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subsample tests of Granger causality within a lag-augmented vector autoregressive frame-
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evolving window algorithm provides the most reliable results, followed by the rolling window
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ity running from money to income during the Volcker period in the 1980s. The forward
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1 Introduction

The question of whether the money supply Granger-causes (Granger, 1969) aggregate nominal

income has been central to many discussions between major macroeconomic schools of thought

over the last fifty years. This debate has also been a source of fascination for applied research

starting with the paper of Sims (1972), which provided empirical evidence of a unidirectional

causal relationship from money to income. Almost half a century after this seminal work and

despite a proliferation of subsequent studies, a general consensus on the money-output question

remains an elusive goal.1

The predominant methodology is the vector autoregressive approach with recent work aug-

menting the traditional VAR with a Markov switching mechanism (Psaradakis, et al. 2005).

Yet even within the same VAR methodology there is the added problem, as noted by Stock and

Watson (1989), that minor procedural differences are inescapably linked to arbitrary choices

imposed by the researcher. Important points of difference include: data frequency (annual,

quarterly, monthly); the treatment of the time-series properties of the data; the order of the

VAR; the choice of monetary aggregate (M0, M1 and M2); the proxy used for economic activity

(GDP, industrial production); and the control variables – the interest rate (Treasury bill rate,

commercial paper rate) and inflation (CPI, WPI, GDP/GNP deflator).

In terms of the details of the construction of the VAR framework within which to conduct the

tests of Granger causality, the literature offers little firm guidance. For the monetary aggregate,

all studies invariably use M1 as one of the aggregates of choice, with the monetary base, M0,

and broad money, M2, also being used. Swanson (1998) breaks with that tradition and includes

Divisia M1 and M2 in the list of monetary aggregates used in the empirical analysis. The choice

of proxies for real economic activity and prices are driven by the sampling frequency of the data:

when the data are quarterly GDP or GNP and the associated deflator are used; when monthly

industrial production data is used a price index is usually preferred. In terms of interest rates,

replacing the Treasury Bill rate with a commercial paper rate or even an interest rate spread

1In this literature, causal relationships are defined as in Granger (1969), focusing on short term predictability.
Subsequent developments have also considered long-horizon causality (Lütkepohl, 1993; Dufour and Renault, 1998;
Dufour et al., 2006), which can arise from indirect links in a multivariate system. Long-horizon perspectives are
of interest but have not received as much attention in the literature. Importantly for the present paper, long-run
causal links are investigated under the maintained assumption that causal structure remains largely unchanged
over the sample period, a condition that is at odds with the central thrust of the current research where causal
links may change during the sample period. The long-run notion of causality is therefore not pursued here.
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does not seem to yield any conclusive results.

Likewise, there is little consensus on the number of variables to include in the VAR. Chris-

tiano and Ljungqvist (1988) and Psaradakis, et al. (2005) report significant Granger-causality

using bivariate money-income specifications. But the majority of empirical applications use a

four-variable VAR that includes money, income, interest rates and prices. Friedman and Kuttner

(1993) and Swanson (1998) also use a five variable VAR specification that includes two interest

rates (the Treasury Bill rate and commercial paper rate), but there is no conclusive evidence that

this model is superior to the more traditional four variable specification. In addition, the early

literature (Thornton and Batten, 1985) found that tests for Granger causality were extremely

sensitive to lag-length selection and advocated a thorough search of the lag space. This advice

has been largely ignored in the subsequent literature with many studies arbitrarily fixing the

number of lags at 6 or 12, Swanson (1998) being a notable exception where lag length choice is

based on information criteria.

One recurring theme in the literature is subsample instability in the money-income rela-

tionship during the decade of the 1980s. Stock and Watson (1989) find that money has less

predictive power for output for the sample period excluding data from the 1980s. By contrast,

Friedman and Kuttner (1993) conclude that including data from the 1980s sharply weakens the

significance of any relationship between money (however defined) and nominal output or between

money and either real output or prices separately. Thoma (1994) shows that money Granger

causes output only in the period of 1982-1987. Swanson (1998) finds that it is almost always

present between 1960 and 1994. More recently Psaradakis, Ravn, and Sola (2005) conclude that

money causes output in the first half of the 1980s but does not cause output in the second half

of 1980s. They also find that money growth has more predictive power for output growth during

recessions than during expansions.

Another important methodological issue to be resolved in developing a suitable testing frame-

work is the role of trends, both deterministic and stochastic, in the analysis. Benanke (1986)

observes that detrending data with deterministic trends enhances the explanatory power of

money in output autoregressions. Writing around the same time, Eichenbaum and Singleton

(1986) conclude that specifications using log-differenced data result in a small role for money in

explaining output fluctuations. Sims (1987) argues that evidence of deterministic trends may

be symptomatic of misspecification, which is ignored when the trends are removed. Similarly,

Christiano and Ljungqvist (1988) suggest that differencing may also lead to specification error.
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Stock and Watson (1989) advocate a careful methodological treatment of unit root behavior

and time trends in the data. Their evidence suggests that output (industrial production), the

money supply (M1), wholesale prices, and the 90-day Treasury-bill interest rate are characterised

by independent unit roots, suggesting that previous inference using data expressed in levels may

be inaccurate. They further conclude that the growth rate of the money stock contains a

significant deterministic trend which should be removed (by quadratic detrending) in order to

allow reliable inference on potential Granger-causality from money to income. But this approach

has not been universally followed in the subsequent literature, more recent studies adopting a

variety of specifications that include data in levels (Thoma, 1994), levels plus detrending (Hafer

and Kutan, 1997), levels within a cointegrated VECM framework (Swanson, 1998) and first-

differenced data (Psaradakis, et al., 2005).

The often contradictory and sometimes confusing evidence does provide at least two general

lessons. First, econometric methods that do not require choices of detrending or differencing to

be made at the outset are potentially preferable to those that do. Second, causal relationships

do change over time and links between money and output can be very sensitive to the sample

period. Consequently, the approach taken in this paper is to utilize robust econometric methods

that do not require choices of detrending or differencing to be made at the outset and which

also explicitly allow for unknown change points in the causal relationships. The ultimate goal

is to develop a testing procedure which allows for endogenously determined change points in

any causal relation while at the same time treating trends, both deterministic and stochastic, in

a way that does not require pretesting or prior removal of trend components, and to allow for

potential heteroskedasticity in the testing process, an aspect which has largely been ignored in

the existing literature.

