Cloning and nucleotide sequences of the linear DNA killer plasmids from yeast

Fumio Hishinuma*, Kenzo Nakamura +, Keiko Hirai, Rei Nishizawa, Norio Gunge and Tadakazu Maeda

Mitsubishi-Kasei Institute of Life Sciences, 11 Minamiooya, Machida-shi, Tokyo 194, Japan

Received 17 April 1984; Revised and Accepted 10 September 1984

ABSTRACT

The linear DNA killer plasmids (pGKL1 and pGKL2) isolated from a <u>Kluyveromyces lactis</u> killer strain are also maintained and expressed its killer character in <u>Saccharomyces cerevisiae</u>. After these killer plasmid DNAs isolated from <u>S. cerevisiae</u> were treated with alkali, four terminal fragments from each plasmid DNAs were cloned separately. Using these and other cloned DNA fragments, the terminal nucleotide sequences of pGKL2 and the complete nucleotide sequence of pGKL1 were determined. The inverted terminal repetitions of 202 bp and 182 bp were found in pGKL1 and pGKL2, respectively. The pGKL1 sequence showed an extremely high A + T content of 73.2% and it contained five large open reading frames. The largest of these open reading frame was suggested to code for a membrane-bound precursor of glycoprotein subunit of the killer toxin.

INTRODUCTION

The yeast <u>Kluyveromyces</u> <u>lactis</u> IFO1267 contains two linear DNA plasmids called pGKL1 (8.9 kb) and pGKL2 (13.4 kb) (1). <u>K. lactis</u> harboring both plasmids produces a killer toxin that kills a certain group of yeast including <u>Saccharomyces</u> <u>cerevisiae</u>, <u>Saccharomyces</u> <u>italicus</u>, <u>Saccharomyces</u> <u>rouxii</u>, <u>Kluyveromyces</u> <u>lactis</u>, <u>Kluyveromyces</u> <u>thermotolerans</u>, <u>Kluyveromyces</u> <u>vanudenii</u>, <u>Torulopsis</u> <u>gabrate</u>, <u>Candida</u> <u>utilis</u> and <u>Candida</u> <u>intermedia</u> (1). It has been shown, by curing and deletion mapping of pGKL1, that the killer toxin gene and the immunity-determining gene reside on pGKL1, and pGKL2 is essential for the maintenance of pGKL1 since pGKL1 has never been found when pGKL2 was lost (2). These pGKL plasmids were transfered from a <u>K. lactis</u> killer strain into a nonkiller strain of <u>S. cerevisiae</u> by protoplast fusion and transformation. <u>S. cerevisiae</u> harboring both plasmids showed the same killer phenotype as the donor <u>K. lactis</u> (3, 4).

The killer toxin coded by pGKLl is quite different from the well characterized Kl killer toxin which is coded by <u>S</u>. <u>cerevisiae</u> double-

stranded linear RNA plasmid, called M1-dsRNA (5). While the K1 killer toxin act as a protonophore causing the leakage of ATP in sensitive cells (5, 6), the pGKL killer toxin specifically inhibits adenylate cyclase activity and causes G1 arrest in sensitive cells (7). In contrast to the K1 killer toxin which is a small protein of 9.5 and 9.0 kilodaltons (kd) (5, 8), the pGKL killer toxin is a large glycoprotein with a molecular weight larger than 100 kd which can be dissociated into subunit polypeptides (9, Fujimura <u>et al</u>. manuscript in preparation). The k1 killer toxin has been reported to be secreted from the cell by proteolytic cleavage of a larger membrane-bound glycoprotein precursor (5). The mechanism of secretion of the pGKL killer toxin is not known.

In order to determine the primary structure and the gene organization in pGKL1 and pGKL2, we have cloned the entire nucleotide sequences of both plasmids into \underline{E} . <u>coli</u>. Sequencing analysis of the cloned pGKL plasmids revealed that pGKL1 and pGKL2 have terminal inverted repeat sequences of 202 and 182 bp, respectively, and that pGKL1 sequence has five open reading frames larger than 100 amino acids.

MATERIALS AND METHODS

Strains, media, enzymes, and chemicals

<u>S. cerevisiae</u> Fl02-2 (a, <u>leu</u>2-3, 2-112, <u>his</u>4-519, canl, pGKL1, pGKL2) that was a fusant between <u>K. lactis</u> 2105-1D (α, <u>adel</u>, <u>ade</u>2, <u>leu</u>, pGKL1, pGKL2) and <u>S. cerevisiae</u> AH22 (a, <u>leu</u>2-3, 2-112, <u>his</u>4-519, canl), a sensitive strain against the pGKL killer toxin, was grown in YEPD medium and used to isolate pGKL plasmids as previously described (1). <u>E. coli</u> K-12 strains C600 (F⁻, <u>thi</u>-1, <u>thr</u>-1, <u>leuB6</u>, <u>lacY1</u>, <u>tonA21</u>, <u>supE44</u>) and JA221 (F⁻, <u>hsdM⁺</u>, <u>hsdR⁻</u>, <u>leuB6</u>, <u>lacY</u>, <u>AtrpE5</u>, <u>rec</u>Al were used as host for the cloning of DNA fragments of pGKL plasmids.

Bacterial alkaline phosphatase, T4 DNA ligase, and polynucleotide kinase were purchased from Bethesda Research Laboratories (BRL). Terminal deoxynucleotidyl transferase was from P. L. Biochemicals (PL), Klenow fragment of <u>E. coli</u> DNA polymerase I was from Boehringer-Mannheim (BM), and Zymolyase 60000 was from Seikagaku Kogyo (SK). The restriction endonucleases were purchased from BRL, PL, BM, SK, Takara Shuzo, and Nippon Gene. The enzymes were used as recommended by the manufacturer. $\alpha - {}^{32}P$ -dNTPs, $\gamma - {}^{32}P$ -ATP, and $\alpha - {}^{32}P$ -3'dATP were from Amersham.

Cloning of DNA fragments of pGKL plasmids in E. coli

The cleared lysate from S. cerevisiae F102-2 was prepared by using Zymolyase as described previously (1), treated with Ø.IN NaOH for 30 min at 37°C, and neutralized with 0.1N HCl. The alkali treated lysate was extracted three times with Ø.1M Tris-HCl (pH 8.0) saturated phenol, and twice with ether. DNA in the aqueous phase of the final extraction was precipitated with ethanol, redissolved in TE (10mM Tris-HCl, pH7.4, lmM EDTA), and subjected to Sephacryl S-1000 column chromatography in order to remove small RNAs. The pGKL1 and pGKL2 eluted with chromosomal DNA were digested with BamHI which cuts each plasmid at a single site, and ligated with BamHI and SmaI digested pLS354 which is a promoter-probing shuttle vector in E. coli and B. subtilis consisting pBR322, pE194 and pUBl10 (10). Ligated DNA was introduced to E. coli C600 and recombinant plasmids containing pGKL1 and pGKL2 were identified from ampicillin resistant transformants by colony hybridization. Probes were made from the purified pGKLl and pGKL2. The plasmid DNAs were isolated from the hybridization-positive colonies and analyzed for their physical maps. Four different recombinant DNAs were identified and designated, respectively, as pGKF106 (containing the right half of pGKL1), pGKF107 (the left half of pGKL1), pGKF201 (the right half of pGKL2) and pGKF202 (the left half of pGKL2).

