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Abstract

This paper shows that realised power variation and its extension we introduce here called
realised bipower variation is somewhat robust to rare jumps. We show realised bipower
variation estimates integrated variance in SV models — thus providing a model free and
consistent alternative to realised variance. Its robustness property means that if we have an
SV plus infrequent jumps process then the difference between realised variance and realised
bipower variation estimates the quadratic variation of the jump component. This seems to
be the first method which can divide up quadratic variation into its continuous and jump
components. Various extensions are given. Proofs of special cases of these results are given.
Detailed mathematical results will be reported elsewhere.
Keywords: Bipower variation; Integrated variance; Jump process; Power variation; Quadratic
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1 Introduction

1.1 Motivation

The econometrics of financial volatility has made very significant recent process due to the

harnessing of high frequency information through the use of realised variances and volatility.

Here we discuss generalisations of objects of that type, studying sums of powers and products of

powers of absolute returns. We will show that these quantities, called realised power variation

and the new realised bipower variation we introduce here, are quite robust to rare jumps in the

log-price process. In particular we demonstrate that it is possible, in theory, to untangle the

presence of volatility and rare jumps by using power and bipower variation. Realised bipower

variation also provides a new asymptotically unbiased, model free econometric estimator of

integrated variance in stochastic volatility models. This estimator is robust to the presence of

jumps. Hence, in theory, we can now decompose quadratic variation into the contribution from

the continuous component of log-prices and the impact of jumps. We believe this is the first

paper to do this without making strong parametric assumptions.

To start suppose � > 0 is some fixed time period (e.g. a trading day or a calendar month)

and that the log-price of an asset is written as y∗(t) for t ≥ 0. Then the i-th � “low frequency”

return is

yi = y∗ (i�) − y∗ ((i − 1) �) , i = 1, 2, ... .

For concreteness we will often refer to the i-th period as the i-th day.

Suppose that additionally we record the prices at M equally spaced time points on the i-th

day. Then we can define the “high frequency” returns as

yj,i = y∗
(
(i − 1) � + �jM−1

) − y∗
(
(i − 1) � + � (j − 1) M−1

)
, j = 1, 2, ..., M. (1)

Here yj,i is the j-th intra-� return for the i-th day (e.g. if M = 288, then this is the return for

the j-th 5 minute period on the i-th day). As a result, for example, yi =
∑M

j=1 yj,i.

To illustrate this notation we will look at the first three days of the Olsen Dollar/DM high

frequency series. It starts on 1st December 1986 and ignores weekend breaks. This series is

constructed every five minutes by the Olsen group from bid and ask quotes which appeared on

the Reuters screen (see Dacorogna, Gencay, Müller, Olsen, and Pictet (2001) for details). The

log values of the raw data, having being preprocessed in a manner discussed in the Appendix of

Barndorff-Nielsen and Shephard (2002a), is shown in the top left of Figure 1. We have trans-

formed the data to start at zero at time zero. The series constitutes an empirical approximation,

recorded every five minutes, to our y∗ process. The top right part of the Figure shows the three

daily returns y1,i = yi, i.e. M = 1, calculated off this series. These returns are shown as large
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Figure 1: DM/Dollar dataset from the Olsen and Associates database. Top left: raw 5 minute
data. Top right: daily returns, M = 1. Bottom left: 3 hour returns, M = 8. Bottom right: 30
minute returns, M = 48.

squares. The bottom left part shows yj,i, for j = 1, 2, ..., 8 and i = 1, 2, 3. These are 3 hour

returns. Finally, the bottom right graph shows the effect of taking M = 48, which corresponds

to 30 minute returns.

We start out this paper by assessing how jumps in log-prices effect the volatility measure:

realised power variation

{y∗M}[r]
i =

(
�

M

)1−r/2 M∑
j=1

|yj,i|r , r > 0

and, to a lesser extent, its unnormalised version1

[y∗M ][r]i =
M∑

j=1

|yj,i|r .

1The similarly named p-variation, 0 < p < ∞, of a real-valued function f on [a, b] is defined as

sup
κ

∑
|f(xi) − f(xi−1)|p ,

where the supremum is taken over all subdivisions κ of [a, b]. If this function is finite then f is said to have
bounded p-variation on [a, b]. The case of p = 1 gives the usual definition of bounded variation. This concept of
p-variation has been studied recently in the probability literature. See the work of Lyons (1994), Mikosch and
Norvaǐsa (2000) and Lyons and Qian (2002).
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These quantities have recently been formalised by Barndorff-Nielsen and Shephard (2003a).

Here we give two examples of this. When r = 2 this yields the traditional realised variance2 or

realised quadratic variation

{y∗M}[2]
i = [y∗M ][2]i =

M∑
j=1

y2
j,i. (2)

This is linked to its square root version, the realised volatility3
√∑M

j=1 y2
j,i. When r = 1 we

produce {y∗M}[1]
i =

√
�

M

∑M
j=1 |yj,i|. Of course many other values of r are also interesting.

The most important practical contribution of this paper is the introduction of a new cross

term estimator called realised bipower variation

{y∗M}[r,s]
i =

{(
�

M

)1−(r+s)/2
}

M−1∑
j=1

|yj,i|r |yj+1,i|s , r, s ≥ 0. (3)

In particular, for example, we will show that in the r = s = 1 case

{y∗M}[1,1]
i =

M−1∑
j=1

|yj,i| |yj+1,i| (4)

will, up to a simple known multiple, converge to the same probability limit as realised variance

when prices follow a SV process and that for (4) the limit does not change with added rare

jumps. This provides

• a new way of making inference and predicting integrated variance, perhaps the single most

important term in the econometrics of volatility,

• a simple way of measuring the impact of jumps on quadratic variation.

1.2 Outline of the paper

In Section 2 of this paper we review the well known probability limit of realised variance, which

is built on the theory of semimartingales and the quadratic variation process. We specialise

the theory down to a class of continuous sample path stochastic volatility semimartingales. For

this class it is possible to extend the quadratic variation process to the power variation process,

which allows us to derive the probability limit of realised power variation. Finally, we introduce

the idea of bipower variation and study some of its properties.
2Realised variances have been used for a long time in financial economics — see, for example, Poterba and

Summers (1986), Schwert (1989) and Dacorogna, Müller, Olsen, and Pictet (1998). Realised variance has been
studied from a methodological viewpoint by Andersen, Bollerslev, Diebold, and Labys (2001), Barndorff-Nielsen
and Shephard (2001) and Barndorff-Nielsen and Shephard (2002a). See Andersen, Bollerslev, and Diebold (2003)
and Barndorff-Nielsen and Shephard (2004, Ch. 7) for surveys of this area, including discussions of the related
literature.