One approach that might be expected to handle trends in causal testing would be to use

reduced rank or VECM regression. Unfortunately, pre-testing for cointegrating rank inevitably

produces size distortions and Granger causality tests suffers from nuisance parameter depen-

dencies and nonstandard limit theory (Toda and Phillips, 1994). Alternative procedures that

are applicable with such data are the fully modified VAR approach (Phillips, 1995) and the

lag-augmented VAR (LA-VAR) approach (Dolado and Lütkepohl, 1996; Toda and Yamamoto,

1995). The Wald test statistics for both procedures follow standard chi-squared distribution.

Yamada and Toda (1998) show that the LA-VAR test outperforms the fully modified VAR and

the VECM approaches in terms of size stability, although fully modified VAR and VECM pro-
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cedures generally have higher power than the LA-VAR test. In view of its superior size control

properties, the LA-VAR approach is used in the causality tests proposed in the present paper.

This method is specifically designed to be robust to the integration and cointegration proper-

ties of the time series used in the regressions and can therefore be applied without detailed or

accurate prior knowledge of the presence (or absence) of unit roots.

Existing methods for dealing effectively with non-stability in causal relationships include

the forward expanding window causality test (Thoma, 1994), the rolling window causality test

(Swanson, 1998, Balcilar, Ozdemir, and Arslanturk, 2010, Arora and Shi, 2016, among oth-

ers). While the forward and rolling window methods have been applied in empirical work, the

asymptotic, finite sample, and relative performance properties of the these methods are rela-

tively unexplored. In addition to exploring the asymptotic and finite-sample performance of

these tests, this paper contributes a new time-varying Granger causality test based on a recur-

sive evolving windowing procedure. The recursive evolving window approach was proposed in

Phillips, Shi, and Yu (2015a, 2015b) for monitoring financial bubbles and is adapted here to

detect Granger causality and possible changes in causal direction. The asymptotic properties of

this test are developed and the performance of the LA-VAR based forward, rolling and recursive

evolving approaches are examined and benchmarked in a simulation study. Since recursive test-

ing methods all involve multiple testing, bootstrap methods are used to control the empirical

size in their implementation.2

The empirical work in this paper focuses on the United States and ignores potential between-

country differences.3 In the present study, a traditional four variable VAR is chosen with M1 as

the monetary aggregate and information criteria are used to aid the selection of lag length.

2Time-varying Granger causality tests are closely linked to the literature on instability tests for subsets of
model parameters. These includes the Markov-switching Granger causality test of Psaradakis et al. (2005) and
several tests proposed by Rossi (2005). See Rossi (2013) for a review. These methods are not implemented
here because they are mainly ex-post testing procedures that are known to have difficulty in identifying breaks
occurring at the end of the relevant sample. The focus instead is on tests that can be implemented in a real-time
manner.

3The non-United States studies by, for example, Williams, Goodhart and Gowland (1976) and Mills and
Wood (1978) (United Kingdom), Barth and Bennett 1974 (Canada), Komura (1982) (Japan) and Kamas and
Joyce (1993) (India and Mexico) and the multi-country study by Krol and Ohanian (1990) (United Kingdom,
West Germany, Canada and Japan) are all illustrative of the broad appeal of this problem. Of course, country
differences are to be expected given the vastly differing institutional and policy settings.
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2 Time-varying Granger causality tests

In order to conduct a Granger causality test for a possibly integrated variable, Toda and Ya-

mamoto (1995) and Dolado and Lütkepohl (1996) suggest estimating a lag-augmented VAR

model. As an illustration, consider the bivariate case (y1t and y2t) with a maximum order of

integration d. The lag-augmented VAR model is

y1t = α10 + α11t+

k+d∑
i=1

β1iy1t−i +

k+d∑
i=1

δ1iy2t−i + ε1t,

y2t = α20 + α21t+
k+d∑
i=1

β2iy1t−i +
k+d∑
i=1

δ2iy2t−i + ε2t,

where t is a time trend, k is the lag order of the original VAR model, and εit are the error

terms. The additional d lags in the VAR augment the system for the possible maximum order of

integration of the variables. The non-causality from y2t to y1t (denoted by y2t 9GC y1t) refers

to the situation that the predictions of y1t conditional on its own history cannot be improved

by incorporating the past k lags of y2t in the model. The null hypothesis of y2t 9GC y1t is

H0 : δ11 = · · · = δ1k = 0.

More generally, for a n-dimensional vector yt, the lag-augmented VAR model is

yt = γ0 + γ1t+
k∑
i=1

Jiyt−i +
k+d∑
j=k+1

Jjyt−j + εt, (1)

where Jk+1 = · · · = Jk+d = 0 and d is the maximum order of integration in variable yt. The

regression equation may be rewritten as

yt = Γτt + Φxt + Ψzt + εt, (2)

where Γ = (γ0, γ1)n×(q+1) , τt = (1, t)′2×1, xt =
(
y′t−1, ..., y

′
t−k
)′
nk×1 , zt =

(
y′t−k−1, ..., y

′
t−k−d

)′
nd×1,

Φ = (J1, ..., Jk)n×nk, and Ψ = (Jk+1, ..., Jk+d)n×nd. The null hypothesis of Granger non-causality

is given by the restrictions

H0 : Rφ = 0 (3)

on the parameter φ = vec(Φ) using row vectorization, and R is a m×n2k matrix. The coefficient
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matrix Ψ of the final d lagged vectors is ignored as its elements are taken to be zero.

The expression in (1) may be written in a more compact form as

Y = τΓ′ +XΦ′ + ZΨ′ + ε

where Y = (y1, y2..., yT )′T×n , τ = (τ1, ..., τT )′T×2 , X = (x1, ..., xT )′T×nk , Z = (z1, ..., zT )′T×nd,

and ε = (ε1, · · · , εT )′T×n. Let Qτ = IT − τ (τ ′τ)−1 τ ′ and Q = Qτ −QτZ (Z ′QτZ)−1 Z ′Qτ . The

OLS estimator is

Φ̂ = Y ′QX
(
X ′QX

)−1
.

The standard Wald statistic W to test the hypothesis H0 is

W =
(
Rφ̂
)′ [

R
{

Σ̂ε ⊗
(
X ′QX

)−1}
R′
]−1

Rφ̂, (4)

where φ̂ = vec(Φ̂), Σ̂ε = 1
T ε̂
′ε̂, and ⊗ is the Kronecker product. Toda and Yamamoto (1995)

and Dolado and Lütkepohl (1996) show that this Wald statistic has the usual χ2
m asymptotic

null distribution with m being the number of restrictions.