The plasmid pGKF219 was constructed as follows; the alkali treated pGKL2 as described above was digested with <u>Xba</u>I and the termini of the DNA fragments were filled in to make blunt ends with Klenow fragment of DNA polymerase I and 4 deoxynucleoside triphosphates. DNA fragments with blunt ends were inserted in a <u>Sma</u>I site of pUC8 (11). The pGKF101 is a recombinant plasmid containing the 6.4 kb <u>PstI</u> fragment of pGKL1 inserted into <u>PstI</u> site of pBR322. The restriction enzyme maps of the plasmid DNAs used here are shown in Fig. 1. <u>DNA</u> sequencing

DNA fragments were labeled at the 5' ends with $\gamma - {}^{32}P-ATP$ and polynucleotide kinase, and at the 3' end with $\alpha - {}^{32}P-dNTP$ and Klenow fragment of DNA polymerase I or $\alpha - {}^{32}P-3$ 'dATP and terminal deoxynucleotidyl transferase. Nucleotide sequences were determined by the chemical method of Maxam and Gilbert (12). The entire regions reported here were sequenced repeatedly (more than twice) for each strands. Preparation of RNA fractions and Northern blotting

RNA was prepared from log-phase yeast cells essentially by the method of Struhl and Davis (13), except for 22 μ g of Zymolyase 60000/ original ml of culture was used for spheroplasting cells. The total RNA samples were twice precipitated by 2M LiCl at 4^oC for 10-16 hr (14), and loaded on an oligo-dT cellulose (Collaborative Research) column equilibrated with 0.5M LiCl, 10mM EDTA, 0.2% SDS, 10mM Tris-HCl (pH 7.5) (15). PolyA⁺ RNA was eluted from the column by 1mM EDTA, 10mM Tris-HCl (pH 7.5), and precipitated with 2.5 volumes of 5M LiCl-:ethanol (1:24, by vol.). Oligo-dT cellulose column chromatography was repeated once more.

RNA samples were denatured in 50% dimethylsulfoxide, lM glyoxal, 10mM sodium phosphate (pH 7.0) at 50°C for 1 hr (16), and separated by gel electrophoresis in a horizontal 1% agarose. Transfer of RNA from the gel to diazotized paper, pretreatment, hybridization and washing of diazotized paper were carried out as described by Alwine <u>et al</u>. (17). DNA fragments used as 32 p-probe were prepared by nick translation method of Rigby <u>et al</u>. (18).

RESULTS

Cloning of pGKL plasmid DNAs

Two major types of terminal structures in linear DNA species are known; one has a hairpin structure and the other has a terminal protein at 5' end of DNA. If pGKL plasmids have terminal protein(s) at the 5' ends, they should be cloned in E. coli only after removal of the terminal protein(s). It has been known that the proteins covalently attached to linear DNAs are successfully removed by the treatment with Ø.1M NaOH for 30 min at 37°C (19, 20). Since only one BamHI cleavage site exists in either pGKL1 or pGKL2 (Fig. 1), pGKL plasmid DNAs were digested with BamHl and ligated to BamHI and SmaI cleaved pLS354. E. coli C600 was transformed with ligated DNA and the transformants carrying pGKL fragments were screened from ampicillin resistant transformants by colony hybridization using ³²P-labelled pGKL1 or pGKL2 as probes. Seventy-five hybridization positive clones were isolated from about 1200 ampicillin resistant colonies tested. The plasmid DNAs were isolated from 18 positive clones, and finally four different recombinant DNAs that contain each of the left and

Fig. 1 Structures of the linear killer DNA plasmids and the recombinant plasmids containing the fragments of the linear plasmid DNAs. The linear killer DNA plasmids, pGKL1 abd pGKL2, were originally isolated from K. lactis IFO1267. The deletion plasmids of pGKL1, pGKL1S and F2, were isolatd from K. lactis NK-1 and S. cerevisiae Pd11-8, respectively. The other plasmids are the recombinant DNAs containing the DNA fragments of pGKL1 and pGKL2 as indicated in the figure. The recombinant plasmids (pGKF106, pGKF107, pGKF201, pGKF202, and pGKF219) were constructed by the use of pUC8 as a vector, and pGKF101 was cloned a HindIII fragment in a HindIII site of pBR322. The vectors are not shown in this figure. The following abbreviations are used for the restriction endonucleases. H: HindIII, P: PstI, N: NdeI, E: EcoRI, B: BamHI, C: ClaI, X: XhoI, S: SacI

right halves of pGKL1 or pGKL2 were obtained. Plasmid pGKF106 and pGKF107 contain the right and the left half of pGKL1, respectively, and pGKF201 and pGKF202 contain the right and the left half of pGKL2, respectively. The physical maps of these plasmid DNAs are shown in Fig. 1.

Although we do not know exactly whether the termini of the pGKL plasmids are blunt ends or 5' (or 3') protruding ends, we conclude from the success to clone the termini in <u>SmaI</u> site as mentioned above that they are blunt ends.

Nucleotide Sequences of the terminal regions of pGKL plasmids

In order to determine nucleotide sequences of pGKLl and pGKL2, the fine restriction maps were made (Fig 2a). These maps suggested that pGKL plasmids might have inverted terminal repetitions (ITR) since <u>AluI-XhoI-TaqI-Hin</u>fI sites in pGKL2 or two <u>Rsa</u>I sites in pGKL1 exist at same distance in the left and the right termini of each plasmid. The nucleotide sequences determined by Maxam and Gilbert method (12) confirmed this, that is, terminal 202 bp of the left and right termini of pGKL1 were entirely identical (Fig. 3), and 182 bp

Fig. 2 The restriction enzyme maps of the entire sequence of pGKL1 (a) and the terminal regions of pGKL2 (b). The maps were obtained by analysis of cloned pGKL1 and pGKL2 fragments.

of both terminal sequences of pGKL2 showed also inverted repetition (Fig. 4) except that the sequence of the right side of pGKL2 was 2 bp $\binom{AA}{mm}$ longer than that of the left side. To examine whether this 2 bp difference comes from an artifact during cloning or whether the left side is truly 2 bp shorter than the right side in pGKL2, we isolated independently a recombinant plasmid (pGKF219) containing the left terminal region of pGKL2 using pUC8 (11) as a vector. Nucleotide sequence of pGKF219 showed that the terminal sequence begins with AAAGG TTTCC* This sequence is still one bp shorter than that of the right (pGKF201). Thus, the number of A-T base pairs of the left terminus in pGKL2 could not be settled in this report. If it is 4 A-T base pairs as the right terminus, the ITR sequence of pGKL2 shall be 184 bp. The conclusion must wait until the nucleotide sequence of the native pGKL2 is determined.