3Note that in econometrics sums of squared returns are sometimes called realised volatility.
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In Section 3 we find the probability limit of realised power variation in the case where we add

a compound Poisson process to the SV process. We see that sometimes the limit is not changed.

We extend this analysis to realised bipower variation and see that the robustness result holds so

long as the joint powers sum is less than or equal to two. This result is the main contribution

of this paper for it means, in particular, that realised bipower variation can be setup so that it

consistently estimates the integrated variance even in the presence of jumps.

In Section 4 we conduct a simulation study of a SV process plus jump process, demonstrating

that the theory seems to yield useful predictions. In Section 5 we apply the theory to some

empirical data and in Section 6 we indicate various possible extensions of our work. Section 7

concludes.

2 Basic development and ideas

2.1 Realised variance and quadratic variation

The probability limit of realised variance (2) is known under the assumption that y∗ is a semi-

martingale (SM) using the theory of quadratic variation (e.g. Jacod and Shiryaev (1987, p.

55)). Recall if y∗ ∈ SM, then we can write

y∗(t) = α∗(t) + m∗(t), (5)

where α∗, a drift term, has locally bounded variation paths and m∗ is a local martingale. One of

the most important aspects of semimartingales is the quadratic variation (QV) process. This is

defined as

[y∗](t) =p− lim
M→∞

M∑
j=1

{y∗(tj) − y∗(tj−1)}2, (6)

for any sequence of partitions t0 = 0 < t1 < ... < tM = t so long as supj{tj − tj−1} → 0 for

M → ∞. This implies that if y∗ ∈ SM then

[y∗M ][2]i =
M∑

j=1

y2
j,i

p→ [y∗](�i) − [y∗](� (i − 1)) = [y∗]i,

meaning realised variance consistently estimates increments of QV.

In general

[y∗](t) = [y∗c](t) +
∑

0≤s≤t

{∆y∗(s)}2 , (7)

where y∗c is the continuous local martingale component of y∗ and ∆y∗(t) = y∗(t)−y∗(t−) is the

jump at time t. If α∗ is continuous then we obtain the simplification

[y∗](t) = [m∗](t) = [m∗c](t) +
∑

0≤s≤t

{∆m∗(s)}2 .

6



2.2 Stochastic volatility

To extend the results on quadratic variation we will need more assumptions. We start by stating

two.

• (a) m∗ is a stochastic volatility (SV) process4

m∗(t) =
∫ t

0
σ(u)dw(u), (8)

where w is standard Brownian motion, σ(t) > 0, the spot volatility process, is càdlàg and

locally bounded away from zero and the integrated variance process

σ2∗(t) =
∫ t

0
σ2(u)du, (9)

satisfies σ2∗(t) < ∞ for all t < ∞.

• (b) the mean process α∗ is continuous.

We call semimartingales satisfying (a) and (b) members of the continuous SV semimartin-

gales class (denoted SVSMc). Clearly SVSMc ⊂ SMc ⊂ SM, where SMc is the class of

continuous semimartingales.

Importantly, if y∗ ∈ SVSMc then

[y∗](t) = σ2∗(t). (10)

If D− {g(x)} denotes the left derivative of a function g, limε↓0 ε−1 {g(x) − g(x − ε)}, then

D− {[y∗](t)} = σ2(t−), or
∂[y∗](t)

∂t
= σ2(t)

under the additional assumption that σ is continuous. Finally, for all y∗ ∈ SVSMc

{y∗M}[2]
i = [y∗M ][2]i =

M∑
j=1

y2
j,i

p→ σ2
i , where σ2

i = σ2∗(�i) − σ2∗(� (i − 1)).

We call σ2
i and

√
σ2

i the actual variance and actual volatility, respectively, of the SV component

over the i-th interval. All these results on SV processes are very well known. They hold

irrespective of the relationship between α∗, σ and w.
4The literature of SV models is discussed by, for example, Harvey, Ruiz, and Shephard (1994), Taylor (1994),

Ghysels, Harvey, and Renault (1996), Shephard (1996), Kim, Shephard, and Chib (1998) and Barndorff-Nielsen
and Shephard (2004, Ch. 4 and 5).
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2.3 Power variation process

The quadratic variation process [y∗] was generalised to the r-th order power variation process

(r > 0) by Barndorff-Nielsen and Shephard (2003a). It is defined, when it exists, as

{y∗}[r] (t) = p- lim
δ↓0

δ1−r/2

�t/δ�∑
j=1

|yj(t)|r ,

where over an interval of length δ > 0 the equally spaced j-th return is

yj = yj(t) = y∗(jδ) − y∗((j − 1) δ).

Here, for any real number a, �a� denotes the largest integer less than or equal to a.

The normalisation δ1−r/2 is key in power variation.

1. When r = 2 the normalisation is one and so disappears.

2. When r > 2 the normalisation goes off to infinity as δ ↓ 0.

3. When r < 2 the normalisation goes to zero as δ ↓ 0.

The key property of power variation for SVSMc processes is given as follows.

Theorem 1 If y∗ ∈ SVSMc and additionally (σ, α∗) are independent of w, then

{y∗}[r] (t) = µr

∫ t

0
σr(s)ds,

for r > 0 where µr = 2r/2Γ
(

1
2 (r + 1)

)
/Γ

(
1
2

)
.

�

Proof. See Barndorff-Nielsen and Shephard (2003a).

�

Remark 1 It is so far unclear to us as to the substantial impact of relaxing the independence

condition on (σ, α∗) and w. Note, no additional assumptions are made on the (σ, α∗) process

beyond those stated in (a) and (b). Also note that µr = E |u|r where u ∼ N(0, 1).

This implies

(
D−

[
µ−1

r {y∗}[r] (t)
])1/r

= σ(t−), or

(
∂µ−1

r {y∗}[r] (t)
∂t

)1/r

= σ(t)

if σ is continuous.
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The probability limit of realised power variation follows immediately from the definition of

the power variation process. Thus under the conditions of Theorem 1, as M → ∞,

{y∗M}[r]
i

p→ {y∗}[r] (�i) − {y∗}[r] (� (i − 1))
= µr

∫
�i
�(i−1) σr(s)ds.