The recursive Granger causality tests calculate Wald statistics from subsamples of the data.

Suppose f1 and f2 are the (fractional) starting and ending points of the regression sample and

fw = f2 − f1. The Wald statistic (based on the lag-augmented VAR) calculated from this

subsample is denoted by Wf2
f1

. Let τ1 = bf1T c, τ2 = bf2T c, τw = bfwT c, where T is the total

number of observations, and τ0 = bf0T c be the minimum number of observations required to

estimate the VAR system. For the forward expanding window procedure4, the starting point τ1

is fixed at the first observation (i.e. τ1 = 1) and the regression window expands from τ0 to T .

This process is equivalent to having τ2 move from τ0 to T .

The regression window size for the rolling procedure is fixed. Here, it is assumed the window

size equals τ0. The start point τ1 moves from the first observation to T − τ0 + 1 and the end

point τ2 = τ1 + τ0−1. Alternatively, one can write τ1 and τ2 of the procedure as τ2 = {τ0, ..., T}
and τ1 = τ2− τ0 + 1. The end point of the regression runs from τ0 to the last observation of the

sample T and the start point follows, keeping a fixed window size τ0.

For the recursive evolving window procedure, like the rolling window procedure, the end

point of the regression τ2 = {τ0, ..., T}. However, the starting point of the regression τ1, instead

4The forward expanding window Granger causality test has been considered in Thoma (1994), but in the
(unaugmented) original VAR model for systems containing integrated variables.
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of keeping a fixed distance with τ2 as in the rolling window procedure, varies from 1 to τ2−τ0+1

(covering all possible values). For each observation of interest f , one obtain a sequence of Wald

statistics {Wf1,f2}
f1∈[0,f2−f0]
f2=f

. The test statistic is defined to be the supremum of the Wald

statistic sequence

SWf (f0) = sup
f2=f,f1∈[0,f2−f0]

{Wf1,f2} .

Inference on Granger non-causality for observation bfT c is based on the sup Wald statistic

SWf (f0).

3 Limiting distributions

In this subsection, the limiting distributions for the Wald and sup Wald statistics are derived

under the assumptions that the process {yt} is I(1) or I(2) around a linear trend. Those as-

sumptions are sufficient but not necessary.

Let an n-vector time series {yt}∞t=−k+1 be generated by the following model

yt = β0 + β1t+ ηt (5)

with ηt following a VAR(k) process

ηt = J1ηt−1 + ...+ Jkηt−k + εt, (6)

where εt is the error term. Substituting ηt = yt − (β0 + β1t) into (5), we have

yt = γ0 + γ1t+ J1yt−1 + ...+ Jkyt−k + εt, (7)

where γi are function of βi and Jh with i = 0, 1 and h = 1, .., k. The equation is initialized at

t = −k + 1, ...0 and the initial values {η−k+1, ...η0} are any random vectors including constant.

Equation (6) can be rewritten as

ηt = J1ηt−1 + ...+ Jkηt−k + Jk+1ηt−k−1 + Jk+2ηt−k−2 + εt (8)

where Jk+1 = Jk+2 = 0. Alternatively, equation (8) can be written in error correction format as

∆ηt = J†1∆ηt−1 + ...+ J†k+1∆ηt−k−1 + Π2ηt−k−2 + εt,
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where J†i =
∑i

h=1 Jh − In (i = 1, . . . , k + 1) and Π2 = −J (1). The conditions for ηt to be I(1)

or I(2) are presented below, which are the same as those in Toda and Yamanoto (1995).

Assumption 1 εt is a iid sequence of n-dimensional random vectors with mean zero and vari-

ance matrix Σε > 0 such that E |εit|2+δ <∞ for some δ > 0.

Assumption 2 |J (z)| = 0 implies |z| > 1 or z = 1, where J (z) = In − J1z − ...− Jk+2z
k+2.

Assumption 3 Π2 = AB′ for some A and B, where A and B are n × r matrices of rank r

(0 < r < n). If Π2 = 0, we say r = 0.

Assumption 4 A′⊥Π1B⊥ is nonsingular, where Π1 = −J† (1) with J† (z) = In − J†1z − · · · −
J†k+1z

k+1, and A⊥ an B⊥ are n × (n− r) matrices of rank n − r such that AA′⊥ = B′B⊥ = 0.

(If r = 0, we take A⊥ = B⊥ = In).

Assumption 2 excludes explosive processes, but allows for the model to have some unit roots.

Assumption 3 defines the cointegration space to be of rank r and B is a matrix whose columns

span this space. Assumption 4 ensures that ∆ηt is stationary with a Wold representation, B′ηt

is stationary. Under assumption 1-4, the process ηt is I(1) and is cointegrated if r > 0 (Theorem

2 of Johansen (1992)).

Furthermore, we can rewrite equation (8) as

∆2ηt = J∗1∆2ηt−1 + ...+ J∗k∆2ηt−k + Π1∆ηt−k−1 + Π2ηt−k−2 + εt, (9)

where J∗i =
∑i

h=1 J
†
h − In (i = 1, ..., k).

Assumption 5 Ā′⊥Π1B̄⊥ = FG′ for some F and G, where Ā⊥ = A⊥ (A′⊥A⊥)−1 and B̄⊥ =

B⊥ (B′⊥B⊥)−1, and F and G are (n− r)× s matrices of rank s (0 < s < n− r). If Π1 = 0, we

say s = 0.

According to Theorem 3 of Johansen (1992), the process ηt is I(2) and is cointegrated unless

r = s = 0, under Assumptions 1-3, 5, and Assumption (2.8) of Johansen (1992), which prevents

ηt from being I(3).
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Theorem 1 Suppose the process {yt} is stationary, I(1) or I(2), possibly around a linear trend

in each case.5 The subsample Wald statistic Wf1,f2 has limit distribution given by

Wf1,f2 ⇒

[
Wm (f2)−Wm (f1)

f
1/2
w

]′ [
Wm (f2)−Wm (f1)

f
1/2
w

]
,

which is a quadratic function of the limit process, Wm (.), a vector standard Brownian motion

with covariance matrix Im where m is the number of restrictions. The sup Wald statistic con-

verges to

SWf (f0)⇒ sup
f1∈[0,f2−f0],f2=f

[
Wm (f2)−Wm (f1)

f
1/2
w

]′ [
Wm (f2)−Wm (f1)

f
1/2
w

]

as T →∞.