асасатааса	TAGGGGAGAG	тасталалат	GAGATTATTG	50 GAAGATTAGT	ACGTCTCCAT	TTTTTTCTGT	TTTTTTGTTT	TTATATATA	GGTTATTTTT
TTTCAGTTTT	ATATCAACTC	тетаталсал	GTCTATTTT	150 TTATATTTA	AGTCTATTT	ACACTTTTGA	CCTATAAGTC	ATTTATAT	200 ACACATTTTC
CRACTATAAT	ATATCAATTA	САТТАТТААТ	TTAAAATGG	25 0 Attacaaaga	TAAGGCTTTA	аатдатстаа	GAAATGTATA	TGCCGACTTT	GATTCACTTC
CTTTAGATTT	TAGACAAATA	ттаатаааа д	ATAGAGCCAC	350 ACTTCTTCAA	лалдалдатс	тадалалдал	аататт <u>б</u> баа	адасалдалд	499 Atgcaaagaa
ататссасаа	таттталаас	аатсадааат	ассадаасда	ATATCTTTGC	стаасаттаа	алдасатала	GGTGTTTCTA	TATCTTTTGA	AGAAACATGA
GAAGATATGG	TTTTGGAACC	AAGACCTTTT	ATTTTTGATG	55 <i>0</i> Gattaaatat	TAGATGTTT	AGACGAGAGA	CAATTTTCTC	тстсалалат	699 AAAATATTAA
асатостала	AGAAAGTTCT	тсттталал	Xba I Atgtttctag	ACAATCAGTT	TCTTTCATGT	аттталалт	ттттаатааа	GGGAAAGTTA	799 TAGCTTCTAC
алаластста	AATATTTATG	алсаталалт	AGATGAGAGA	758 TTAGAAGATT	тететлатаа	TTTTGACGAT	GTATTAAAGA	алаттатада	899 TGTAACTTAT
GGTTATGAAA	GTTTATTGT	TTCAGAAACA	TATTCTTATG	85 0 TTATATTTA	TGCTAAATCT	ATATATTCC	CTCAACCTAG	ATGTGTGAAT	999 AATTGGGGTA
атаататтсс	таататтстт	ACTTTCGATA	HindIII GTTTTAAGCT	950 TTTCACAGCT	латалалата	ATGTTTCTTG	TATTAAACAG	TGCTCTCGTT	1999 TTCTGTGGCA
алалдаттт	алтасаттас	AAGAAATGAT	адаататааа	1959 AATGGTAATA	TTTGTATAGT	тастестсаа	ттасататаа	ATGATGTAAG	AGACATAAAA
TCATTTAACG	ACATACGTTT	ATATTCAGAA	астсстатта	AAACATTCAG	TGTTATAGAT	аатастатаа	CATATTTGTT	ТТАТТТААА	GAACATTTAG
GAGTTATATT	таататтаст	AAATCCAGAC	атдатадаад	1250 AGTCACTAAA	TTTAGTCCTT	тетслалатт	TTCTGATGTT	алалататал	CAGTATGTTT
тдататадаа	TCTTATTTG	атссадаааа	адаатстаат	CAAGTTAATA	TACCCTTTAT	ATGTTGTGCA	тстатаатат	атаатааадт	CATAGGAAAT
ATTGTAGATT	TTGAAGGAAG	AGATTGTGTA	GCTCAAATGA	1450 TAGAATATGT	тстасатата	TGTGGAGAGC	TTAATATATC	TTCAGTGGAA	CTAATTGCAC
ATAATGGTGG	AGGTTATGAT	тттсаттата	ТТТТААGTAG	1550 TATGTATAAT	PStI CCTGCAGCTA	TTAAAAATAT	аттааттада	аатаастсат	1699 TTATAAGTTT
TAATTTTGCT	CACGATGGAG	TCAAATTTTC	TGTAAAAGAT	TCCTATAGTT	TCTT GTTATG	TAGTTTAGCA	аатссттсаа	AAGCATTTT	AAACGAAGAA
ACCTTTAAGA	AAACAGATTT	TCCCCATCAT	GATTTAAAAA	CAGCAGATGA	TTTATATAAA	GTATATAAA G	AATGGTCATC	TGTAAACACT	GAAATAAATC
ATGTAGTGGA	Xmn XXXXGXXXXX	СТТСТТАТАА	САТСАБААСА	TATAGCTAAT	ттсасталал	АТБАТАЛАТС	талалстста	ATAGAATGGT	CTARAGATTA
TTGTAGAAAT	GATGTTTTGG	TTTTATCTAN	GGTATGGTTA	GAATTTAAAA	AATGCTGTAG	AAGATATTT	TAATTGTGAA PI	TTAGTAGATC	AAACTAGTAC
ATTAGCAGGA	сталсттата	ааттатттса	AGCAAATATG	CCTTTTCATC	TTTGAATTAA	GACATCCAAA	TAAAGAAGAT	таттттааса	TGAGAGAGGC
TTTAATAGGA	GGGAGATGTA	TTAGTGTCAA	TGGAATATAT	AAAGATGTTT	TATGTTTAGA	теталалтса	TTATATCCAG	CATCTATGGC	ATTTTATGAC
CAGCCATATG	GATCTTTCAA	AAGAGTATCT	AGTAGACCTA	AAGATGAATT	AGGTATTTAT	TATGTCAGAG	таастестаа	тадалатаат	AAATCCAACT
TTTTTCCTAT	алдалдтсас	*****	сттатаатаа	TTTTGAAGAA	AGTACATATA	TAGCATGGTA	тасалатста	GATATAGATA	TAGGTTTGTC
TGAAGGTCAT	аататадаат	ATATCCCCTT	TGATTCTTAT	GGAAATATAG	GTTATTCTTG	GTCTAAAAAA	GGTAAAATAT	тсбалалата	TATAAAAGAC
GTGCTGTACA	*****	аластатсаа	аласалааса	ATAAAGTTAA	AAGAAATGTT	атсалалтта	TTATGAACAG	TTTATGGGGC	AAATTCGCAC
AAAAATGGGT	AAATTTTGAG	ТАТТТТАТАА	аатсадаада	TGATATAGAT	TTTGAGTCAG	AAGAGGCATA	TAAGATATGG	GACACTGATT	TTATGCTGAT
аладалалтт	аладаатста	CTTATTCATC	таласстата	CAAAATGGAG	TATTTACATT	AAGTTGGGCA	AGATACCACA	TGAAAAGTAT	ATGGGATGCA
GGGGCTAAAG	AAGGAGCAGA	атстатстат	TCGGACACAG	ATAGTATTTT	тетасатала	GAACATTTA	алалдаатдс	талатттатс	TTAAATGGTT
TAAAAGTTCC	TATTATAGGA	тсадаадтад	GACAATTAGA	ATTAGAÂTGT	GAGTTTGATA	AATTGTTA T G	TGCAGGTAAA	алдсаатаса	TGGGATTTA
TACTTATTT	САЛБАТББАА	AACCATGTAT	аладдалаас	AAAAGATTTA	AGGGTATTCC	TAGTAATTAT	атаатасстс	AATTATATGC	TCATTTACTT
TCAGGTGCAG	асаладаадс	талалтасаа	TTTTTGAAAT	TTAGAAGAGA	ATGGGGATCA	GTTAAAGGAT	ататадалаа	TAAGACCGTG	AAAGCTACTE
ANTATATGAA	AGTTTTTATĂ	λΤλλΤΤ λΤλλ	ATGAATATA Start P3	TTTTACATAT	TTTTGTTTT	GCTGTCATTC	GTTCAAGGTT	TGGAGCATAC	3300 TCATCGAAGA
GGCTCCTTAG	тсалалдабс	AGTATGTTAT	GACACTGATC	AAGTTCCACT	TAATATTTC	TTTGGTTATA	ATAGAGCAGA	таадастдат	TCTAATAAGA
ATATGGCTCT	AAACATCTTT	AATGTTTTA	GAGGTTTTCT	AGCTGGAGAA	GGTGGAGAGT	СТТТТТАСАА	TTCTAATGGT	AATGTTTATG	3500 GATTTATGTG
GGTAGGTAGT	ATGGTTCATA	ATAGAGGTTT	таладатаат	ATTTTACCTA	таатддаааа	TGAAGTTAAG	AATTATGGTA	ттссталалс	3689 CTTGTATTTA
GAATATGACG	GAGGTGGAGA	TCCTATGAAA	TCTTTTGGTA	3650 TTATTTAGA	TACAACAAGT	AGAGATACTG	TAGTTAAAGC	тсслалатта	TGGAGTCAAG
бталалат т	AAATAGTTAT	GAAGGATCTA	алааттатса	AGCTACTGCA	TGCTATTTAT	CTTATGCATA	TAGAAAGCCC	ATTGTTAATG	3880 ATAATTTTGT
AGGAACTTGC	GACTATTTCA	СТТТАБАААБ	тдаталалса	CCAGCAGACC	AATCTGGTAT	TAATGGAGAG	TCTCTACAAG	GTTATAATCC	TAATTTAGAT
TTCTCTAAAT	TATCAGCAGG	ACAACCTATT	TGTAAAACCA	TAGGTAATCC	TCCTAATTTT	AAACCTTCTA	AGAATTCAGA	CGGTTCTTGT	AAAACATACA
AGGTATCATC	TGGAGAGTCT	TGTTCTTCTA	тассастта	ATATTATCCA	ттал бтттал	атдататада	*****	AAAGGTAA T T	ATGGATGGAA
AGGATGTTCT	AGTCTTCAAA	AAGATTATAA	CTTATGTGTG	AGTGATGGTA	GTGCTCCTAG	ACCAGTTTCA	AATCCTATAG	CAGAATGTGG	TCCATTAGCT