(11)

Barndorff-Nielsen and Shephard (2003a) have extended the above convergence in probability

to a distribution theory for {y∗}[r] (t) − µr

∫ t
0 σr(s)ds. See further Section 6.4. Andreou and

Ghysels (2003) have used power variations to test for changes in the level of volatility in financial

markets.

2.4 Bipower variation process

In the context of multivariate covariation Barndorff-Nielsen and Shephard (2002b) sometimes

found it helpful to study cross terms of the type

δ−1

�t/δ�−1∑
j=1

y2
j y

2
j+1

p→
∫ t

0
σ4(u)du.

Here we provide an extension of this. First we define the bipower variation process

{y∗}[r,s] (t) = p- lim
δ↓0

δ1−(r+s)/2

�t/δ�−1∑
j=1

|yj |r |yj+1|s , r, s ≥ 0

provided this exists. We will define a more general k-th order power variation process in Section

6.2. Clearly the value of r+s is crucial here, as it determines the normalisation by δ. Importantly

{y∗}[r,0] (t) = {y∗}[0,r] (t) = {y∗}[r] (t).

Hence the bipower variation process includes as a special case the power variation process.

If y∗ ∈ SVSMc and additionally (σ, α∗) are independent of w, then we would expect that

{y∗}[r,s] (t) = µrµs

∫ t

0
σr+s(u)du,

for r + s > 0 where µr = 2r/2Γ
(

1
2 (r + 1)

)
/Γ

(
1
2

)
. We will discuss a proof of this general result

elsewhere. Again it is unclear as to the importance of the assumed independence assumption.

Overall, this result means that it provides a second way of accessing integrated power volatility,

extending previous work on realised power variation. For now we prove a special case.

Theorem 2 Suppose y∗ ∈ SVSMc and additionally σ is independent of w and α∗ = 0. Then,

for any r > 0, we have

{y∗}[r,r](t) = µ2
r

∫ t

0
σ2r(s)ds. (12)
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�

Proof. It is convenient to introduce the notation

{y∗δ}[r,r](t) = δ1−r

�t/δ�−1∑
j=1

|yj |r|yj+1|r.

Here, and elsewhere, we use δ rather than M as lower index; recall that δM = t. The value

of the bipower process {y∗}[r,r] at time t is the probability limit, as δ ↓ 0, of {y∗δ}[r,r](t). In

determining this limit it causes no loss of generality to assume that t/δ is an integer M , say.

Let σj > 0 be defined by

σ2
j = σ2∗(jδ) − σ2∗((j − 1)δ).

We then have

{y∗δ}[r,r](t) law= δ1−r
M−1∑
j=1

σr
jσ

r
j+1|uj |r|uj+1|r

where the uj are i.i.d. standard normal. An application of Barndorff-Nielsen and Shephard

(2003b, Corollary 4.3) to the sum on the right hand side shows that

δ1−r
M−1∑
j=1

σr
jσ

r
j+1(|uj |r|uj+1|r − µ2

r)
p→ 0

for δ ↓ 0.

Since (cf. Barndorff-Nielsen and Shephard (2003a))

δ1−r
M∑

j=1

σ2r
j

p→ σ2r∗(t) (13)

it only remains to prove that

δ1−r




M−1∑
j=1

σr
jσ

r
j+1 −

M∑
j=1

σ2r
j


 p→ 0. (14)

In fact we have the stronger result that

δ1−r




M−1∑
j=1

σr
jσ

r
j+1 −

M∑
j=1

σ2r
j


 = O(δ) (15)

To establish this we do the following rewrite

M−1∑
j=1

σr
jσ

r
j+1 −

M∑
j=1

σ2r
j =

M−1∑
j=1

(σr
jσ

r
j+1 − σ2r

j ) − σ2r
M

=
M−1∑
j=1

σr
j (σ

r
j+1 − σr

j ) − σ2r
M

10



=
M−1∑
j=1

σr
j

σr
j+1 + σr

j

(σ2r
j+1 − σ2r

j ) − σ2r
M

=
1
2

M−1∑
j=1

(
2σr

j

σr
j+1 + σr

j

− 1

)
(σ2r

j+1 − σ2r
j ) − 1

2
(σ2r

1 + σ2r
M )

= −1
2

M−1∑
j=1

σr
j+1 − σr

j

σr
j+1 + σr

j

(σ2r
j+1 − σ2r

j ) − 1
2
(σ2r

1 + σ2r
M )

= −1
2

M−1∑
j=1

(σ2r
j+1 − σ2r

j )2

(σr
j+1 + σr

j )2
− 1

2
(σ2r

1 + σ2r
M ).

Further, letting ψj = δ−1/2σj we find

δ1−r




M−1∑
j=1

σr
jσ

r
j+1 −

M∑
j=1

σ2r
j


 = −1

2
δ




M−1∑
j=1

(ψ2r
j+1 − ψ2r

j )2

(ψr
j+1 + ψr

j )2
+ ψ2r

1 + ψ2r
M


 .

By condition (a) we have, in particular, that

0 < inf
0≤s≤t

σ(s) ≤ inf ψj ≤ sup ψj ≤ sup
0≤s≤t

σ(s) < ∞

uniformly in δ. From this it is immediate that ψ2r
1 + ψ2r

M is uniformly bounded from above.

Furthermore,
M−1∑
j=1

(ψ2r
j+1 − ψ2r

j )2

(ψr
j+1 + ψr

j )2
≤ 1

4
1

inf0≤s≤t σr(s)

M−1∑
j=1

(ψ2r
j+1 − ψ2r

j )2

where inf0≤s≤t σr(s) > 0 and

M−1∑
j=1

(ψ2r
j+1 − ψ2r

j )2
p→ [σ2r](t)

which implies (15) and hence (12).

�

By setting r = 1 we have a new estimator of an important quantity in financial econometrics,

integrated variance.

Finally, we have the simple result in the SVSMc case that

[y∗δ ]
[2](t) − µ−2

1 {y∗δ}[1,1] (t)
p→ 0,

so that

[y∗] = µ−2
1 {y∗}[1,1] .

We will see in the next Section that when there are jumps this term will not have a zero

probability limit rather it will converge to a positive, but finite quantity. It will become clear

that this difference can be used to test for the presence of jumps.
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We now introduce an additional regularity condition.