The proof of the Theorem is given in the Online Supplement(Shi, Hurn, and Phillips, 2019).6

4 Dealing with multiplicity in recursive testing

It is well known that the probability of making a Type I error rises with the number of hypotheses

in a test sequence, a phenomenon known as multiplicity. In the current application and for a

data series of sample size T , the recursive test statistics run from bTf0c to T , so the number of

hypotheses tested equals T −bTf0c+1. Furthermore, it is obvious from Theorem 1 that the test

statistics are not independent and hence a simple Bonferroni correction will be too conservative

and hence lead to lower power (Romano and Wolf, 2005). Instead, a bootstrap method to resolve

the multiplicity issue is explored and implemented here in our simulations and empirical work.

This solution is very much in the spirit of the bootstrap reality check of White (2000). The

essence of the idea is as follows. Let τb be the number of observations in the window over which

size is to be controlled. The bootstrap procedure allows the probability of having at least one false

positive detection over the τb period to be 5%. The derivation of the limiting properties of the

bootstrap procedure is not straightforward because it involves integrated variables, subsample

analysis, and family wise size control. These complications are considerable and analysis is left

5We derive the asymptotic distribution of the subsample Wald and the sup Wald statistics under the null
hypothesis with maximum integration order two, as in Toda and Yamamoto (1995).

6The Online Supplement, together with Matlab code and data to implement and to reproduce the results, is
downloadable from https://sites.google.com/site/shupingshi.
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for future work.7

The bootstrap procedure may be described most simply in the context of a bivariate VAR(1)

model for the null hypothesis of no Granger causality from y2 to y1.

Step 1: Estimate a bivariate VAR(1) model which imposes the null hypothesis of no causality

from y2 to y1 such that[
y1t
y2t

]
=

[
φ11 0
φ12 φ22

] [
y1t−1
y2t−1

]
+

[
ε1t
ε2t

]
.

Denote the estimated coefficients by φ̂11, φ̂12, and φ̂22 and the estimated residuals by e1t

and e2t.

Step 2: Let Tb = τ0 + τb − 1 be the sample size of the bootstrapped data series. Generate a

bootstrap sample given by[
yb1t
yb2t

]
=

[
φ̂11 0

φ̂12 φ̂22

] [
yb1t−1
yb2t−1

]
+

[
eb1t
eb2t

]
(10)

where the residuals eb1t (resp. eb2t) are randomly drawn with replacement from the esti-

mated residuals e1t (resp. e2t). The initial values yb11 = y11 and yb21 = y21.

Step 3: Using the bootstrapped series, compute the test statistic sequences for the forward,{
Wb

1,t

}τ0+τb−1
t=τ0

, rolling,
{
Wb
t−τ0+1,t

}τ0+τb−1
t=τ0

, and recursive evolving,
{
SWb

t(τ0)
}τ0+τb−1
t=τ0

, al-

gorithms, respectively. The maximum values of each bootstrapped test statistic sequence

is calculated such that

Forward: Mb
1,t = max

t∈[τ0,τ0+τb−1]

(
Wb

1,t

)
,

Rolling: Mb
t−τ0+1,t = max

t∈[τ0,τ0+τb−1]

(
Wb
t−τ0+1,t

)
,

Recursive: SMb
t(τ0) = max

t∈[τ0,τ0+τb−1]

(
SWb

t(τ0)
)
.

(11)

Step 4: Repeat Steps 2-3 for B = 499 times.

7We note that the methods of the paper rely on lag-augmented VAR regression for which standard limit
theory for the individual coefficient estimates applies. This means that problems of bootstrap inconsistency from
the presence of unit roots in the model do not apply. We therefore believe that it will be possible to establish
bootstrap validity under certain regularity conditions. But the difficulty of analysis is still considerable and is left
for further study.
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Step 5: The critical values of the forward, rolling and recursive evolving approaches are, re-

spectively, the 95% percentiles of the
{
Mb

1,t

}B
b=1

,
{
Mb

t−τ0+1,t(τ0)
}B
b=1

, and
{
SMb

t(τ0)
}B
b=1

sequences.

For practical implementation, one would first select the optimal lag order of the VAR system

using the information criteria and then estimate the restrictive model in Step 1. Similarly, in Step

3, one would estimate the lag order before calculating the test statistics. The next subsection

investigates the performance of the forward expanding, rolling and recursive evolving causality

tests with the bootstrapped critical values under the DGP (12) with different parameter settings

for Cases 2-4. The calculation is repeated 1, 000 times for every parameter constellation. The

lag length p is fixed at one.

5 Simulation experiments

Consider an n-vector time series {Zt}Tt=−1 generated by a first order VAR model

Zt = ΦstZt−1 + ut, ut
i.i.d∼ N (0,Σu) , (12)

in which Φst is the first-order autoregressive coefficient, and Σu is the covariance matrix of ut.

Now introduce a transformation of the model, which is equivalent to the original, specified as

Z∗t = Φ∗stZ
∗
t−1 + u∗t , u∗t

i.i.d∼ N (0,Σ∗u) , (13)

where Z∗t = P−1Zt, u
∗
t = P−1ut, Φ∗st = P−1ΦstP , Σ∗u = P−1ΣuP

−1′ and P is an n × n block

lower-triangular matrix. Notice that for any combination of Φst and Σu that give the same value

of Φ∗st , the Wald statistics are the same (Toda and Yamamoto, 1995). Let Σu = PP ′. Then

Σ∗u = In. The transformed model (13) gives a standardized version of the VAR model (12).

The simulation is based on a bivariate version of (13) with Z∗t = (y∗1t, y
∗
2t)
′ . For simplicity,

the causal relationship from y∗1t to y∗2t is shut down so that

Φ∗ =

(
φ∗11 φ∗st
0 φ∗22

)
.

Under the null hypothesis of no causality, φ∗st equals zero. Under the alternative hypothesis,

the causation relationship runs from y∗2t to y∗1t for certain periods of the sample. Let st be the

causality indicator which takes the value 1 for the causality periods and is zero otherwise. The
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autoregressive coefficient φ∗st is defined as φ∗st = φ∗12st. The non-explosive conditions for the

system are |φ∗11| ≤ 1 and |φ∗22| ≤ 1. There are four different cases to consider.