				425.0					4399
CCAGGAGAGA	аататаатыс	TARATGTCCT	TTAAATGCTT	GTTGTAGTGA	ATTTGGTTTC	TGTGGTTTAA	CTARAGATTA	ттбтбасааа	AAGAGTÄĞTÄ 4499
CTACTGGTGC	TCCTGGTACA	GATGGCTGTT	TTTCTAATTG	TGGTTATGGT	TCTACTTCTA	ATGTAAAATC	ATCTACTTT	алаладаттс	CTTATTGGŤŤ
адатсстала	GATAAATTAG	BamHI CTATGGATCC	GAAGAATATT	CCTAATGGTC	CTTATGATAT	TTTACATTAT	GCTTTTGTTA	ататалаттс	AGACTTTAGT
ATTGATGATT	CTGCATTTTC	AAAATCTGCC	ТТТТТАЛА АG	TTACTTCTTC	салаладата	CCTAGTTTTG	GTGGTTGGGA	TTTTAGTACA	TCTCCTAGTA
сттасастат	ATTTAGAAAT	GCTGTTAAAA	САБАТСАААА	4650 TAGAAATACG	TTTGCTAACA	атттаатсаа	TTTTATGAAT	алататаатс	TTGATGGTAT
AGATTTAGAT	TGGGAATATC	CAGGTGCTCC	TGATATTCCA	4750 GATATTCCTG	CTGATGATTC	AAGTAGTGGA	TCTAATTATC	TAACTTTCCT	4800 TAAGTTATTA
AAGGGTAAAA	TGCCTTCTGG	тааласстта	TCTATAGCCA	4859 TTCCTTCTTC	CTATTGGTAT	тталалатт	TCCCTATTTC	тдататтсаа	4900 AACACTGTAG
ATTATATGGT	TTACATGACG	татдататас	ATGGTATATG	4958 GGGATACGGT	аладссалта	GTTATATAAA	CTGCCATACT	CCTCGTAAAG	5000 AAATTGAAGA
тостаталал	атеттасата	AAGCTGGAGT	ТАЛАТТТААТ	5 8 58 AAAGTATTTG	GAGGTGTGGC	AAATTACGGT	AGATCCTACA	алатсстал	5100 TACAAATTGT
ТАТААТТА Т G	GATGCGGTTT	тсалададад	GGAGGAAATT	TAGAGATAT	GACTAATACA	CCAGGTGTTC	TTTCTGATTC	адалаттатт	5200 GATATTGATA
бттса датаа	AAAGAATGAT	AGATGGGTAG	ATACTAACAC	5250 Agattgtatt	TTTATGAAAT	атдассдала	TTCTGTTGTT	TCATGGCCTA	5300 AAAGTAGATA
СБАТТТАБАА	GATATGTTTA	AAAATTATGG	ATTTGCTGGT	S350 ACTTCTTTAT	GGGCCGCTAA	ттатттсала	САТБАТБААТ	GGAAGAACGA	5400 TGAAGATGAT
AATAATGATG	атасадаада	TCCTTTCGAT	GAAGAGAATG	5459 TATATTCGA	TGTTTATGAT	TGCAAAAACA	AAGCTGGTTA	TGATCTGGAC	5500 AATCCAGTTT
ATGGGTGTAG	аттадаласа	GCTATAAATA	TTATTATATG	5550 GAATGGTACA	GAATCTGTTA	ATACAGTTTT	AAATATATTA	AATGATTACG	56 <i>00</i> Ataattatat
TAAATATTAT	балостстал	CTAGAGCACA	TTATGATTCA	5659 GTCATGGAAA	аатасбалаа	ATGGCTGTTT	GAAGAAGATG	GATATTACAC	5700 ATATTATACT
ACCI GATGTAGACG	GAGATGATAT	алттатааст	ССТССАДАТА	5750 AGAAGAAAAG	адаттасата	слададалат	ATTCTTTTGA	AAAAGAATTT	5800 ATGATGTCTC
алалтатдас	адааттааса	далатталас	ттаатаааас	585Ø TATTAATTTT	ATGTTAAATG	GAACATCTCT	асстеталал	GAATATAACA	5900 ACGAAAAAGT
TTTATATAAA	AGAGGAGATA	TACCTCCTCC	TGGTTCTAAT	595 <i>0</i> Aatagattaa	ттадаласад	TATTATTTA	GATAAAGATA	AAGAAGCAGC	6000 TATTGCGTCT
ттсаласаат	ATTCTGGAAT	AGAATTATCT	AAAGATTCTT	6050 TTGTACAAAG	AGATAAAGAT	алаладттт	ATCTAAATGG	таласаттат	6199 ACATTTATGC
ATAGTACTAT	TCTGAATGCT	ATTGTTTTAT	TCCCTAATGT	6159 TTTAACAAAT	ATTGATTCTG	ACTATATTCA	TCATATTCA	GATTTAATTG	6288 AACAAGCTCA
таасастта	GGTAATGAAA	GTCCTGATAA	TATTTATGAG	6250 GTCTTAGAAA	GTGTGGTTGT	TTTTATGTCT	GTATCAGAAA	тасстбатта	63 00 TACATATACA
GAAGGTAAAA	адаталалда	алалтассат	алдатдалда	6350 AAACTATGAT	TGTTGGTATT	ATATTGGGTA	TCATAGGTGG	TTTGTCTCTA	6499 TTTTTAGGAC
CTATAGGTAT	AGCTACATCT	GTTCTTGCAG	ATTTTGCTCT	6458 ATTAGGAGCA	GATGCCGCTA	таласссада	GTTAAATCCA	TCAGACCTAG	6599 CATTCGCTTT
AGCAGGTTTA	TTCTTACCAG	TATTTGCTTC	ТТТАGGAAAA	6550 ACATTTAAAT	HindIII TTGCTGAAGC		ATTAATATTA	аталатстал	6699 AAACTTTGAT
AATTTAAATG	AATTTGAGAA	AATAAGATTT	Bglii TTCAGATCTA	ANTTAGGGAA	AGTTAAGATG	TGTGGCTCTT	AAAGTAATG	GATGACCATT	6799 ATTCTTGTGT
алаттотсал	AATCTACATC	ТТСАТАТТТА	ТGATATTTAA	End P5 6758 ATATATATTT	TTCGTTTTCA	End 1	Hincll GTTGACACAT	ACCTCCTTCT	6899 TTTTTTGCTT
TATTCATCAT	*	ааттсаатас	TACCAGAAGC	6850 TATTGCTATT	CTTATTAAAT	CTATATCTGG	ACTATAATT	TCTAAATCTT	6988 Cagttatatt
саталтаса	таатттаста	ататтосата	TCTTTGGCGT	ClaI GGAAAATCGA	TAAGTAGTT	TTGAACCATA	TATTTATTA	AAGTTTTATA	7 999 Agtgtaaaaa
Stul TAAAAAGGCC	TATAAAGAGA	CACAAAGTTT	даатсатала	7850 TATCATTCAC	TAATAAATTT	AATACTGCTT	тттасасаа	ATCATCTGGA	7100 TAATTCTTTA
TGATGTTTAA	GTACTAAGCT	GAATTTAAAA	AATTAAATTC	7150 AACTGTATTT	ATATTTATAT	CTAAATAAGG	TTTATAAGAT	ACCATATTAT	7200 Agtacacact
TTTATCTACA	GAAACACAAT	CANTAGGACC	AAATTCTGTA	7250 TTTTGACTAT	AATCTATATA	TGTATATAAC	АТАТСАТСТА	TAATTTGTTC	7300 TATATTACTT
TGTTTAGAAG	TATAATTATA	TTTAAAAAAAT	ATTTCTAAAG	7350 TTGTGTCTTT	ATTCCTGAGT	ATAGTTTCAG	GAAGTAAATA	TTTGTCTTTT	7400 TCTACTTTTT
CTAAAATATT	TTTATTTCA	TGTATTTAT	AATTATATAT	7450	Bg1	II ATCTTCTATT		GATAATCTAA	7500
TGTACATATT	TTATCACATT	TATCACAAAC	ATCATCCCAA	7550	CACATATTOT	TTALALACT	******	TAGGATCTTT	7600 TTCTAATAAA
TATATACANG	TTTCTTLACT	ACCALCATTA	CONTROCERS	7650	CLARATE		CACAAACCET	GTTACTCATA	7760
CAGATATACT	XmnI		1777711100	7750	10000	C111177171	107177007	APPCCTATAC	7800
CREATING		LANCORCERCE		7850					7900
GARAGATTAT	TATCTANT			7950	ANTITUATA	TACTORATES	TATCTAATAA	CATTATCTC	PstI
ACTACTOCCA	GAGAGGAGM	Start P5	********	Strat P4	AAAACAAMAM	GANANACIO	GAGAGAGTA	ATTAGTATA	8166 CARACATTTT
	CAGAGONG IT	X	bal	8154		UNANAAAUAU	SHORONOIAN	ALINGINIAN	8299
TTAATAGTAT	талаластта	GACATAAACT	CTAGAGAGTA	TATGGAACTT 8254	GTATATAACA	AAATAGCAGG	TATTTCCAAT	даладалата	AATTTGAAAA 8300
TATATATAAA	GATGGAGATT	статаастса	AGTTGTAGAA	AGAGCTĞŤĂĂ 8354	СССАЛАЛСАЛ	ACTTACATT	GGATTAAACG	GTAAAGGATT	ATATGTŤČČĂ 8444
GAAAACGGAG	AACCCCGACT	AAAAGGTTAT	GCTTCTATTA	TAGAAAĞĂĂŤ 8454	AACTCTGGAT	TTAATGGAAA	TATATTCTAT	TAAAGGACTT	AATGATĂŤĂČ 85 <i>84</i>
CTAGAGATAT	аллатттаат	атссалалал	таадасаада	AAGATACAAC	САЛАТБАЛАБ	AAGCTCTAAA	TAGTGTTGAA	GGTTATAAAG	GAAAAAŤŤĠŤ