Condition (V′). The volatility process σ has the property

lim
δ↓0

δ1/2
M∑

j=1

|σr(ηj) − σr(ξj)| = 0

for some r > 0 (equivalently for every r > 0) and for any ξj = ξj(δ) and ηj = ηj(δ) such that

0 ≤ ξ1 ≤ η1 ≤ δ ≤ ξ2 ≤ η2 ≤ 2δ ≤ · · · ≤ ξM ≤ ηM ≤ t.

�
Using this condition we may strengthen Theorem 2 to

Theorem 3 Let the situation be as in Theorem 2 and suppose moreover that σ satisfies condition

(V′). Then

δ1−r

�t/δ�−1∑
j=1

|yj |r|yj+1|r = µ2
r

∫ t

0
σ2r(s)ds + op(δ1/2)

�

Proof By the proof of Theorem 2, particularly the conclusion (15), it suffices to note that when

conditions (a) and (V′) hold, then together they imply that

δ1−r
M∑

j=1

σ2r
j − σ2r∗(t) = op(δ1/2).

This latter relation is in fact the content of Barndorff-Nielsen and Shephard (2003b, Lemma 2).

�

Theorem 3 will be essential in deriving distributional limit results for realised power variation.

See Section 6.4 below.

3 SV process plus large but rare jumps

3.1 Rare jumps and quadratic variation

Consider the log-price process

y∗(t) = y(1)∗(t) + y(2)∗(t), (16)

with y(1)∗ ∈ SVSMc and

y(2)∗(t) =
N(t)∑
i=1

ci, (17)

12



where N is a counting process such that N(t) < ∞ (for all t > 0) and {ci} are a collection

of non-zero random variables. In the special case where N is a homogeneous Poisson process

and ci is i.i.d. from some distribution D then y(2)∗ is a compound Poisson process (written

CPP). Such jump process models have often been used as components of price processes (e.g.

Merton (1976), Andersen, Benzoni, and Lund (2002), Johannes, Polson, and Stroud (2002) and

Chernov, Gallant, Ghysels, and Tauchen (2002)).

The QV for this jump plus SVSMc process is well known (e.g. see the discussion in Andersen,

Bollerslev, Diebold, and Labys (2001)) and is reported below in the following theorem.

Proposition 4 Suppose y(1)∗ ∈ SVSMc and y(2)∗ is given in (17), then

[y∗] (t) = σ2∗(t) +
N(t)∑
i=1

c2
i

=
[
y(1)∗

][2]
(t) +

[
y(2)∗

][2]
(t).

�

Proof. Trivial from (7) and (10).

�

3.2 Rare jumps and power variation

We can generalise the above discussion to deal with power variation. This captures the main

theoretical effect we are after in this paper.

Theorem 5 Let y∗ = y(1)∗ + y(2)∗ with y(1)∗ and y(2)∗ being independent. Suppose y(1)∗ ∈
SVSMc, additionally (σ, α∗) are independent of w and y(2)∗ is given in (17), then

µ−1
r {y∗}[r] (t)

p→



∫ t
0 σr(u)du, r ∈ (0, 2)

[y∗](t), r = 2
∞, r > 2.

�

Remark 2 The same setting has been independently studied recently by Woerner (2002) who

reaches the same conclusion but for r restricted to (1,∞) and using a different technique. See

also Lépingle (1976) for an earlier investigation.

Proof. It is clear that as δ ↓ 0 then generally

�t/δ�∑
j=1

∣∣∣y(2)
j (t)

∣∣∣r p→
N(t)∑
i=1

|ci|r ,
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where

y
(2)
j (t) = y(2)∗(jδ) − y(2)∗((j − 1) δ).

It follows from this that when we also normalise the sum as δ ↓ 0

δβ

�t/δ�∑
j=1

∣∣∣y(2)
j (t)

∣∣∣r p→



0 β > 0, r ∈ (0, 2)
[y(2)∗](t) β = 0, r = 2
∞ β < 0, r > 2.

Hence the power variation of y(2)∗ is either zero, the quadratic variation or infinity, depending

upon the value of r. Furthermore

�t/δ�∑
j=1

|yj(t)|r =
�t/δ�∑
j=1

∣∣∣y(1)
j (t)

∣∣∣r + Op(N(t)),

as there are only N(t) contributions to y(2)∗. As a result we have that

µ−1
r δβ

�t/δ�∑
j=1

|yj(t)|r p→



∫ t
0 σr(u)du, β = 1 − r/2, r ∈ (0, 2)

[y∗](t), β = 0, r = 2
∞, β < 0, r > 2.

This delivers the required result by definition of {y∗}[r] (t).

�

Theorem 5 implies that:

1. When r ∈ (0, 2) the probability limit of realised power variation is unaffected by the

presence of jumps.

2. When r > 2 the probability limit is determined by the jump component and so scaling

means this goes off to infinity.

3. When r = 2 both components contribute.

The result is not very sensitive for it would hold for any jump process as long as there are

a finite number of jumps in any finite period of time. In particular, then, the jumps can be

serially dependent.

The above implies that

σ(t−) =
(
D−

[
µ−1

r {y∗}[r] (t)
])1/r

,

when r < 2. Hence it is possible, in theory, to estimate the spot volatility in the presence of

rare jumps.

14



3.3 Rare jumps and bipower variation

The logic of the proof of Theorem 5 carries over to the bipower variation process. In particular

we deliver the stimulating result on bipower given in the following theorem.

Theorem 6 Let the setting be as in Theorem 5. Then

µ−1
r µ−1

s {y∗}[r,s] (t) =




∫ t
0 σr+s(u)du, r + s ∈ (0, 2)∫ t
0 σ2(u)du, r + s = 2, r, s > 0
∞, r + s > 2

.

�

Proof. Exactly the same argument as for Theorem 5 produces this result due to the finite

number of jumps so long as r + s < 2. When r + s = 2 the scaling no longer has any impact.

However, defining

δj,j+1 =




1, y
(2)
j = y

(2)
j+1 = 0

1, y
(2)
j �= 0, y

(2)
j+1 �= 0

0, elsewhere
,

we have an indicator which is one either if there are no jumps or the jumps are contiguous. Then

�t/δ�−1∑
j=1

|yj |r |yj+1|s =
�t/δ�−1∑

j=1

|yj |r |yj+1|s δj,j+1 +
�t/δ�−1∑

j=1

|yj |r |yj+1|s (1 − δj,j+1) .

