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S

In the context of nonlinear regression models, a new class of optimum design criteria
is developed and illustrated. This new class, termed I

L
-optimality, is analogous to Kiefer’s

W
k
-criterion but is based on predicted variance, whereas Kiefer’s class is based on the

eigenvalues of the information matrix; I
L
-optimal designs are invariant with respect to

different parameterisations of the model and contain G- and D-optimality as special cases.
We provide a general equivalence theorem which is used to obtain and verify I

L
-optimal

designs. The method is illustrated by various examples.

Some key words: Bayesian design; Invariance; Optimal design.

1. I  

The design problem for univariate nonlinear models of the form

y
k
=g(x

k
, h)+e

k
(k=1, . . . , n). (1)

is to obtain an n-point design j to estimate some function of the p-dimensional parameter
vector h with high efficiency. We consider approximate designs here, that is designs of the
form

j=q x1 , x2 , . . . , xr
v1 , v2 , . . . , v

r
r ,

where the design points or vectors x1 , x2, . . . , xr are distinct elements of the design space
X, for r�p, and the associated weights v1 , v2 , . . . , v

r
are nonnegative real numbers which

sum to unity; conversion of an optimal approximate design to a near-optimal exact one,
or a design where each v

k
is of the form n

k
/n for n

k
an integer, is discussed in Cook &

Nachtsheim (1980) and Pukelsheim & Rieder (1992).
When the errors associated with the assumed model (1) are uncorrelated Gaussian

random variables with zero means and constant variance, taken without loss of generality
to be equal one, the Fisher information of a design j is given by

M(j, h )= ∑
r

i=1
v
i
∂g(x

i
, h)

∂h

∂g(x
i
, h)

∂hT
=V TVV. (2)
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Here V is the r×p Jacobian of g with ith row equal to the gradient ∂g(x
i
, h)/∂h of the

response function at the point x
i
, and V is the diagonal matrix with diagonal elements

v1 , v2 , . . . , v
r
. Also, the variance function (Atkinson & Donev, 1992, p. 95) of j is given

by

d(x, j, h)=
∂g(x, h)

∂hT
M−1(j, h)

∂g(x, h)

∂h
, (3)

where ∂g(x, h)/∂h is of dimension p×1, and it is assumed that |M(j, h ) |N0. Since the
first-order approximation to the covariance of the maximum likelihood estimator for the
parameter h is M−1(j, h), this function corresponds to the first-order approximation to
the variance of the predicted response.

Optimal designs typically minimise some convex function of the inverse Fisher infor-
mation matrix. For example, designs which minimise the logarithm of the determinant of
M−1(j, h0 ) are called locally D-optimal, those which minimise its trace are called locally
A-optimal, and those which minimise its largest eigenvalue are called locally E-optimal;
the term ‘locally’ is used here to emphasise that the corresponding design is based on an
initial parameter choice, h0, say. Additionally, designs which minimise the supremum over
all xµX of d(x, j, h0 ) are called locally G-optimal, and the general equivalence theorem
of Kiefer & Wolfowitz (1960) establishes that D-optimal designs are also G-optimal. We
remark finally that the locally optimal design problem for a nonlinear regression is a
particular case of a design problem with uncontrolled variables described by Fedorov &
Atkinson (1988). Therefore most of the ideas and results of this paper can be transferred
to that setting without any difficulty. These extensions are omitted for the sake of brevity.

Kiefer (1974) connects D-, A- and E-optimality in one class of criteria by noting that,
if l1 , . . . , l

p
are the p eigenvalues of M−1(j, h0 ), then the locally W

k
-optimal designs, which

minimise

q1p (lk
1
+ . . .+lk

p
)r1/k, (4)

for kµ(0, 2), are D-optimal for k�0, A-optimal for k=1 and E-optimal for k�2. Note
that, whereas D-, A- and E-optimal designs focus on the covariance matrix associated
with the maximum likelihood estimation of h, G- and I-optimal designs, which are those
minimising the average variance function ∆

X
d(x, j, h0 ) dm(x), focus on the predicted vari-

ance associated with the estimate of the response function. Here, m is an arbitrary weight
measure over X. The diversity of optimal designs is illustrated with the following example.

Example 1. The two-parameter model function given by

g(x, h)=
h1

h1−h2
(e−h

2
x−e−h

1
x) (h1 , h2>0, h1>h2) (5)

is often used to model the amount of intermediate product present in a compartmental
model at time x; see Atkinson et al. (1993) and Box & Lucas (1959). Suppose that a
researcher requires an optimal design over the design space X=[0, 20] with initial param-
eter estimates h0

1
=0·70 and h0

2
=0·20. The Elfving set (Elfving, 1952) is depicted in Fig. 1.