AGCCTCAGAC	TCAGATTGGT	GTTTCAAAGA	TCCTCAAGGC	855# AATAGAATAA	CAGATTTTGA	TAGTATTAAT	AAAGAATTAG	GTCTTGGTAG	8600 AAGAGATGTA
AAATTAGATA	AAGGTCATGA	TGATTTAATT	AAATTATGTA	8650 CTGAAAAAAT	AGATAGTATG	AATGGTCTAC	AGAATGGAAA	ATGTGTATAA	8700 TAAAATGACT
татадатсаа	AAGTGTAAAA	ТАБАСТТААА	***	8758 ATAGACTTGT	TATACAGAGT	TGATATAAAA	СТБАЛАЛАЛА	End P4	8800 ATATAAAAAC
алалаласад	AAAAAAATGG	AGACGTACTA	ATCTTCCAAT	8850 AATCTCACTT	TTAGTACTCT	CCCCTATGTT	ATGTGT		

Fig. 3 Nucleotide sequence of the entire pGKL1. The cleavage sites for restriction endonucleases, 202 bp of the ITR (large boxes), and the location of start and end of five open reading frames (small boxes and arrows) are indicated.

The ITR of both pGKL1 and pGKL2 are AT rich : 76.2% for pGKL1 and 69.8% for pGKL2, and contain many A or T clusters. The clusters more than 4 consecutive A or T stretches are 12 in ITR of pGKL1 and 9 in ITR of pGKL2. No apparent homology was found between the ITR sequences of pGKL1 and pGKL2 by a computer analysis (21).

(a)

AAGGTATATA	таталалат	AAAGTTGGGT	TTTTAAGCTA	50 ATAAAAGTTG	AAATCAGGTC	алалалаас	AACCCAAAGT	ATGTTTTACG	100 TGTTTTTA
TGTTTAGGTC	Xho I ATATCTCGAG	TACGCCCTTT	HDAII TTCGCCGGAG	150 TCAATTAGGT	CATACTTTC	TATATAATCC	алатсссала	ANATCAGTTA	200 TAGTAGCATA
CAGTGTTAAA	TGTATATTA	ATGTTACATA	****	TTGTTTTAAT	CCI GTCTACTGAT	TTGAGTAATC	TATACTCATT	TCTCTGTGTT	TTGTTCATAT
GTGCCCAGCA	TATATGGTTG	TAACAAGCTG	CTACGGTACA	TTTACCTTTA	CTAGCTGTTT	CTTTAGTACA	TTGTTTATTC	AATGGAATTT	400 TTGGAGCATT
TCTCTTTTTC	TTTGGTTTTT	CTTCCTTTAA	TTTTTCAACA	458 ATATAATCTT	тсттатстат	ATCTAATTCT	TCAATTTTCT	TTATTATTC	500 TTTTAAATAA
TCTTTTTGA	TCGCGGTTAT	GAGTTTTTCT	GCCTGTTTAT	550 TAGCCATTTT	ACATGTCTAT	GAGCTTATCA	тататтста	CATTTTTCTG	ATATTTGAAA
GTTATTAATC	TTTTGTTC	Bglii TATAGATCTT	сстататата	658 GGTCATCAGT	ATATGGCCAA	GTAATAATAT	CAGTTCCATT	TTCATTTACT	788 ATTCCTATAT
GTGTTAAATC	CATTATTTT	CCCTTCTTTA	ATCTACCTAA	759 TTTATTATAG	TCATGTATTA	TATGTTTATA	GTTCCATGGA	ECORI AGAGTAGGAA	TTC
(b)									
(9)									
алалсстата	-	ATAAAGTTGG	GTTTTTAAGC	50 Тааталааст	TGAAATCAGG	тсалалала	GCAACCCAAA	GTATGTTTA	CGTGTTTTTT
TATGTTTAGG	XhoI TCATATCTCG	AGTACGCCCT	Hpall TTTTCGCCGG	150 AGTCAATTAG	GTCATACTTT	тстататаат	CCANATCCCA	AAAAFCAATT	299 GAATGATTCT
			01	1					244
TAATATGATT	TAATAGTTTA	тсаттатала	TGTCTTATĂŤ	CGATTATTA	GCTTATACTG	GAAATACTAC	ATTTTATGAT	AGGTTTGATG	GAGATTTÄÄČ
TAGTGAACAT	адаатаалат	GTATAATTAA	TGGATGTCTT	35Ø	TGTTCTCTAT	TAGAACTATT	AAGGAATTTC	Садаадааат	TAAAATATGT
CAGGCTGCTG	TTTCAAAGTT	TCTTACCTGT	GGCTATGTAA	ATGATTATTT	латадалала	TACCCTCCAT	тстатттатс	GCATAAAAGA	599 TTTTGTGATT
ATGATATTA	СААААТСТТА	ATGGAGAAAC	ATCCCARATT	550 AAATTATACT	GTTGCTAAAG	CTGCAATAAT	GCAACGTTAT	AATGATTTAT	ATTTTTCTTT
TGATTTTCAG	CCAGAGGAGG	*	GACTGCAGCA	CTTACTGAAA	атасадалат	ATACGAAGAC	салатталта	лассдалала	799 GTTAGGTTAT
				76.4	¥	•			0.00
TGTTACTCTT	ATTTAGATTA	TGATAATTAT	TGTATTAAGG	AAGAACCAGG	TATAGAAGAA	ATTCCTGATA	тадаасстаа	ATTTAATCCA	TTTTATGTTT
ATGTAGAATC	AGGTTCTAAA	ATGGAAGATG	TCGAATACGC	TGTTGTAAAT	CTGGTAGAAG	PRI AATTCAAGTA	TTTACAGATG	GTTTATGATA	988 TGAGTAAGAT
TTAAGTCTGT	тттататстт	ттатталатс	TTTAGTTATT	950 ACATTAACTA	GTTTTCTCCC	таттатстсс	алтт татаас	CTATAGTATT	1999 ATCTGGACTT
тссатталат	аттталаттс	GTTTAAAGAT	ласататаат	1959 TAGGTACACC	TTTACAATGT	AATTTTGTTA	TCAATTTATT	TTTGTTATTT	1199 AAATATTCGA
ATGCATACAT	TTTTGCTCCT	сстататаса	TTTTGCTTAT	1150 TATAGCATTC	TTAGTATCGT	CTATTGTACT	ATCTAATTGT	CCTAATTCGC	1200 TACCACATTT
ACTCTTGAAT	AATTCCCAAT	CTACACTTT	TTGTTTĂĂCĂ	1250 AAAATACTAT	CTGTGTCTGA	ATATATTATG	TCANTATTT	CGAATTGCTT	1300 ACATAATTA
TATAATCTAT	Xba I ATCTAGA								