Now
�t/δ�−1∑

j=1

|yj |r |yj+1|s (1 − δj,j+1) = O(N(t)),

as the terms in the sum are zero unless there is a jump and there are N(t) jumps. Further, when

there is a jump the corresponding contiguous (and so non-jump) return goes to zero as δ ↓ 0.

Thus we have that
�t/δ�−1∑

j=1

|yj |r |yj+1|s (1 − δj,j+1)
p→ 0.

Further, the probability of having any contiguous jumping returns goes to zero as δ ↓ 0 so

�t/δ�−1∑
j=1

|yj |r |yj+1|s δj,j+1 −
�t/δ�−1∑

j=1

∣∣∣y(1)
j

∣∣∣r ∣∣∣y(1)
j+1

∣∣∣s p→ 0.

This produces the desired result. The result for r + s > 2 is immediate.

�

Remark 3 This result has a special case, of a great deal of applied interest. When r + s = 2

then so long as r, s > 0

µ−1
r µ−1

s {y∗}[r,s] (t) =
∫ t

0
σ2(u)du,
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integrated variance. Hence the integrated variance can be consistently estimated in the presence

of rare but large jumps. It also immediately implies that

[y∗][2](t) − µ−1
r µ−1

s {y∗}[r,s] (t) =
N(t)∑
i=1

c2
i ,

the jump contribution to the QV. We believe this is the first analysis which has been able to

feasibly decompose the quadratic variation into the contributions from the continuous and jump

components of the log-price.

4 Some simulations of SV plus large rare jumps

4.1 Basic simulation

In this Section we will illustrate some of these results by simulating an SV plus jump process.

We start with a discussion of the spot volatility process. We use a Feller or Cox, Ingersoll, and

Ross (1985) square root process for σ2

dσ2(t) = −λ
{
σ2(t) − ξ

}
dt + ωσ(t)db(λt), ξ ≥ ω2/2, λ > 0, (18)

where b is a standard Brownian motion process. The square root process has a marginal distri-

bution

σ2(t) ∼ Γ(2ω−2ξ, 2ω−2) = Γ (ν, a) , ν ≥ 1,

with a mean of ξ = ν/a, a variance of ω2 = ν/a2 and

Cor
{
σ2(t), σ2(t + s)

}
= exp(−λ |s|).

In the context of SV models this is often called the Heston (1993) model. We take α∗ = 0 and

so

y∗(t) =
∫ t

0
σ(u)dw(u) +

N(t)∑
i=1

ci.

We rule out leverage (e.g. Black (1976) and Nelson (1991)) by assuming Cor {b(λt), w(t)} = 0.

We take � = 1, λ = 0.01, ν = 0.1 and a = 0.2. We randomly scatter 10 jumps in a time interval

of 50 days, while the jumps are NID(0, 0.64ν/a). The latter means that when there is a jump,

the jump has the same variance as that expected over a 64% of a day period of trading when

there is no jump. Thus these are large but quite rare jumps.

We report results based on M = 12, M = 72 and M = 288, which are typical practical

values for these types of methods. The first row of Figure 2 corresponds to M = 12, the second

has M = 72 and the third M = 288. Figures 2(a), (c) and (e) show the sample path of the

y∗ and N processes recorded at the resolution of M . Notice we have not used a standard time
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series plot here, we plot the processes using dots so that the jumps have the potential of being

seen. As M increases the sample path of the discretised process reveals the jump in the process.
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Figure 2: Simulation from a jump plus diffusion based SV model using a square root variance
processes. (a), (c) and (e) show y∗(t) and 0.5N(t). The latter shows the position of the jumps.
(b), (d) and (f) show σ2

i and [y∗M ][2]i . Code is available at: jump.ox.

Figures 2(b), (d) and (f) show the sample paths of the daily realised variances, while we

also draw the corresponding daily increments in the quadratic variation, which is obviously the

sum of the integrated variance and the sums of squared jumps. We see that the RV becomes

more accurate with M , as we expect from theory. However, we can also see that it is quite an

inaccurate estimator.

Figures 3(a), (c) and (e) show the more innovative results. It displays our estimator of the

integrated variance, using the theory of realised bipower variation. In particular we are using

r = s = 1 in this work. This is contrasted with the actual increment of the integrated variance.

We can see that when M = 12 this is a poor estimator and is, in particular, influenced by the

large jumps which appear in the sample. However for moderate M the statistic seems to be

quite informative, while when M = 288 the estimator is reasonably accurate.

Figures 3(b), (d) and (f) shows the difference between the realised variance and the realised

bipower variation. The theory suggests this is a consistent estimator of the quadratic variation

of the jump component. For small M it is very inaccurate, but for moderate and large M the
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Figure 3: Simulation from a jump plus diffusion based SV model, estimating the integrated
variance and the QV of the jump components. Rows correspond to M=12, M=72 and M=288
respectively. (a), (c) and (e) plot the daily integrated variance σ2

i and the consistent estimator
µ−2

1 {y∗M}[1,1]
i . (b), (d) and (f) plot the jump QV and consistent estimator. Code is available at:

jump.ox.

estimator works rather well.

We back up these results by repeating the above analysis but using 5, 000 days, having jumps

of the same size as before but now on average every 20 days. We then focus on the distribution

of the estimation errors. In particular we look in detail at

[y∗]i − [y∗M ][2]i ,

the realised variance error,

[
y(1)∗

]
i
− µ−2

1 {y∗M}[1,1]
i = σ2

i − µ−2
1 {y∗M}[1,1]

i ,

the realised bipower variation error and, defining

̂[
y

(2)∗
M

][2]

i
= [y∗M ][2]i − µ−2

1 {y∗M}[1,1]
i ,

then [
y(2)∗

]
i
−

̂[
y

(2)∗
M

][2]

i
=

[
[y∗]i − σ2

i

] − [
[y∗M ][2]i − µ−2

1 {y∗M}[1,1]
i

]
,
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[y∗]i − [y∗M ][2]i

[
y(1)∗]

i
− µ−2

1 {y∗M}[1,1]
i

[
y(2)∗]

i
−

̂[
y

(2)∗
M

][2]

i
mean .025 .975 mean .025 .975 mean 0.025 0.975

M=12 -.00658 -.413 .330 -.00120 -.386 .351 .00404 -.173 .211
M=48 -.00817 -.302 .221 -.00316 -.284 .237 .00441 -.133 .160
M=72 -.0103 -.235 .117 -.00317 -.174 .139 .00225 -.075 .087
M=144 -.0102 -.197 .0884 -.00220 -.117 .101 .00137 -.050 .064
M=288 -.00983 -.151 .0625 -.00140 -.075 .073 .00098 -.034 .045
M=576 -.00963 -.130 .0452 -.00155 -.062 .050 .00133 -.024 .034

Table 1: Finite sample behaviour of the estimators of the quadratic variation of prices, inte-
grated variance, and quadratic variation of the jump process. Reported are the errors. So we
calculate the mean value and the 2.5% and 97.5% quantiles of the sampling distribution. Code:
quasi RV.ox

the realised jump error. The results are given in Table 1. This records the mean error, to see if

the estimators are unbiased, as well as the 2.5% and 97.5% quantiles.

