sequence. The location of hydrophobic segments which is longer than 17 amino acid residues, with more than 65% hydrophobic amino acids and without charged amino acids are indicated by boxes. Underlined sequences represent the potential sites for Asnlinked glycosylation.
these two host cells.
At least the genes for killer toxin and immunity-determinant reside on pGKLl ($2,3,4$). The pGKL killer toxin is quite large, and it can be resolved into three protein subunits by SDS-polyacryamide gel electrophoresis (9, Fujimura et al., manuscript in preparation). The largest subunit is a glycoprotein, and its apparent molecular weight varies between 97 and 123 kd depending on conditions of gel electrophoresis. The molecular weight of this subunit decreses about 14 kd upon deglycosylation with endoglycosidase H. The other two subunits are simple proteins with apparent molecular weight of 25 and 24 kd (Fujimura et al., manuscript in preparation). The molecular nature of the immunity-determinant is not known.

When the protein coding capacity of pGKLl was analysed by searching the termination codons (TAA, TAG, TGA) in 6 different frames, 5 proteins of larger than 100 amino acids were predicted to be coded by pGKLl (Fig. 6 and Table 1). Several lines of evidence suggest that P3 codes for a precursor protein of at least the glycoprotein subunit of the killer toxin. First, only P3 overlapps with both of the sequences deleted in pGKLlS and F2 defective in killer secretion. Especially, a 2.7 kb deletion of pGKLls lies inside of P3. Second, almost the entire region of P3 is actually transcribed into a poly A^{+}mRNA (Fig. 6). Third, among the five open reading frames, only p3 can code for a
protein large enough to account for the polypeptide chain of glycoprotein subunit (Table 1). Fourth, the amino acid sequence of a protein which can be coded by P3 (Fig. 7) shows characteristic features of precursors for exocellular glycoproteins. If we assume that the translation starts from the first ATG codon, the aminoterminal segment of 17 amino acids is highly hydrophobic (Fig. 7) and resembles to signal peptides found in various secretory protein precursors, which directs polypeptides for processing and secretory pathways. It lacks, however, the amino-terminal basic amino acid(s) which is found in many, but not all, signal peptides (38). It is noticed that the pentapeptide sequence ${ }^{7}$ Phe-Leu-Phe-Leu-Leu ${ }^{11}$ found in this segment is also present in the signal peptide of pre-invertase of S. cerevisiae (39,40), and pre-invertase signal peptide also lacks amino-terminal basic amino acid (40). The amino acid sequence of a protein coded by P3 also contains seven potential asparagine-linked major glycosylation site sequences (Asn-X-Thr/Ser; Fig. 7).

The size of a putative precursor coded by P3 is considerably larger than the polypeptide chain of glycoprotein subunit, even if the removal of signal peptide is taken into account. In addition to the amino-terminal signal peptide-like sequence, the carboxy-terminal portion of putative precursor contains three hydrophobic segments without charged amino acids (Fig. 7). Two of these segments located closer to carboxy-terminus are especially hydrophobic in terms of their length or hydrophobic amino acid content. We have recently detected a membrane-bound protein larger than the glycoprotein subunit which was immunologically cross-reactive with anti-killer toxin antiserum in S. cerevisiae Flø2-2. This membrane protein was absent in killer-minus cells. Furthermore, the size of this membrane protein decreased about 12 kd when cells were labeled in the presence of tunicamycin which inhibited the secretion of killer toxin (Fujimura, et al., manuscript in preparation). It seems likely that the secretion of glycoprotein subunit of pGKL killer toxin into the culture medium involves the proteolytic cleavage of membrane-bound larger precursor. Such a proteolytic cleavage of membrane-bound precursor has been shown to occur in the secretion of 9.5 and 9.0 kd killer toxin coded by S. cerevisiae Ml-dsRNA plasmid $(5,8)$ and secretory component (SC) of human epithelial cells (41). Substantiation of this model, however, requires the determination of amino-terminal sequence

Nucleic Acids Research

of the glycoprotein subunit and the comparison of peptide maps of the glycoprotein subunit, the membrane-bound precursor and the in vitro translation product of mRNA transcribed from pGKLl.

The open reading frames P4 or P5 could be the immunity-determinant since the deletion mutant $F 2$ lacking about 5 kb of the right side of pGKLl (Fig. 1) does not afford resistance to the kiiler.

ACKNOWL EDGEMENT

We are grateful to Drs. M. Kageyama and Y. Kikuchi for discussion and critical reading of the manuscript, to S. Ohtsuka for the computer analysis of the nucleotide sequence, and to T. Mukohara for help in the preparation of the manuscript.
*To whom correspondence should be addressed
+Present address: Laboratory of Biochemistry, Faculty of Agriculture, Nagoya University, Chikusa-ku, Nagoya 464, Japan