Case 1. If both |φ∗11| and |φ∗22| are smaller than unity, the system is stationary. The maximum

lag order is zero and hence the lag augmented VAR is exactly the same as the original VAR

model. This case has been examined in detail in Shi, Phillips, and Hurn (2018), with (φ∗11, φ
∗
22)

equaling (0.5, 0.5) , (0.5, 0.8), (−0.5, 0.8), and (0.5,−0.8).

Case 2. If φ∗11 = 1 and |φ∗22| < 1, we have

∆y∗1t = φ∗sty
∗
2t−1 + u∗1t

y∗2t = φ∗22y
∗
2t−1 + u∗2t

where y∗1t ∼ I (1) and y∗2t ∼ I (0) and hence dmax = 1. In the simulation study, we consider the

following settings of (φ∗11, φ
∗
22): (1, 0.8) , (1,−0.8) . The test statistics are calculated based on a

VAR(2) model.

Case 3. If φ∗22 = 1 and |φ∗11| < 1, we have

∆y∗1t = (φ∗11 − 1) y∗1t−1 + φ∗sty
∗
2t−1 + u∗1t

∆y∗2t = u∗2t.

If φ∗st = 0, y∗1t ∼ I (0) and y∗2t ∼ I (1). If φ∗st 6= 0, y∗1t and y∗2t are cointegrated with a cointegration

vector of
[
φ∗11 − 1, φ∗st

]
. In addition, y∗2t is weakly exogenous for the cointegration parameters.

The value of (φ∗11, φ
∗
22) are set as (0.8, 1) , (−0.8, 1) in the simulation studies. The test statistics

are obtained from a VAR(2) model.

Case 4. If both φ∗11 and φ∗22 are unity, we have a full unit root model, namely

∆y∗1t = φ∗sty
∗
2t−1 + u∗1t

∆y∗2t = u∗2t.

If φ∗st = 0, both y∗1t and y∗2t are I (1). If φ∗st 6= 0, y∗1t is I(2) and y∗2t is I (1). The maximum

integration order dmax equals two. The regression model is VAR(3).

We calculate the sizes (probability of rejecting at least one true null hypothesis) and powers

(probability of rejecting at least one false null hypothesis over the sample period) of the three

13



procedures. The family-wise error rate over the entire sample period is controlled by setting

Tb = T . Table 1 reports the impact of the persistence parameters {φ11, φ22} (top panel), the

minimum window size f0 (middle panel), and the sample size T (bottom panel), respectively,

on the sizes and powers of the three algorithms. Table 2 focuses on the impact of causality

characteristics (causal duration D and the location of the causal episode fe) on the empirical

powers of the tests.

The data generating procedure under the null is (12) with φ∗st = 0. Under the alternative,

the DGP contains a single causality episode from y2t → y1t. Let fe and ff be the origination

and termination dates of causality. The causality indicator st is one for bfeT c ≤ t ≤ bffT c and

zero otherwise. In Table 1, we let causality switch on in the middle of the sample (i.e. fe = 0.5)

and last for 20% of the sample (i.e. ff = 0.7). The causality strength parameter φ12 is either

0.8 or 1.5. In Table 2, we fix the strength of causality such that φ12 = 1.5.

As evident in Table 1, the empirical sizes of all three procedures are very close to the nominal

size of 5%.8 This reveals the effectiveness of the bootstrap procedure in controlling family-wise

size and addressing multiplicity in recursive testing. As for power, it is apparent from the results

(Tables 1 and 2) that the recursive evolving window procedure has the highest power overall,

followed closely by the rolling algorithm. Although the performance of the rolling and recursive

evolving procedures are almost identical in most cases, the power improvement of the recursive

evolving method is quite obvious when the causal strength is moderate φ12 = 0.8 and the sample

size is large (T = 200 and T = 300). The power of the forward approach is far below that of

the rolling and recursive evolving algorithms.

The detective power of the rolling and recursive evolving procedures increases when the

minimum window length rises from 18 to 24 observations but decreases upon further extension

to 36 observations. Unlike these two procedures, the power of the forward algorithm increases

as the initialization f0 becomes larger. The powers of all three methods increase (but at a

decreasing rate) with the sample size T . The additional information in the data as T rises from

100 to 300 delivers more accurate estimates of the model parameters and this accuracy naturally

translates into more accurate tests. As expected, powers of all the tests rise with the strength

of causality. Additionally, from Table 2, powers of the forward and recursive rolling procedures

8Unreported simulations show that with the standard bootstrap critical values (i.e. obtained from
{
Wb

1,t

}499

b=1
,{

Wt(τ0)b
}499

b=1
, and

{
SWt(τ0)b

}499

b=1
), the three algorithms are significantly over-sized. The empirical sizes of the

forward, rolling and recursive evolving algorithms are, respectively, around 15%, 50% and 40% when f0 = 0.24
and T = 100.
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Table 1: The empirical sizes and powers of the testing procedures. The parameter setting under
the alternative is: fe = 0.5 and D = 0.2.

Size Power (φ12 = 0.8) Power (φ12 = 1.5)
Forward Rolling Recursive Forward Rolling Recursive Forward Rolling Recursive

(φ∗11, φ
∗
22): f0 = 0.24 and T = 100

Case 2: d = 1
(1,0.8) 0.06 0.06 0.06 0.22 0.51 0.53 0.51 0.94 0.93
(1,-0.8) 0.05 0.05 0.05 0.23 0.54 0.57 0.53 0.96 0.96
Case 3: d = 1
(0.8,1) 0.06 0.09 0.08 0.17 0.40 0.42 0.32 0.67 0.67
(-0.8,1) 0.05 0.05 0.05 0.17 0.38 0.41 0.33 0.67 0.67
Case 4: d = 2
(1,1) 0.06 0.08 0.08 0.15 0.40 0.41 0.29 0.87 0.87

bTf0c: T = 100
Case 2: d = 1 and (φ∗11, φ

∗
22) = (1, 0.8)

18 0.06 0.07 0.07 0.18 0.39 0.43 0.44 0.87 0.90
24 0.06 0.06 0.06 0.22 0.51 0.53 0.51 0.94 0.93
36 0.05 0.05 0.06 0.28 0.51 0.51 0.57 0.86 0.86
Case 3: d = 1 and (φ∗11, φ

∗
22) = (0.8, 1)

18 0.05 0.09 0.8 0.14 0.39 0.43 0.27 0.85 0.89
24 0.06 0.09 0.08 0.17 0.40 0.42 0.32 0.67 0.67
36 0.06 0.06 0.06 0.22 0.36 0.35 0.39 0.56 0.56
Case 4: d = 2 and (φ∗11, φ