For the realised variance error there is a small bias for small M , which quickly disappears

as M increases. The 95% range of the error falls quite quickly, although the interval is still

substantial when M = 576. An interesting feature is that the errors are roughly symmetric in

this analysis.

For the realised bipower variation error the results are rather similar to the RV case. The es-

timator is roughly unbiased for moderate M , but the error is substantial for large M . Interesting

the 95% interval is larger for this error than for the corresponding RV case.

For the realised jump error, the estimator is roughly unbiased even for moderate values of

M and the 95% intervals are roughly symmetric and smaller than for the other estimators.

4.2 No jump case

Interestingly, when we repeat the analysis, removing all jumps and comparing the performance

of [y∗M ][2]i and µ−2
1 {y∗M}[1,1]

i as estimators of σ2
i we obtained the results given in Table 2, which

indicate that the RV is slightly preferable in terms of accuracy.

4.3 Improving the finite sample behaviour

It is clear that [
y(2)∗

]
i
= [y∗]i − σ2

i =
N(�i)∑

i=N{�(i−1)}
c2
j ≥ 0,

while the estimator
̂[
y

(2)∗
M

][2]

i
= [y∗M ][2]i − µ−2

1 {y∗M}[1,1]
i ,
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[y∗]i − [y∗M ][2]i σ2
i − µ−2

1 {y∗M}[1,1]
i

mean .025 .975 mean .025 .975
M=12 .00271 -.331 .339 .00260 -.367 .361
M=48 .00140 -.229 .226 -.000438 -.276 .237
M=72 -.000898 -.140 .119 -.00115 -.163 .143
M=144 -.000901 -.107 .0911 -.000691 -.113 .102
M=288 -.000615 -.0677 .0654 -.000398 -.0729 .0740
M=576 -.000327 -.0466 .0468 -.000809 -.0575 .0509

Table 2: Finite sample behaviour of the estimators of the quadratic variation of prices, inte-
grated variance, and quadratic variation of the jump process. Reported are the errors. So we
calculate the mean value and the 2.5% and 97.5% quantiles of the sampling distribution. Code:
quasi RV.ox

can be negative. Hence it would be sensible to sometimes replace it by the consistent estimator

max
(
[y∗M ][2]i − µ−2

1 {y∗M}[1,1]
i , 0

)
.

This would suggest the estimator of the actual variance of the SV component

min
{

[y∗M ][2]i , µ−2
1 {y∗M}[1,1]

i

}
.

Repeating the above results we produce the analysis of errors given in Table 3. We see

that the finite sample behaviour of the integrated variance terms does not improve, but for the

quadratic variation of the jump component the improvement is quite considerable. Importantly,

the latter term now has a very short right hand tail, which means we rarely overstate the presence

of jumps by a large amount. Of course this estimator has the disadvantage of being biased.

IntVar error Jump error
mean .025 .975 mean .025 .975

M=12 .0210 -.278 .401 -.0181 -.173 .0271
M=48 .0144 -.202 .273 -.0131 -.133 .0220
M=72 .0064 -.121 .149 -.0073 -.075 .0162
M=144 .0041 -.099 .110 -.0050 -.050 .0146
M=288 .0029 -.059 .082 -.0033 -.034 .0080
M=576 .0020 -.044 .057 -.0022 -.024 .0066

Table 3: Improved finite sample behaviour of the estimators of the integrated variance and
quadratic variation of the jump process. Reported are the errors. So we calculate the mean
value and the 2.5% and 97.5% quantiles of the sampling distribution. Code: quasi RV.ox
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5 Initial empirical work

To illustrate some of the new theory we return to the dataset discussed in the introduction.

We now work with the full dataset from 1st December 1986 until 30th November 1996. All

calculations will be based on M = 288, that is we will employ 5 minute returns, calculating

aggregate volatility statistics for each day within the sample.
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Figure 4: DM/Dollar daily volatility measurements based on M=288. Code is available at:
jump.ox.

Figure 4(a) shows the time series of the daily realised variance, while 4(b) shows the corre-

sponding realised bipower variation. The difference between these two estimates, which is our

estimate of the daily increments of QV of the jump component, is given in Figure 4(c). Finally,

4(d) shows the correlograms of the realised variances, the realised bipower variations and the

estimated jump components of QV.

The main features of Figure 4 is that the estimate of the integrated variance is the dominating

component of the realised variance. Some of the estimates of the jump QV are quite large,

especially at the start of the period. However, these jumps tend not to be very serially dependent.

The serial dependence in the estimated integrated variances is larger than the RVs. This is

interesting, however the increase in dependence is quite modest.

During this period, the average value of the jump component to daily QV is 0.0310. Average
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realised variance is 0.528, hence the size of the jump component is quite modest for the dataset.
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Figure 5: Two examples of small stretches of data with large realised variances. The log-prices
are recorded every 5 minutes in (a) and (c). (a) has a large step change in the prices, which one
may view as a jump. (c) has a number of large positive returns which are in sequence. Code is
available at: jump RV.ox.

Figure 5 focuses on two time-periods with large realised variances. In both cases we look at

10 day periods of time, plotting in Figures 5(a) and (c) the log-price process every 5 minutes.

Throughout in Figures 5(a) and (c) we plot the prices using dots, rather than the more standard

time-series lines. In Figure 5(a) there is a large uptick in the price, with a movement of nearly

one in a five minute period. That day had a large realised variance, shown in 5(b), but a

much smaller estimate of the integrated variance. Hence the statistics are attributing a large

component of the realised variance to the jump.