It is defined as the convex hull of −G^G, where G is the curve of the gradient

G=q ∂
∂h

g(x, h)K
h=h

0

; xµ[0, 20]r .
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The locally D-/G-, A-, E- and I-optimal designs for the uniform weight measure are given
in Table 1.

_0·5 _0·3 _0·1 0·1 0·3 0·5

2·0

1·0

0·0

_1·0

_2·0

Fig. 1. The Elfving set for the intermediate product
model, where h0= (0·7, 0·2). The dotted and solid lines

show the curves {±dg(x, h)/dh |
h=h

0

; xµ[0, 20]}.

Table 1. L ocally optimal designs in the intermediate product model (5) with respect
to various optimality criteria

Criterion I A (k=1) E (k=2) D/G (k=0)

q1·311 6·768

0·328 0·672r q1·094 7·010

0·770 0·230r q0·994 7·122

0·847 0·153r q1·229 6·858

0·5 0·5 rOptimal design

Note that, as k in (4) increases from zero through one to infinity, the design support
points become further apart and the weight on the lower support point increases. If we
move from the D-/G-optimal design to the I-optimal design, the opposite behaviour occurs.

2. I
L
-

Assume that the regression function g( . , h) can also be defined on a set Z which may
be larger than the design space X. For a point zµZ the variance of the predicted response
is given by

∂g(z, h)

∂hT
M−(j, h)

∂g(z, h)

∂h K
h=h0

,

where M−(j, h) denotes a generalised inverse of M(j, h) and it is assumed that g(z, h) is
estimable by the design j, that is

∂g(z, h)

∂h K
h=h0

µRange{M(j, h0 )}. (6)

In order to achieve a transparent presentation we assume that the experimenter is inter-
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ested in prediction of the response at at least p points z1 , . . . , zp such that the corresponding
vectors

q∂g(z
j
, h)

∂h K
h=h0rpj=1

are linearly independent. By the range inclusion (6), a design for predicting the response
function at these points must have a nonsingular information matrix. Finally, we assume
that m is a measure on Z with supp (m)6{z1 , . . . , zp}. Generalisations for prediction with
a singular information matrix M(j, h0) will be discussed briefly in § 5.

In connecting D-/G-, A- and E-optimality through the W
k
-optimality criterion, Kiefer

(1974) uses different weighted sums of the eigenvalues of the inverse Fisher information
matrix M−1 (j, h0 ). Analogously, we weight the variance function in the following defi-
nition with an exponent L and a weight measure m.

D 1. For L µ(0, 2 ) a design j*
L

with nonsingular information matrix
M(j*

L
, h0) is said to be locally I

L
-optimal if it minimises the function

y
L
(j)=qP

Z

dL (z, j, h0) dm(z)r1/L (7)

over the space of all approximate designs; here m is a probability measure and Z is the
corresponding integration space, usually, but not always, taken to coincide with the design
space, X; see Example 5 below.

Remark 1. Note that this definition is easily extended to allow for the cases L =0 and
L =2 by defining the criterion functions in these cases to be

y0(j)=expqP
Z

log d(z, j, h0) dm(z)r , y
2

(j)= sup
zµZ

d(z, j, h0 ).

When the design and integration spaces coincide, that is X=Z, and d(x, j, h0 ) is bounded
on X, I

2
-optimality is equivalent to D-/G-optimality and can be obtained from

I
L
-optimality as L �2. Moreover, I1-optimality corresponds to ordinary I-optimality,

which is in fact a special case of A-optimality.

Some special cases of our I
L
-optimality criterion have already been considered; see e.g.

Studden (1977) or Wong (1992). There is also a close relationship to optimal designs for
extrapolation and interpolation; see e.g. Kiefer & Wolfowitz (1964), Levine (1966), Studden
(1971), Herzberg & Cox (1972) and Spruill (1987, 1990a, b). One motivation for consider-
ing various powers in Definition 1 is to allow for different averages of the variance function
over the space Z. Another is to connect different design criteria such as D-/G- and
I-optimality, which focus on the predicted variance, as Kiefer (1974) connected the A-, D-
and E-optimality criterion by (4). Furthermore, the measure m in Definition 1 can be used
to weight specific regions of the design space differently; see also § 6 below, Studden (1977),
Cook & Nachtsheim (1982) and Haines (1987).

In comparing Kiefer’s W
k

class and our I
L

class, the following theorem provides an
important preference for the latter class.