REFERENCES

1. Gunge, N., Tamaru, A., Ozawa, F. and Sakaguchi, K. (1981) J. Bacteriol. 145, 382-390.
2. Niwa, O., Sakaguchi, K. and Gunge, N. (1981) J. Bacteriol. 148, 988-990.
3. Gunge, N. and Sakaguchi, K. (1981) J. Bacteriol. 147, 155-160.
4. Gunge, N., Murata, K. and Sakaguchi, K. (1982) J. Bacteriol. 151, 462-464.
5. Tipper, D.J. and Bostian, K.A. (1984) Microbiol. Rev. 48, 125-156.
6. de la Peña, P., Barros, F., Gascon, S., Lazo, P.S. and Ramos, S. (1981) J. Biol. Chem. 256, 10420-10425.
7. Sugisaki, Y., Gunge, N., Sakaguchi, K., Yamasaki, M. and Tamura, G. (1983) Nature 304, 464-466.
8. Bostian, K., Bussey, H., Elliot, Q., Burn, V., Smith, A. and Tipper, D.J. (1984) Cel1 36, 741-751.
9. Sugisaki, Y., Gunge, N., Sakaguchi, K., Yamasaki, M. and Tamura, G. (1984) Eur. J. Biochem. 141, 241-245.
10. Hirochika, H., Nakamura, K. and Sakaguchi, K. (1984) EMBO J. 3, 761-766
11. Vieira, J. and Messing, J. (1982) Gene 19, 259-268.
12. Maxam, A. and Gilbert, W. (1980) In "Methods in Enzymology, Vol. 65", Grossman, L. and Moldave, K. Eds., pp. 499-560, Academic Press, New York.
13. Struhl, K and Davis, R.W. (1981) J. Mol. Biol. 152, 535-552.
14. McAlister, L. and Finkelstein, D.B. (1980) J. Bacteriol. 143, 603-612.
15. Finkelstein, D.B., Strausberg, S. and McAlister, L. (1982) J. Biol. Chem. 257, 8405-8411.
16. Carmichael, G.G. and McMaster, G.K. (1980) In "Methods in Enzymology, Vol. 65", Grossman, L. and Moldave, K. Eds., pp. 380-391, Academic Press, New York.
17. Alwine, J.C., Kemp, D.J., Parker, B.A., Reiser, J., Renart, J.,

Stark, G.R. and Wahl, G.M. (1979) In Methods in Enzymology, Vol. 68", Wu, R., Ed., pp. 220-242, Academic Press, New York.
18. Rigby, P.W.J., Dickmann, M., Rhodes, C. and Berg, P. (1977) J. Mol. Biol. 113, 237-251.
19. Escarmis, C. and Salas, M. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 1446-1450.
20. Salas, M., Mellado, R. P., Vituela, E., and Sogo, J. M. (1978) J. Mol. Biol. 119, 269-291.
21. Korn, L. J., Queen, C. L. and Wegman, M. N. (1977) Proc. Natl. Acad. Sci. U.S.A. 74, 4401-4405.
22. Langford, C. and Gallwitz, D. (1983) Cell 33, 519-527.
23. Philippsen, P., Thomas, M., Kramer, R.A. añ Davis, R.W. (1978) J. Mol. Biol. 123, 387-404.
24. Robinson, I. and Padmanabhan, R. (1980) Biochem. Biophys. Res. Commun. 94, 398-405.
25. Yoshikawa, H. and Ito, J. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 2596-2600.
26. Blackburn, E. H. and Gall, J. G. (1978) J. Mol. Biol. 120, 33-53.
27. Yao, M. -C. and Yao, C. -H. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 7436-7439.
28. Bergold, P. J., Campbell, G. R., Littau, V. C. and Johnson, E. M. (1983) Cell 32, 1287-1299.
29. Murray, A. W. and Szostak, J. W. (1983) Nature 305 189-193.
30. Szostak, J. W. and Blackburn, E. H. (1982) Cell 29, 245-255.
31. Alestrom, P., Stenlund, A., Li, P. and Pettersson, U. (1982) Gene 18, 193-197.
32. Steenbergh, P. H., Maat, J., Van Ormondt, H. and Sussenbach, J. S. (1977) Nucleic Acids Res. 4, 4371-4389.
33. Stillman, B. W., Topp, W. C. and Engler, J. A. (1982) J. Virol. 44, 530-537.
34. Tolun, A., Alestrom, P. and Pettersson, U. (1979) Cel1 17, 765-713.
35. Kikuchi, Y., Hirai, K. and Hishinuma, F. (1984) Nucleic Acids Res. 12, 5685-5692.
36. Broach, J. R. Li, Y. Y., Feldman, J., Jayaram, M., Abraham, J., Nasmyth, K. A. and Hicks, J. B. (1983) Cold Spring Harb. Symp. Quant. Biol. 48, 1165-1173.
37. Sor. F., Wesolowski, M. and Fukuhara, H. (l983) Nucleic Acids Res. 11, 5037-5044.
38. Inouye, M. and Halegoua, H.O. and Cannon, L.E. (1980) CRC Crit. Rev. Bioche. 7. 339-371.
39. Perlman, D., Halvorson, H.O. and Cannon, L.E. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 781-785.
40. Carlson, M., Taussing, R., Kustu, S. and Botstein, D. (1983) Mol. Cell. Biol. 3, 439-447.
41. Mostov, K.E. and Blobel, G. (1982) J. Biol. Chem. 257, 11816-11821.
42. Staden, R. (1977) Nucleic Acids Res. 4, 4037-4051.

Note Added in Proof
During the preparation of this revised manuscript, we noticed
that M. J. R. Stark et al. reported the nucleotide sequence of pGKLl
(Kl) appeared in Nucleic Acids Res., 12, 6011 (1984). The total number of Kl was determined by them to be 8874 bp which is 2 bp shorter than ours. From the consequence in this 2 bp difference, they deduced that the open reading frames of P 1 and P 2 were contiguous in one large open reading frame.