This effect contracts with 5(c) where there is a three unit increase in the log-price, but this

happens over around an hour long period with many positive returns. We can see in Figure

5(d) that the corresponding realised variance is very high, but so is the estimated integrated

variance. Hence in this case the statistics have not flagged up a jump in the price, even though

prices were moving rapidly in one direction.
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6 Extensions and discussion

6.1 Robust estimation of integrated covariance

A vital concept in financial econometrics is covariance. We can formally base this on the concept

of quadratic covariation. We set this up using a bivariate semimartingale x∗ and y∗. Then the

quadratic covariation between x∗ and y∗ is

[y∗, x∗](t) =p− lim
M→∞

M∑
j=1

{y∗(tj) − y∗(tj−1)}{x∗(tj) − x∗(tj−1)}. (19)

Note that using this notation

[y∗, y∗](t) = [y∗](t),

the QV of the y∗ process. Quadratic covariation has been recently studied in the econometric

literature by, for example, Barndorff-Nielsen and Shephard (2002b) and Andersen, Bollerslev,

Diebold, and Labys (2003).

In the context of multivariate SVSMc models (Barndorff-Nielsen and Shephard (2002b))

then we write (
y∗(t)
x∗(t)

)
= α∗(t) + m∗(t), where m∗(t) =

∫ t

0
Θ(u)dw(u),

where α∗ has continuous locally bounded variation paths, while the elements of Θ are assumed

càdlàg and w is a vector of independent standard Brownian motions. We write Σ(t) = Θ(t)Θ(t)′,

and we need to make the additional assumption that
∫ t
0 Σk,l(u)du < ∞, k, l = 1, 2, to ensure

that m∗ is a local martingale. This setup has the important property that

[y∗, x∗](t) =
∫ t

0
Σ1,2(u)du,

the integrated covariance of the price process. Andersen, Bollerslev, Diebold, and Labys (2003)

has emphasised the importance of estimating this type of term. They discuss the use of realised

covariation to carry this out. A distribution theory for this estimator under the above type of

model structure is given in Barndorff-Nielsen and Shephard (2002b).

An important property of quadratic variation is the so called polarisation result that

[y∗ + x∗](t) = [y∗](t) + [x∗](t) + 2[y∗, x∗](t),

which means that

[y∗, x∗](t) =
1
2
{[y∗ + x∗](t) − [y∗](t) − [x∗](t)} .

Hence we can use realised bipower variation to consistently estimate [y∗, x∗](t) or increments

of it by estimating each of the individual terms. Further, straightforwardly this estimator is

robust to jumps and we now have tools for assessing if the dependence between price processes

is effected by the presence of jumps. We will explore this issue elsewhere in some detail.
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6.2 Generalisation to multipower variation

We defined the bipower variation as

p − lim
δ↓0

δ1−(r+s)/2

�t/δ�−1∑
j=1

|yj(t)|r |yj+1(t)|s , r, s ≥ 0.

It is clear we can generalise this object by multiplying together a finite number of absolute

returns raised to some non-negative power. In general we call this idea multipower variation. In

particular the tripower variation process is

{y∗}[r,s,u] (t) = p − lim
δ↓0

δ1−(r+s+u)/2

�t/δ�−2∑
j=1

|yj(t)|r |yj+1(t)|s |yj+2(t)|u , r, s, u > 0,

while the quadpower variation process is

{y∗}[r,s,u,v] (t) = p−lim
δ↓0

δ1−(r+s+u+v)/2

�t/δ�−3∑
j=1

|yj(t)|r |yj+1(t)|s |yj+2(t)|u |yj+3(t)|v , r, s, u, v > 0.
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Figure 6: Estimation based on tripower variation. Simulation from a jump plus diffusion based
SV model. Rows correspond to M = 12 , M = 72 and M = 288 respectively. (a), (c) and (e)
plot the daily integrated variance σ2

i and the consistent estimator µ−3
2/3 {y∗M}[2/3,2/3,2/3]

i . (b), (d)
and (f) plot the jump QV and consistent estimator. Code is available at: jump RV.ox.
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Example 7 An example of this is where we take r = s = u = 2/3, then

µ−3
2/3 {y∗}[2/3,2/3,2/3] (t) =

∫ t

0
σ2(u)du,

another new estimator of integrated variance. Figure 6 repeats the experiments reported in Figure

3 but replaces bipower with tripower. In particular the realised tripower terms we plot have

µ−3
2/3

M−2∑
j=1

|yj,i|2/3 |yj+1,i|2/3 |yj+2,i|2/3 .

Likewise

µ−4
1/2 {y∗}[1/2,1/2,1/2,1/2] (t) =

∫ t

0
σ2(u)du.

This result is interesting as it is estimating integrated variance based on square roots of absolute

returns, which is quite a robust item. Figure 7 again repeats the previous experiments, but now

based on this quadpower concept. The realised version of the quadpower is

µ−4
1/2

M−3∑
j=1

√
|yj,iyj+1,iyj+2,iyj+3,i|.

We see from Figure 7 that we do not produce very different answers. An important feature

of this graph is one estimate of the QV of the jump component which is highly negative. This

makes little sense, as we know the jump component has to be non-negative. We discussed this

issue in the context of bipower in Section 4.3. If we use the same strategy here then we produce

much more sensible results. They are plotted in Figure 8. This suggests that the estimators are

reasonably accurate even for quite small samples.

6.3 Some infinite activity Lévy processes

In our analysis we have shown that the realised power variation of a compound Poisson process

converges in probability to zero when the power is less than two. An interesting extension of

this result is to Lévy processes with infinite numbers of jumps in finite time intervals. Then the

question is whether bipower variation is robust to these types of jumps?

Recall Lévy processes are processes with independent and stationary increments — see, for

example, the review in Barndorff-Nielsen and Shephard (2004, Ch. 2 and 3). Examples of this

type of process are the normal gamma (often called the variance gamma process) process and

the normal inverse Gaussian process. These are due to Madan and Seneta (1990) and Madan,

Carr, and Chang (1998) in the former case and Barndorff-Nielsen (1997) and Barndorff-Nielsen

(1998) in the latter case. Here we explore this problem, without giving a complete solution.
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Figure 7: Estimation based on quadpower variation. Simulation from a jump plus diffusion based
SV model. Rows correspond to M = 12 , M = 72 and M = 288 respectively. (a), (c) and (e)
plot the daily integrated variance σ2

i and the consistent estimator µ−4
1/2 {y∗M}[1/2,1/2,1/2,1/2]

i . (b),
(d) and (f) plot the jump QV and consistent estimator. Code is available at: jump RV.ox.