∗
22) = (1, 1)

18 0.07 0.08 0.08 0.11 0.26 0.29 0.18 0.69 0.74
24 0.06 0.08 0.08 0.15 0.40 0.41 0.29 0.87 0.87
36 0.06 0.07 0.07 0.21 0.32 0.33 0.36 0.53 0.53

T : f0 = 0.24
Case 2: d = 1 and (φ∗11, φ

∗
22) = (1, 0.8)

100 0.06 0.06 0.06 0.22 0.51 0.53 0.51 0.94 0.93
200 0.06 0.07 0.08 0.33 0.67 0.81 0.79 1.00 1.00
300 0.05 0.08 0.08 0.55 0.78 0.93 0.95 1.00 1.00
Case 3: d = 1 and (φ∗11, φ

∗
22) = (0.8, 1)

100 0.06 0.09 0.08 0.17 0.40 0.42 0.32 0.67 0.67
200 0.06 0.08 0.07 0.22 0.70 0.80 0.50 1.00 1.00
300 0.04 0.08 0.08 0.35 0.79 0.94 0.70 1.00 1.00
Case 4: d = 2 and (φ∗11, φ

∗
22) = (1, 1)

100 0.06 0.08 0.08 0.15 0.40 0.41 0.29 0.87 0.87
200 0.06 0.08 0.09 0.19 0.56 0.67 0.45 0.99 1.00
300 0.05 0.09 0.09 0.30 0.69 0.85 0.65 1.00 1.00

Note: Calculations are based on 1,000 replications, with the 5% bootstrapped critical values of the

statistics defined in (11).

increases with the duration of the causality episode. Moreover, the empirical powers of all tests

are higher when the causal episode occurs earlier in the sample.
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Table 2: The impact of causal characteristics on empirical powers of the testing procedures. The
causality strength φ∗12 = 1.5, the minimum window f0 = 0.24, and T = 100.

Case 2: (φ∗11, φ
∗
22) = (1, 0.8) Case 3: (φ∗11, φ

∗
22) = (0.8, 1) Case 4: (φ∗11, φ

∗
22) = (1, 1)

Forward Rolling Recursive Forward Rolling Recursive Forward Rolling Recursive
Causality Duration D: fe = 0.5
D = 0.1 0.20 0.34 0.34 0.13 0.21 0.21 0.12 0.18 0.19
D = 0.2 0.51 0.94 0.93 0.32 0.67 0.67 0.29 0.87 0.87
D = 0.3 0.80 1.00 1.00 0.57 1.00 1.00 0.51 0.98 0.99
Causality Location fe: D = 0.2
fe = 0.3 0.67 0.95 0.95 0.44 0.73 0.74 0.42 0.88 0.88
fe = 0.5 0.51 0.94 0.93 0.32 0.67 0.67 0.29 0.87 0.87
fe = 0.7 0.38 0.95 0.95 0.23 0.59 0.60 0.19 0.85 0.85

Note: Calculations are based on 1,000 replications, with the 5% bootstrapped critical values of the

statistics defined in (11).

6 The money-income relationship

The money-income relationship in the United States is examined using a four-variable VAR

model comprising the logarithm of industrial production (ipt), the logarithm of the money

base (denoted by mt), the logarithm of the price index (pt), and the interest rate (it). Money

base is measured as M1 (seasonally adjusted), the interest rate is the secondary market rate

on three-month Treasury bills, and prices are measured by the consumer price index for all

urban consumers (all items, seasonally adjusted). All data are monthly observations for the

period January 1959 to April 2014 (664 observations) and are obtained from the Federal Reserve

Economic Database. The data are plotted in Figure 1.

Figure 1 provides visual evidence that at least three of the series, namely, ipt, mt and pt,

are non-stationary. While the testing procedure based on the LA-VAR does not require pre-

filtering the data series by de-trending or taking differences, it does need information about the

maximum possible order of integration. To find the maximum order of integration of the system,

we conduct augmented Dickey-Fuller (ADF) tests for all data series (Dickey and Fuller, 1979)

with a constant and a linear time trend in the regression equation. In addition, to account for

potential structural breaks in the data series we use the unit root tests of Perron and Vogelsang

(1992) and Clemente, Montanes, and Reyes (1998): each of these tests searches for unknown

structural breaks with either additive outliers (AO) or innovational outliers (IO). The Perron-

Vogelsang test allows for one break, while the Clemente et al. (1998) test allows for two breaks

under both the null hypothesis of a unit root null and alternative hypotheses of stationarity.
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Figure 1: Time series plots of the logarithms of industrial production, money (M1) and price
index, and the interest rate in the United States from January 1959 to April 2014.
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The test statistics and their respective finite sample critical values are displayed in Table 3. Lag

orders of all tests are selected using BIC with maximum lag order of 5. The finite sample critical

values are obtained from Monte Carlo simulation with 5,000 replications.

All data series are found to be I(1) when assuming no structural break (the ADF test) or one

unknown structural break with additive outliers – the AO test of Perron and Vogelsang (1992) –

or two unknown structural breaks with additive outliers – the AO test of Clemente et al. (1998).

When assuming structural break(s) with innovational outliers, pt is found to stationary while it

is stationary only in the case of the IO test with two unknown breaks. The other data series are

found to be I(1). This result implies that the maximum order of integration is I(1). We therefore

include both a constant and a time trend in the regression as in (1) with yt = (ipt,mt, pt, it)
′

and set the lag addition parameter d to unity.

We now investigate the existence of causal relationship from money to income using the

forward, rolling and recursive evolving procedures. The minimum window size is set to be

72 (six-years). The lag length is selected using BIC applied to the whole sample period with a

maximum lag order of 12. The selected lag order is four and applied to all subsample regressions.

We control the overall size over a one-year period to be 5%. In bootstrapping the critical values,

model parameters under the null are estimated using the whole sample period. The sample size

of the bootstrapped data series is Tb = τ0 + 11 and hence the maximum value in (11) is taken

over a sequence of 12 test statistics.