Fig. 4 Nucleotide sequence of the terminal regions of pGKL2. The restriction enzyme cleavage sites and the ITR sequence regions are indicated. (a) The left terminal of pGKL2. (b) The right terminal of pGKL2.

0 1000	2000	3000	4000	5000 (6000 J	7000	• • • • • • • •	
Puik-	1.44-	- Seri	- EcoRt		Ĩ		- Anni - Xmmi - Pari	

Fig. 5 Translation stop codons in pGKLl. The positions of trinucleotide sequences (TAA, TAG, and TGA) are marked in 6 different frames. Arrows show the direction of translation.

Sequence organization in pGKL1

The killer toxin and the resistance or immunity to the killer is coded by pGKL1, while pGKL2 is required for the maintenance of pGKL1 in a cell (2, 3, 4). Two deletion mutants of pGKL1 which affect the killer phenotype have been obtained in our laboratory, and their restriction enzyme maps are shown in Fig. 1. Deletion mutant pGKL1S is defective in killer secretion, but retains resistance to the killer (2), while F2 has lost not only the ability to secrete killer but also the resistance to the killer (4). Details of deletion mapping of pGKL1S, F2 and its tail-to-tail dimer, F1 (4), will be described elsewhere. These deletion mapping data indicate that a structural gene for the killer and the resistance gene locates at its middle and the right portion of pGKL1, respectively, shown in Fig. 1.

In order to analyze the gene organization in pGKL1, the entire nucleotide sequence of pGKL1 was determined by the use of the cloned DNA fragments of pGKL1 (Fig. 3). The number of total nucleotides of pGKL1 was 8876 bp and its A + T content was 73.2% which is consistent with the low buoyant density of pGKL1 DNA (1).

When we analyzed the termination codons (TAA, TAG TGA) of translation in 6 different frames, five open reading frames (Pl to P5) being able to code for proteins with more than 100 amino acids were found in pGKLl (Fig. 5, Table 1). All of these open reading frames were terminated with TAA codon. Since we could not find in pGKLl the consensus sequence for splicing in yeast (TACTAAC) (22), these regions may be translated independently if they are transcribed.

Among the five open reading frames, only P3 overlapped with both of the sequences deleted in pGKLlS and F2 defective in killer secretion. Especially, a 2.7 kb deletion of pGKLlS located entirely inside

	Nucleotide No.	A + T (%)	No.of Amino Acids	Molecular Weight
Pl	213-1973	75.0	586	68579
P2	2048-3202	72.4	384	45042
P3	3232-6672	70.3	1146	128720
Р4	7941-8690	72.7	249	28709
P5	7929-6643	77.5	428	50873

TABLE 1 : The open reding frames and the characteristics of the predicted proteins from them in pGKL1

The open reading frames in pGKLl were analyzed in six different frames. The results revealed that 5 protein coding regions (Pl-P5) were expected in pGKLl. The number of amino acids and the molecular weight of each possible protein were calculated by computer analysis using MRC program (42). It was assumed that the protein is translated from the first ATG codon of each reading frame.

of P3. The location of ATG initiation codons within P3 indicate that P3 can code for a polypeptide with the maximum number of amino acid residues of 1146 (Table 1). These results suggest that P3 codes for killer toxin polypeptide(s).

In order to examine whether the P3 region of pGKLl is actually expressed in yeast cells, we analyzed RNA transcripts by Northern blotting. A 2.6 kb <u>EcoRI-Hind</u>III fragment of pGKLl (from 3973 to 6561) covering most of the P3 (Fig. 2a) hybridized to a poly A^+ mRNA from <u>S. cerevisiae</u> F102-2 carring pGKL plasmids (Fig. 6, lanes 7-9), which migrated to the same position as 25S rRNA (3360 \pm 80 bases; 23). We could not detect any hybridization of the same probe neither to total and poly A^- RNA from the same strain (Fig. 6, lanes 1-6), nor to poly A^+ mRNA from <u>S. cerevisiae</u> AH22 lacking pGKL plasmids (data not shown). A 660 bp <u>DdeI</u> fragment located adjacent to the left side of the <u>EcoRI</u> site (from 3307 to 3971) also hybridized to a <u>S</u>. <u>cerevisiae</u> F102-2 poly A^+ mRNA with the same electrophoretic mobility as 25S rRNA (data not shown). These results indicate that almost the entire region of P3 is actually transcribed into a mRNA of about 3.4 kb in S. cerevisiae F102-2.

DISCUSSION

After treatment of the pGKL plasmids with alkali, the four fragments of the plasmid DNAs containing the each terminal were cloned.

Fig. 6 Northern blott analysis of mRNA transcribed from the P3 portion of pGKL1. Total RNA, poly A⁻ RNA and poly A⁺ RNA fractions from <u>S. cerevisiae</u> FlØ2-2 carring pGKL plasmids were analyzed by Northern blotting with 2.6 kb <u>EcoRI-HindIII</u> fragment of pGKL1 as a ³²P-probe. The position of 25S and 18S rRNAs are indicated by thin arrows, and the position of RNA hybridized with the probe is indicated by thick arrow. The amount of RNA applied to each lane are, 1: 5 µg, 2: 10 µg, 3: 20 µg, 4: 5 µg, 5: 10 µg, 6: 20 µg, 7: 2 µg, 8: 4 µg, 9: 8 µg.

Since the treatment of the plasmid DNAs with \emptyset .lM NaOH at 37°C for 30 min does not probably affect polynucleotide linkages, one can assume that the termini of the pGKL plasmid DNAs are blunt ends, and is associated with alkali labile material(s) at their 5' ends.

Some of the linear DNA species other than chromosomes have been found and characterized for their terminal structures in order to understand the mechanisms of DNA replication. There are two major types of linear DNA species. The first type posseses the terminal protein at 5' ends of DNA like adenovirus DNA (24), phages &29, &15, M2Y, and N_f from <u>Bacillus subtilis</u> (19, 20, 25) and the linear plasmids from <u>Streptomyces rochei</u> (pSLA1 and pSLA2) (10). All these DNAs have been characterized to carry ITR sequences. The second type has a hairpin structure, like rDNA of <u>Tetrahymena</u> (26, 27) that contains 20-70 repeats of the hexanucleotide CCCCAA at or near the DNA terminus. Similar structures have been found in rDNA molecule of <u>Physarum</u> in which the repeating unit is CCCTA (28). The telomeres of <u>S. cerevi-</u> <u>siae</u> chromosomes seem to be similar in structure to rDNA of <u>Tetrahy-</u> <u>mena</u> (20, 30).