T 1. L et the design j*
L

be locally I
L
-optimal for a nonlinear model g(x, h) which

depends on the p-vector h, and let the p-vector w=w(h ) be any linear or nonlinear reparam-
eterisation of g such that the p×p Jacobian T =∂h/∂w is nonsingular. T hen j*

L
is locally

I
L
-optimal for g(x, w). T hat is, I

L
-optimality is invariant with respect to reparameterisations.
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Proof. Let V
h

be the r×p Jacobian of g with ith row equal to ∂h(x
i
, h)/∂hT and V

w
be

the r×p Jacobian of g with ith row equal to ∂g(x
i
, w)/∂wT. Then, by the chain rule,

V
w
=V

h
T , so that M(j, w)=V T

w
VV

w
=T TM(j, h)T and

d(x, j, w)=
∂g(x, w)

∂wT
M−1 (j, w)

∂g(x, w)

∂w
=d(x, j, h ).

Therefore the variance function and corresponding optimality criteria are invariant with
respect to reparameterisations, and as a consequence the I

L
-optimal designs are also

invariant. %

Remark 2. As a consequence, when the regression is linear, i.e.

g(x, h)=h1 f1(x)+ . . .+h
p
f
p
(x),

the I
L
-optimal designs do not depend on the specific choice of a basis for the vector space

of the regression functions. In particular, if the assumed model function is a kth-degree
polynomial model but we are entertaining several design spaces of the form [a, b], we
need only obtain the I

L
-optimal design for this model using the design space [0, 1], since

this design could then be suitably modified for any design space [a, b]; see Example 3
below.

Remark 3. In regression settings, invariance of an optimal design to reparameterisation
of the model function is typically an absolute necessity, and, since D-optimality is the only
criterion of the Kiefer W

k
class which possesses this property, the I

L
class is therefore

favoured in this regard. An advantage of using W
k
-optimal designs is that their optimality

can be verified by using the general equivalence theorem of Kiefer & Wolfowitz (1960);
in § 3 we show that this same advantage applies also to I

L
-optimal designs.

Example 2. The range of designs produced using the I
L
-criterion is illustrated with the

intermediate product model function in (5) for Z=X=[0, 20], h0
1
=0·70, h0

2
=0·20 and

6

5

4

3

2

1

0
0 5 10 15 20

x

f0

f1

f2

Fig. 2: Example 2. The variance function f
L
(x)=

d(x, j*
L
) for various I

L
-optimal designs for the intermedi-

ate product model (h0
1
=0·7, h0

2
=0·2). Solid line, L =0;

dashed line, L =1; dotted line, L =2.
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dm(z)=dz by examining the locally I
L
-optimal designs for L =0, 1 and 2,

j*
0
=q1·380 6·693

0·200 0·800r , j*
1
=q1·311 6·768

0·328 0·672r , j*
2
=q1·229 6·858

1
2

1
2 r .

The corresponding variance functions are graphed in Fig. 2, indicating how the I
L
-optimal

designs weight the regions of the design space differently; I
L
-optimal designs with increasing

L yield a smaller variance function in the region [4, 20], while for xµ[0, 4] the I
2

-
optimal design produces the smallest variance function. To illustrate Theorem 1 we note
that the above designs are also I

L
-optimal for the model

g(x, a, b)=
a

eax

ebx−1

b
,

which is obtained by reparameterisation from the intermediate product model (h1=a,
h1−h2=b).

Example 3. In the spirit of Cook & Nachtsheim (1982), we also examine the three-
parameter quadratic model function

g(x, h)=h0+h1x+h2x2.

The I
L
-optimal designs for L =0, 1 and 2 for this model over Z=X=[0, 1] and with

dm(z)=dz are

j*
0
=q 0 1

2
1

0·2285 0·5430 0·2285r , j*
1
=q0 1

2
1

1
4

1
2

1
4r , j*

2
=q0 1

2
1

1
3

1
3

1
3r .

Results on symmetry and admissibility of optimal designs dictate that the support points
of these designs must be x=0, 1

2
and 1, and the corresponding weights must be of the

form v=a, 1−2a and a for aµ[0, 1
2
]; see Pukelsheim (1993, p. 253). As with the previous

example, the corresponding plots of the variance functions, given in Fig. 3, show how
I
L
-optimal designs with smaller values of L focus on regions of X where the variance

5

4

3

2

1

0
0·0 0·2 0·4 0·6 0·8 1·0

x

f0

f1
f2

Fig. 3: Example 3. The variance function f
L
(x)=

d(x, j*
L
) for various I

L
-optimal designs in the quadratic

regression model. Solid line, L =0; dashed line, L =1;
dotted line, L =2.
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function takes on lower values and vice versa. For model functions of this type, we rec-
ommend I

L
-optimal designs with smaller values of L , such as L =1, rather than those

with larger values since the variance function of the I1-optimal design lies below the
variance function of the D-/I

2
-optimal design for roughly two-thirds of the integration

space; see Cook & Nachtsheim (1982). Incidentally, to illustrate the use of Remark 2,
note that the I1-optimal design for this model function over the interval [a, b] is

j*
1
=qa 1

2
(a+b) b

1
4

1
2

1
4r .