Figure 2 displays the test statistic sequences and their corresponding bootstrapped 5% criti-
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Figure 2: Does money Granger cause income? Tests are obtained from a VAR model (1) with
yt = (ipt,mt, pt, it)

′ and lag augmentation d = 1. The 5% bootstrapped critical values are
obtained from (11) with 499 repetitions and controlled over a one-year period. The sequence
of tests for the forward recursive, rolling window, and recursive evolving procedures run from
November 1964 to April 2014 with 72 observations for the minimum window size. Lag orders
are assumed to be constant and selected using BIC with a maximum length of 12 for the whole
sample period.
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Table 3: Unit Root Tests

ADF Perron and Vogelsang (1992) Clemente et al. (1998)
cst. & trend AO IO AO IO

ipt -1.81 -2.43 -3.21 -3.20 -4.26
mt -0.68 -2.26 -1.56 -3.00 -4.24
pt 2.67 -2.68 -7.76 -3.49 -8.98
it -2.91 -3.60 -3.66 -4.87 -4.96
∆ipt -17.80 -13.84 -13.57 -14.56 -14.17
∆mt -20.25 -15.82 -15.55 -17.01 -16.59
∆pt -12.62 -10.85 -10.64 -13.67 -13.74
∆it -18.21 -19.58 -19.50 -21.03 -20.75

10% -3.15 -3.95 -4.14 -4.98 -4.27
5% -3.43 -4.20 -4.41 -5.23 -5.49
1% -3.96 -4.79 -5.01 -5.76 -6.09

Note: The finite sample critical values are obtained from Monte Carlo simulation with 5,000

replications. The lag orders are selected using BIC with maximum lag order of 5.

cal values (controlled over a one-year period) for the forward, rolling and recursive evolving pro-

cedures. The forward algorithm finds no evidence of Granger causality from money to income

over the entire sample period. By contrast, both the rolling and recursive evolving procedures

identify causality running from money to income during the Volcker period in the early 1980s.

The recursive evolving procedure identifies the starting date for this causal episode as January

1981, which 11 months earlier than that suggested by the rolling window algorithm. This episode

lasts until March 1986 (September 1985) according to the recursive evolving (rolling) algorithm.

This causal episode coincides with a period of contractionary monetary policy with higher

interest rates which slowed the money supply growth rate and started to bring inflation under

control. On the basis of the results reported here, we concur with Stock and Watson (1989) that

money will have less predictive power for output if data from the 1980s is excluded. Our results

are consistent with those of Thoma (1994) and Psaradakis et al. (2005) in the sense that there

is, we believe, reliable evidence that money Granger causes output in the first part of the 1980s

but not the second part. Our findings differ from Swanson (1998) as we do not find persistent

causality between 1960 and 1994. In general, it is fairly clear why the 1980s is problematic from

the perspective of causality tests. Our subsample findings suggest that studies in which the end
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of the sample is around the mid-1980s are likely to find evidence of a causal relationship running

from money to income, while studies in which the sample ends towards the end of the decade

will not.

Two comments of a general nature emerge from the results. The first relates to the claim

of Psaradakis, et al. (2005) that money growth has more predictive power for output growth

during recessions than during expansions. Our analysis gives no real support for this claim on

two counts. First, the recession from November 1973 to March 1975 does not appear to coincide

with any indication of a causal relationship between money and income. Second, there is no

evidence of a causal relationship during the recession caused by the global financial crisis of

2008-2009.

The second comment relates to the period from late 2008 to late 2013 during which the

Federal Reserve implemented three rounds of quantitative easing. This strategy aimed to prevent

further deflation by buying financial assets from the banking sector to increase prices and lower

their yields while at the same time increasing the money supply. Surprisingly, there is no

empirical evidence of any causality from money to income during this period when deliberate

increases in the money supply were employed to stimulate GDP. Part of the explanation for

this finding is that despite the increased reserves delivered by quantitative easing, a credit

crunch continued and banks continued to hold reserves instead of adopting the riskier strategy

of increasing lending in a stagnant economy.

Finally, for the sake of completeness, we conduct an analysis of Granger causality running

from income to money. The results are provided in the Online Supplement (Shi, Hurn, and

Phillips, 2018) and are summarized briefly here. Interestingly, all three procedures identify an

episode in the late 1970s and early 1980s, with the indicator from the recursive evolving pro-

cedure being switched on the earliest (May 1975). This observation supports the existence of

a bi-directional causal relationship between money and income during the Volcker period. Ad-

ditionally, the recursive evolving algorithm detects an episode during the early 1990s recession

period and an episode which lasted for eight years starting from January 2001. The causal rela-

tionship terminates in December 2008. This period is often referred to as the Great Moderation

and the relative price stability of that period may account for the strong relationship between

income and money.
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7 Robustness checks

In order to investigate the robustness of the conclusions on Granger causality from money to

income, a sensitivity analysis in undertaken. The following variants of the basic test statistics

from the LA-VAR model are presented: heteroskedastic consistent test statistics of Shi, Phillips,

and Hurn (2018) are estimated; 5% bootstrapped critical values controlled over a five-year period

are used; the regression model is augmented by two lags (d = 2) to protect against potentially

higher levels of integration in the data; a minimum window size of 60 observations is chosen to

search for finer local variability in the test statistics; and an alternative implementation of the

bootstrapping procedure is conducted.

The heteroskedastic-consistent sequences of the Granger causal relationship from money to

income obtained from (1) with yt = (ipt,mt, pt, it)
′ and d = 1 are presented in panels (a), (c) and

(e) of Figure 3 showing the results, respectively, for the forward, rolling window and recursive

evolving procedures. Also shown are the 5% bootstrapped critical values (described in Section

3.2) and controlled over a one-year period. The minimum window size is 72. Lag orders are

selected using BIC with a maximum length of 12 for the whole sample period (four) and assumed

to be constant for all subsamples. The heteroskedastic-consistent subsample Wald test statistic

is defined as

W∗f1,f2 = Tw

(
Rφ̂f1,f2

)′ [
R
{
V̂ −1f1,f2

Σ̂f1,f2 V̂
−1
f1,f2

}
R′
]−1

Rφ̂f1,f2 , (14)

where φ̂f1,f2 = vec(Φ̂f1,f2) with Φ̂f1,f2 being the OLS estimate of Φ from the sample running

from f1 to f2,

V̂f1,f2 = In ⊗ Q̂f1,f2 with Q̂f1,f2 =
1

Tw

bTf2c∑
t=bTf1c

xtx
′
t,

Σ̂f1,f2 =
1

Tw

bTf2c∑
t=bTf1c

ξ̂tξ̂
′
t with ξ̂t = ε̂t ⊗ xt.

The heteroskedastic-consistent sup Wald statistic is

SW∗f (f0) = sup
f2=f,f1∈[0,f2−f0]

{
W∗f1,f2

}
.