The nucleotide sequences of pGKL1 and pGKL2 clearly revealed that these plasmid DNAs have the ITR sequences. These structures are very similar to the termini of adenovirus DNAs where 102 to 162 bp of the ITR sequences have been found and the terminal protein is associated at their 5' ends (31-34). The yield of pGKL plasmid DNA was drastically reduced when the cleared lysate from S. cerevisiae F102-2 was extracted with phenol. These observations suggest that some protein is associated to the pGKL plasmid DNAs. Recently, we have detected peptide(s) associated at or near their 5' ends (35). This indicates that the DNA replication in pGKL plasmids might be initiated by a protein priming mechanism as reported for adenovirus DNA. It is, however, noteworthy to point out that the consensus sequences for the initiation origin of DNA replication (ars) in S. cerevisiae (ATTTATATATTTA; 36) are found once (139-149) in the ITR sequences of both pGKL plasmids. Then, it is interesting to test whether the ITR sequences have an activity of the initiation of DNA replication in S. cerevisiae and K. lactis.

In the course of preparation of this paper, Sor <u>et al.</u> (37) reported the sequence of the terminal 227 bp of pGKL1 and pGKL2 determined with the native plasmid DNAs isolated from <u>K. lactis</u>. Since 5' ends of the plasmid DNAs are not labeled by kination, they deduced their sequence of 5' terminus from that of the opposite strands. Their sequences, however, were identical to our results, but they suggested that 5' ends of the plasmid DNAs might be protruding. We do not know the reason why their prediction is different from ours, and it may be explained by the difference of origins of plasmid DNAs analyzed. In our case, the pGKL plasmids were prepared from <u>S. cerevisiae</u> Fl02-2 which is a fusant between <u>K. lactis</u> 2105-1D and <u>S. cerevisiae</u> AH22.

The right end of pGKL2 begins with AAAAGG, whereas the left terminus begins with AAGG in pGKF202 and AAAGG in pGKF219. The difference in the number of A-T base pairs might reflect the state of this plasmid DNA in <u>S. cerevisiae</u>, or come from an artifact during cloning in <u>E. coli</u>. Since Sor et al. (37) reported that the both termini of pGKL2 begin with AAAAGG, it might be possible that the terminal structure of the pGKL plasmids are not exactly identical in

 Imipyipicilise
 199

 Imipyipicilise
 199

 KDNILPIMENEVKNYGIPKTUYLEYDGGGDPMKSPGIILDTTSRDTVVKAAKLWSQGKKLNSYEGSKNYQATACYLSYAYRKPIVNDNPVGTCDYPTLES
 299

 GKTPADQSGINGESLQGYNPNLDPSKLSAGOPICKTIGNPPMPKPSKNSDGSCKTYKVSSGESCSSIAVKYYPLSLNDIENYNKGNYWKGCSSLQKDYN
 399

 LCVSDGSAPEPVSNPIAECGPLAPGEKYNAKCPLNACCSEFGFCGLTKDYCDKKSSTTGAPGTDGCFSNCGYGSTSNVKSSTFKRIAYHLDAKDKLAMDP
 499

 KNIPNGPYDILHYAFVNINSDPSIDDSAPSKSAPLKVTSSKKIPSFGWDPSTSPSTYTIPRNAVKTDQNRNTFANNLINFNNKYNLDGIDLDWEYPGAP
 599

 DIPDIPADDSSSGSNYLTFLKLLKGKMPSGKTLSIAIPSSTWYLKNPPISDIQNTVDYNYMTYDIHGIWGYGKANSYINCHTPRKEIEDAIKMLDKAGV
 699

 KPNKVPGGVANYGRSYKHVNTNCYNYGCGPOREGGNSRDMTNTFGVLSDSSIDIDISSDKKNDRWVDTNTDCIPMKYDGNSVVSWPKSRYDLEDMPKNYG
 796

 PAGTSLWAANYFKHDENKNDEDDNNDDTEDPFDEENVYFDVYDCKNKAGYDLDNPVYGCRLETAINIIIWNGTESVNTVLNILNDYNYIKYEALTRAH
 896

 YDSVMEKYKKWLFEEDGYYTYTDVDGDDIITPPDKKKRDYIQEKYSPEKEPMNSQNHTELTEIKVNKTINFMLNGTSLAVKEVNNEKVLYKRGDIPP
 996

 GSNNRLIRNSIILDKDKRAAIASPKQYSGIELSKDSFVOROKDKKFDLNGKHYTPMH<u>STILWAIVLPPNVLTN</u>DSDYIHHISDLIEQAHNSLGNESPDN
 1969

 IYEVLESVVVPHSVSEIADYTYTEGKKIKKKKK<u>KFHIVGIILGIIGGLSLFLGPIGIATSVLN</u>DPALLGADAINGEL<u>NPSDEAFALAGLPEPVFAS</u>
 1196

Fig. 7. Amino acid sequence of a polypeptide which can be coded by P3. The amino acid sequence starting from the first ATG codon is deduced from the DNA sequence. The location of hydrophobic segments which is longer than 17 amino acid residues, with more than 65% hydrophobic amino acids and without charged amino acids are indicated by boxes. Underlined sequences represent the potential sites for Asnlinked glycosylation.

these two host cells.

At least the genes for killer toxin and immunity-determinant reside on pGKL1 (2, 3, 4). The pGKL killer toxin is quite large, and it can be resolved into three protein subunits by SDS-polyacryamide gel electrophoresis (9, Fujimura <u>et al</u>., manuscript in preparation). The largest subunit is a glycoprotein, and its apparent molecular weight varies between 97 and 123 kd depending on conditions of gel electrophoresis. The molecular weight of this subunit decreses about 14 kd upon deglycosylation with endoglycosidase H. The other two subunits are simple proteins with apparent molecular weight of 25 and 24 kd (Fujimura <u>et al</u>., manuscript in preparation). The molecular nature of the immunity-determinant is not known.

When the protein coding capacity of pGKL1 was analysed by searching the termination codons (TAA, TAG, TGA) in 6 different frames, 5 proteins of larger than 100 amino acids were predicted to be coded by pGKL1 (Fig. 6 and Table 1). Several lines of evidence suggest that P3 codes for a precursor protein of at least the glycoprotein subunit of the killer toxin. First, only P3 overlapps with both of the sequences deleted in pGKL1S and F2 defective in killer secretion. Especially, a 2.7 kb deletion of pGKL1S lies inside of P3. Second, almost the entire region of P3 is actually transcribed into a poly A^+ mRNA (Fig. 6). Third, among the five open reading frames, only P3 can code for a protein large enough to account for the polypeptide chain of glycoprotein subunit (Table 1). Fourth, the amino acid sequence of a protein which can be coded by P3 (Fig. 7) shows characteristic features of precursors for exocellular glycoproteins. If we assume that the translation starts from the first ATG codon, the aminoterminal segment of 17 amino acids is highly hydrophobic (Fig. 7) and resembles to signal peptides found in various secretory protein precursors, which directs polypeptides for processing and secretory pathways. It lacks, however, the amino-terminal basic amino acid(s) which is found in many, but not all, signal peptides (38). It is noticed that the pentapeptide sequence ⁷Phe-Leu-Phe-Leu-Leu¹¹ found in this segment is also present in the signal peptide of pre-invertase of S. cerevisiae (39, 40), and pre-invertase signal peptide also lacks amino-terminal basic amino acid (40). The amino acid sequence of a protein coded by P3 also contains seven potential asparagine-linked major glycosylation site sequences (Asn-X-Thr/Ser; Fig. 7).

The size of a putative precursor coded by P3 is considerably larger than the polypeptide chain of glycoprotein subunit, even if the removal of signal peptide is taken into account. In addition to the amino-terminal signal peptide-like sequence, the carboxy-terminal portion of putative precursor contains three hydrophobic segments without charged amino acids (Fig. 7). Two of these segments located closer to carboxy-terminus are especially hydrophobic in terms of their length or hydrophobic amino acid content. We have recently detected a membrane-bound protein larger than the glycoprotein subunit which was immunologically cross-reactive with anti-killer toxin antiserum in S. cerevisiae F102-2. This membrane protein was absent in killer-minus cells. Furthermore, the size of this membrane protein decreased about 12 kd when cells were labeled in the presence of tunicamycin which inhibited the secretion of killer toxin (Fujimura, et al., manuscript in preparation). It seems likely that the secretion of glycoprotein subunit of pGKL killer toxin into the culture medium involves the proteolytic cleavage of membrane-bound larger precursor. Such a proteolytic cleavage of membrane-bound precursor has been shown to occur in the secretion of 9.5 and 9.0 kd killer toxin coded by S. cerevisiae M1-dsRNA plasmid (5, 8) and secretory component (SC) of human epithelial cells (41). Substantiation of this model, however, requires the determination of amino-terminal sequence

of the glycoprotein subunit and the comparison of peptide maps of the glycoprotein subunit, the membrane-bound precursor and the <u>in vitro</u> translation product of mRNA transcribed from pGKL1.