Let z denote a Lévy process. It is characterised by the Lévy-Khintchine representation which

says that we can write

log E exp {iζz(1)} = aiζ − 1
2
σ2ζ2 −

∫
R

{
1 − eiζx + iζx1B(x)

}
W (dx), (20)

where a ∈ R, σ ≥ 0, B = [−1, 1] and the Lévy measure W must satisfy∫
R

min{1, x2}W (dx) < ∞ (21)

and W has no atom at 0.

In this exposition we will assume the drift a and the volatility σ are zero, so z is a pure

jump process. The Lévy measure controls the jumps in the process. If
∫
R W (dx) < ∞ then the

process is a compound Poisson process and so has a finite number of jumps. If this does not

hold but
∫
R min{1, |x|}W (dx) < ∞ then we say the process is of B-activity. It has an infinite

number of jumps in any finite time interval. However, the process has enough stability that we

can decompose it into

z(t) = z+(t) − z−(t),
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Figure 8: Estimation based on the truncated version of quadpower variation, which is enforced
to improve the finite sample behaviour of the estimator. Simulation from a jump plus diffusion
based SV model. Rows correspond to M = 12 , M = 72 and M = 288 respectively. (a), (c) and
(e) plot the daily integrated variance σ2

i and the consistent estimator. (b), (d) and (f) plot the
jump QV and consistent estimator. Code is available at: jump RV.ox.

where z+ and z− are independent subordinators. Recall a subordinator is a Lévy process with

non-negative increments. Under the more general condition (21) this decomposition into positive

and negative jumps is not possible.

We believe that the results of Section 3 extend to cases where the jump process is of the

Lévy B-activity type and a discussion of this will be given elsewhere.

6.4 Asymptotic distribution

An important question is whether we can extend the convergence in probability result we saw for

realised bipower variation to convergence in distribution? This type of result has been developed

for realised variance by Barndorff-Nielsen and Shephard (2002a) and Barndorff-Nielsen and

Shephard (2002b). It has been extended considerably in their work on realised power variation

by Barndorff-Nielsen and Shephard (2003a) and Barndorff-Nielsen and Shephard (2003b). We

intend to discuss this question formally elsewhere. Clearly the development of a distribution

theory will allow us to test, robustly, for jumps in the log-price process. Here we state a particular

result.
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To include the possibility of the presence of a drift (or risk premium) α∗ in the distributional

theory we need to invoke the following condition.

Condition (M). The mean process α∗ satisfies (pathwise)

lim
δ↓0

max
1≤j≤M

δ−1|α∗(jδ) − α∗((j − 1)δ)| < ∞.

�
This condition is implied by Lipschitz continuity and itself implies continuity of α∗.

Theorem 8 Suppose that α∗ and σ are independent of w and satisfy conditions (a), (b), (V′)

and (M). Then y∗ ∈ SVSMc and for any r > 0 we have, for δ ↓ 0 and

{y∗δ}[r,r](t) = δ1−r

�t/δ�−1∑
j=1

|yj |r|yj+1|r,

that

{y∗δ}[r,r](t) − µ2
r

∫ t

0
σ2r(s)ds

δ1/2µ−1
2r

[
ν2r2r{y∗δ}[2r,2r](t)

]1/2

law→ N(0, 1)

where

νrr = Var
(|u|r|u′|r)

u, u′ being independent standard normal.

�

The proof runs along the lines of the discussion in Section 2 and of the main Theorem in

Barndorff-Nielsen and Shephard (2003a); the details will be given elsewhere.

6.5 Other related work on jumps

Here we briefly discuss some related econometric work which has studied jump type models.

There is a considerable literature on estimating continuous time parametric models. A

particular focus has been on the class of SV plus jumps model. Johannes, Polson, and Stroud

(2002) provide filtering methods for parameterised stochastic differential equations which exhibit

finite activity jumps. Their approach can be generalised to deal with infinite activity processes

for it relies on the very flexible auxiliary particle filters introduced by Pitt and Shephard (1999).

Andersen, Benzoni, and Lund (2002) and Chernov, Gallant, Ghysels, and Tauchen (2002) have

used EMM methods to estimate and test some of these models. Maheu and McCurdy (2003) have
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constructed a jump/GARCH discrete time model to daily data which attempts to unscramble

jumps and volatility changes.

There is a literature on discrete time parametric models of SV plus jumps. Chib, Nardari,

and Shephard (2002) use simulation based likelihood inference which allows one to test for jumps

in a standard manner. Other papers on this topic are pointed out in that paper’s references.

Ait-Sahalia (2002) has recently asked the generic question of whether a Markov process

exhibits jumps? He developed a theory for this based upon transition densities and then applied

this to financial data.

Finally, and closest to this paper, Barndorff-Nielsen and Shephard (2003c) have studied the

second order properties of realised variance under the assumption that the local martingale

component of prices is a time-changed Lévy process. Such models will have jumps in the price

process except in the Brownian motion special case. For time-changed Lévy processes the

realised variance is an inconsistent estimator of the increments of the time-change. They used

their results to suggest simple quasi-likelihood estimators of these types of models.

7 Conclusion

In this paper we have studied the recently formalised concept of realised power variation in the

context of SV models where there can be occasional jumps. We have shown that sometimes the

probability limit of these quantities are unaffected by rare jumps.

Realised power variation has inspired us to introduce realised bipower variation. This shares

some robustness property, but can also be setup to estimate integrated power volatility in SV

models. In a range of cases this produces an estimator of integrated variance in the presence

of jumps. To our knowledge this is the first radical alternative to the commonly used realised

variance estimator of this quantity. Importantly when we add jumps to the SV model the prob-

ability limit of the bipower estimator does not change, which means we can combine realised

variance with realised bipower variation to estimate the quadratic variation of the jump com-

ponent. We think our empirical work is the first time researchers have used this type of robust,

model free estimators of jumps in financial markets.

Various extensions of our work have been developed. We have outlined multivariate versions

of the methods, a distribution theory and an assessment of the robustness to the α∗ process.

We think our paper may open up a number of interesting research avenues for econometricians.
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