It is apparent that the assumption about the behaviour of the variance has no significant

influence on the outcomes in all three testing procedures. As in Figure 2, the forward procedure

21



Figure 3: Results from the heteroskedastic consistent test statistics are displayed in panel (a),
(c) and (e) and from the size controlled over a five-year period are in panel (b), (d) and (f).
The regression model is (1) with yt = (ipt,mt, pt, it)

′ and lag augmentation d = 1. The sequence
of tests for the forward recursive, rolling window, and recursive evolving procedures run from
November 1964 to April 2014 with 72 observations for the minimum window size. Lag orders
are assumed to be constant and selected using BIC with a maximum length of 12 for the whole
sample period.
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Figure 4: The forward, rolling, and recursive evolving test results with lag augmentation d =
2 are displayed in panel (a), (c) and (e) and those with a minimum window size τ0 = 60
are in (b), (d) and (f). The regression model is (1) with yt = (ipt,mt, pt, it)

′, allowing for
homoskedastic errors. The empirical size is 5%, controlled over a one-year period and obtained
from bootstrapping. Lag orders are assumed to be constant and selected using BIC with a
maximum length of 12 for the whole sample period.
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does not find any episodes of Granger causality from money to income and both the rolling and

recursive evolving algorithms detect the early 1980s episode. It is, however, to be noted that the

starting dates identified by heteroskedastic-consistent test statistic sequences are slightly earlier

than those based on the assumption of homoskedastic errors.

Next, instead of controlling the size of the test sequence over a one-year period, the proba-

bility of drawing at least one false positive conclusion is taken to be 5% over a five-year period.

The 5% bootstrapped critical values are obtained from (11) with 499 repetitions and bootstrap

sample size Tb = τ0 + 59. It is expected that with a stricter rejection criteria there will be a low

chance of making false positive conclusion but, the other hand, a lower power for detection. The

basic estimation setup remains otherwise unaltered and the results are presented in panels (b),

(d) and (f) of Figure 3 panel. As expected the forward algorithm does not find any evidence of

Granger causality, but the pattern of causality identified by the other two algorithms is solid,

despite the expected result that the starting date is found to be later than that in Figure 2.

Figure 4 presents result for a larger potential maximum order of integration, d = 2, in

panels (a), (c), and (e), while those for the minimum window size τ0 = 60 are reported in

panels (b), (d) and (f). Once more all other settings of the LA-VAR model remain the same.

Once more the identification of the causal episode appears to be robust to these changes with

only small variations in the starting date indicated by the changed parameter settings. The

overall conclusion reached here therefore is that the pattern of Granger causality identified

using sequences of Wald statistics is remarkably robust to changes in the testing setup.

Finally, the null hypothesis of no Granger causality does not preclude the existence of struc-

tural breaks in other model coefficients. To allow for this possibility, one could modify the

bootstrap procedure. Specifically, instead of estimating the null model using the full sample

and applying the same bootstrap critical value for all individual tests, one could conduct the

bootstrap procedure repeatedly for each observation of interest and generate the bootstrap sam-

ples from estimates and residuals obtained from the nearest sample. Suppose the observation of

interest is t. We can estimate the restricted model (in the first step of the bootstrap procedure)

using the nearest (past) window, i.e., observations from t − τ0 to t. Note that this bootstrap

procedure can be implemented in real-time as it only relies on past information.9 The results

for the money to income Granger causality are displayed in Figure 5. We can see that all three

9The two bootstrap approaches are expected to provide similar simulations results in Section 5, given the data
generating processes considered.
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Figure 5: The forward, rolling, and recursive evolving test results with the alternative bootstrap-
ping procedure, allowing for homoskedastic errors. The lag augmentation d = 1. The empirical
size is 5%, controlled over a one-year period and obtained from bootstrapping. Lag orders are
assumed to be constant and selected using BIC with a maximum length of 12 for the whole
sample period.

(a) Forward - real-time bootstrap

67 71 75 79 83 87 91 95 99 03 07 11
0

5

10

15

82Mar-Dec

83May
83Jul-Aug

83Dec

84Mar

84Jul-Sep

84Nov-Dec

85Feb

85May

86Feb-Mar 01Apr

The test statistic sequence

The 5% critical value sequence

(b) Rolling - real-time bootstrap
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(c) Recursive Evolving - real-time bootstrap
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algorithms detect the early 1980s episode, with the signal from the recursive evolving (forward)

approach being the strongest (weakest). Note that the forward procedure did not find any ev-

idence of Granger causality when using the bootstrap procedure outlined in Section 4. Both
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the rolling and the recursive approaches locate one short episode in mid 1960s. Importantly,

the recursive evolving method finds one additional episode around the early 2000s recession,

although the signal turns on and off over the identified period.

8 Conclusion

This paper has proposed a recursive evolving Granger causality test based on lag-augmented

VAR models that allow for possibly integrated and deterministically trending time series data.

The performance of this test is compared with forward recursive regression and rolling window

regression tests in a comprehensive simulation study. The modeling framework accommodates

multiple configurations of stationary, nonstationary, and cointegrated variables. None of the

methods require prefiltering the data to remove potential nonstationarity and bootstrap methods

are introduced to ensure family-wise size control in the recursive regression tests.

Simulation results show the effectiveness of the bootstrap procedure in achieving error rates

that are close to nominal size, thereby resolving the multiplicity issue that arises in recursive test

procedures. The powers of the recursive test algorithms increase with sample size, minimum

window length, and the strength and duration of the causal relationship. All three methods

perform better when the change in causality occurs earlier in the sample, although, as expected,

the impact of location is much more dramatic for the forward procedure than the other two

algorithms.

A number of general conclusions emerge. The power of the forward recursive test procedure is

well below that of the recursive evolving and rolling approaches. The recursive evolving window

approach provides higher power than the simple rolling window algorithm and both have good

size control. The results therefore favor recursive evolving tests performed in conjunction with

a bootstrap engine for maintaining family-wise size control.

The much-studied causal relationship between money and income in the United States is

the focus of the empirical application of these algorithms. The results obtained here confirm

some of the conclusions reported in the literature, provide limited support for others and also

shed some new light on recent monetary policy experience. One major period of money-income

causality is detected, namely, from 1981-1986. This period has been the subject of intense study

and speculation in the literature. A very interesting feature of the results is that the policy

of quantitative easing following the financial crisis of 2008 does not reveal any statistically
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significant causality running from money to income.
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