The open reading frames P4 or P5 could be the immunity-determinant since the deletion mutant F2 lacking about 5 kb of the right side of pGKL1 (Fig. 1) does not afford resistance to the killer.

ACKNOWLEDGEMENT

We are grateful to Drs. M. Kageyama and Y. Kikuchi for discussion and critical reading of the manuscript, to S. Ohtsuka for the computer analysis of the nucleotide sequence, and to T. Mukohara for help in the preparation of the manuscript.

*To whom correspondence should be addressed

⁺Present address: Laboratory of Biochemistry, Faculty of Agriculture, Nagoya University, Chikusa-ku, Nagoya 464, Japan

REFERENCES

- Gunge, N., Tamaru, A., Ozawa, F. and Sakaguchi, K. (1981) J. Bacteriol. <u>145</u>, 382-390.
- Niwa, O., Sakaguchi, K. and Gunge, N. (1981) J. Bacteriol. <u>148</u>, 988-990.
- 3. Gunge, N. and Sakaguchi, K. (1981) J. Bacteriol. 147, 155-160.
- 4. Gunge, N., Murata, K. and Sakaguchi, K. (1982) J. Bacteriol. <u>151</u>, 462-464.
- 5. Tipper, D.J. and Bostian, K.A. (1984) Microbiol. Rev. 48, 125-156.
- 6. de la Peña, P., Barros, F., Gascon, S., Lazo, P.S. and Ramos, S. (1981) J. Biol. Chem. 256, 10420-10425.
- 7. Sugisaki, Y., Gunge, N., Sakaguchi, K., Yamasaki, M. and Tamura, G. (1983) Nature <u>304</u>, 464-466.
- 8. Bostian, K., Bussey, H., Elliot, Q., Burn, V., Smith, A. and Tipper, D.J. (1984) Cell <u>36</u>, 741-751.
- Sugisaki, Y., Gunge, N., Sakaguchi, K., Yamasaki, M. and Tamura, G. (1984) Eur. J. Biochem. <u>141</u>, 241-245.
- 10. Hirochika, H., Nakamura, K. and Sakaguchi, K. (1984) EMBO J. <u>3</u>, 761-766
- 11. Vieira, J. and Messing, J. (1982) Gene 19, 259-268.
- Maxam, A. and Gilbert, W. (1980) In "Methods in Enzymology, Vol. 65", Grossman, L. and Moldave, K. Eds., pp. 499-560, Academic Press, New York.
- 13. Struhl, K and Davis, R.W. (1981) J. Mol. Biol. 152, 535-552.
- 14. McAlister, L. and Finkelstein, D.B. (1980) J. Bacteriol. <u>143</u>, 603-612.
- Finkelstein, D.B., Strausberg, S. and McAlister, L. (1982) J. Biol. Chem. <u>257</u>, 8405-8411.
 Carmichael, G.G. and McMaster, G.K. (1980) In "Methods in Enzymo-
- 16. Carmichael, G.G. and McMaster, G.K. (1980) In "Methods in Enzymology, Vol. 65", Grossman, L. and Moldave, K. Eds., pp. 380-391, Academic Press, New York.
- 17. Alwine, J.C., Kemp, D.J., Parker, B.A., Reiser, J., Renart, J.,

Stark, G.R.	and Wahl, G.	M. (1979)	In Methods	in Enzymology,	Vol.
68", Wu, R.	, Ed., pp. 22	Ø-242, Aca	demic Pres	s, New York.	
Diahu DW	T Dickmann	M Dhad		Dawa D (1077)	-

- 18. Rigby, P.W.J., Dickmann, M., Rhodes, C. and Berg, P. (1977) J. Mol. Biol. 113, 237-251.
- 19. Escarmis, C. and Salas, M. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 1446-1450.
- 20. Salas, M., Mellado, R. P., Vinuela, E., and Sogo, J. M. (1978) J. Mol. Biol. 119, 269-291.
- 21. Korn, L. J., Queen, C. L. and Wegman, M. N. (1977) Proc. Natl. Acad. Sci. U.S.A. 74, 4401-4405. 22. Langford, C. and Gallwitz, D. (1983) Cell 33, 519-527.
- 23. Philippsen, P., Thomas, M., Kramer, R.A. and Davis, R.W. (1978) J. Mol. Biol. 123, 387-404.
- 24. Robinson, I. and Padmanabhan, R. (1980) Biochem. Biophys. Res. Commun. <u>94</u>, 398-405. 25. Yoshikawa, H. and Ito, J. (1981) Proc. Natl. Acad. Sci. U.S.A. <u>78</u>,
- 2596-2600.
- 26. Blackburn, E. H. and Gall, J. G. (1978) J. Mol. Biol. 120, 33-53.
- 27. Yao, M. -C. and Yao, C. -H. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 7436-7439.
- 28. Bergold, P. J., Campbell, G. R., Littau, V. C. and Johnson, E. M. (1983) Cell <u>32</u>, 1287-1299. 29. Murray, A. W. and Szostak, J. W. (1983) Nature <u>305</u> 189-193.
- 30. Szostak, J. W. and Blackburn, E. H. (1982) Cell 29, 245-255.
- 31. Aleström, P., Stenlund, A., Li, P. and Pettersson, U. (1982) Gene 18, 193-197.
- 32. Steenbergh, P. H., Maat, J., Van Ormondt, H. and Sussenbach, J. S. (1977) Nucleic Acids Res. 4, 4371-4389.
- 33. Stillman, B. W., Topp, W. C. and Engler, J. A. (1982) J. Virol. 44, 530-537.
- 34. Tolun, A., Aleström, P. and Pettersson, U. (1979) Cell 17, 705-713.
- 35. Kikuchi, Y., Hirai, K. and Hishinuma, F. (1984) Nucleic Acids Res. 12, 5685-5692.
- 36. Broach, J. R. Li, Y. Y., Feldman, J., Jayaram, M., Abraham, J., Nasmyth, K. A. and Hicks, J. B. (1983) Cold Spring Harb. Symp. Quant. Biol. <u>48</u>, 1165-1173.
- 37. Sor. F., Wesolowski, M. and Fukuhara, H. (1983) Nucleic Acids Res. 11, 5037-5044.
- 38. Inouye, M. and Halegoua, H.O. and Cannon, L.E. (1980) CRC Crit. Rev. Bioche. 7. 339-371.
- 39. Perlman, D., Halvorson, H.O. and Cannon, L.E. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 781-785.
- 40. Carlson, M., Taussing, R., Kustu, S. and Botstein, D. (1983) Mol. Cell. Biol. 3, 439-447.
- 41. Mostov, K.E. and Blobel, G. (1982) J. Biol. Chem. 257, 11816-11821.
- 42. Staden, R. (1977) Nucleic Acids Res. 4, 4037-4051.

Note Added in Proof

During the preparation of this revised manuscript, we noticed that M. J. R. Stark et al. reported the nucleotide sequence of pGKL1 (K1) appeared in Nucleic Acids Res., 12, 6011 (1984). The total number of Kl was determined by them to be 8874 bp which is 2 bp shorter than ours. From the consequence in this 2 bp difference, they deduced that the open reading frames of Pl and P2 were contiguous in one large open reading frame.