The I0- and I
2

-optimal designs are obtained in the same way.

3. A   

Obtaining and verifying efficient I
L
-optimal designs is greatly facilitated by the following

theorems which are proved in the Appendix.

T 2. For any L µ[0, 2 ), I
L
-optimal designs may equivalently be characterised

by either of the following:
(i ) j*

L
minimises y

L
(j)={∆

Z
dL(z, j, h0 ) dm(z)}1/L over the set of all approximate designs;

(ii ) for all xµX,

P
Z

dL−1(z, j*
L
, h0)d2(x, z, j*

L
, h0 ) dm(z)∏ P

Z

dL(z, j*
L
, h0 ) dm(z); (8)

here the covariance function d(x, z, j, h ) is given by

∂g(x, h)

∂hT
M−1 (j, h)

∂g(z, h)

∂h

and the variance function d(z, j, h) is defined in (3). Moreover, equality is achieved in
(8) at the support points of j*

L
.

Remark 4. The second condition in this theorem is equivalent to w
L
(x, j*

L
)∏1 for all

xµX, where

w
L
(x, j*

L
)=

∆
Z

dL−1(z, j*
L
, h0 )d2(x, z, j*

L
, h0) dm(z)

∆
Z

dL (z, j*
L
, h0) dm(z)

. (9)

It follows from Theorem 2 that we can verify that a given design is indeed I
L
-optimal

by plotting the graph of w
L
(x, j*

L
) versus x to make sure that this curve first does not go

above the line y=1, and secondly touches the line y=1 at the support points of j*
L
.

Moreover, the following result shows that, if

eff
L
(j)=

y
L
(j*
L
)

y
L
(j)

(10)

denotes the local I
L
-efficiency of a design j, then the maximum excess of w

L
(x, j) over the

line y=1 provides a lower bound for eff
L
(j).

T 3. If j is a design with nonsingular information matrix M(j, h0 ), then

eff
L
(j)�

1

sup
xµX

w
L
(x, j)

.
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1·0

0·8

0·6

0·4

0·2

0·0

(a)

0 5 10 15 20

x

w1

w0

2·5

2·0

1·5

1·0

0·5

0·0

(b)

0 5 10 15 20

x

w1( .,j
*
0)

w0( .,j
*
1)

Fig. 4. (a) The function w
L
(x, j*

L
) for two I

L
-optimal designs (X=Z=[0, 20]) in the intermediate product

model (h0
1
=0·7, h0

2
=0·2). Solid line, L =0; dashed line, L =1. (b) The functions w0 (x, j*

1
) (solid line) and

w1 (x, j*
0
) (dashed line) in the intermediate product model (X=Z=[0, 20], h0

1
=0·7, h0

2
=0·2).

Example 4. To illustrate Theorem 2, the functions w1(x, j*
1
) and w0(x, j*

0
) have been

plotted against x in Fig. 4(a) for the intermediate product model function in (5) and the
locally I0- and I1-optimal designs,

j*
0
=q1·380 6·693

0·200 0·800r , j*
1
=q1·311 6·768

0·328 0·672r .

The I
L
-optimality of j*

L
is verified by noting that w

L
(x, j*

L
)∏1 for all xµ[0, 20]; L =0, 1.

In Fig. 4(b) we illustrate the application of Theorem 3 and plot the functions w1 (x, j*
0
)

and w0 (x, j*
1
). By Theorem 2 the design j*

0
is not I1-optimal and j*

1
not I0-optimal. On

the other hand, Theorem 3 shows that the I1-efficiency of j*
0

is at least 40% while the
I0-efficiency of j*

1
is at least 81·7%. In order to demonstrate the accuracy of these bounds

we also calculated the exact efficiencies, which are eff1(j*0 )j 40·5% and eff0 (j*1 )j
90·45%.

Remark 5. The above general equivalence theorem can be extended to the case L =2
in the following manner; see e.g. Wong & Cook (1992). Define

P(j)=qzµZ |d(z, j, h0 )= sup
zµZ

d(z, j, h0)r .

Then the following are equivalent:
(i ) j*

2
minimises y

2
(j)=sup

zµZ
d(z, j, h0 ), that is j*

2
is I

2
-optimal;

(ii ) there exists a probability measure m* on P(j*
2

) such that, for all xµX,

P
Z

d2 (x, z, j*
2

, h0) dm*(z)∏ sup
zµZ

d(z, j*
2

, h0).

Note that for X5Z we have Y
2

(j)�p, which implies a sufficient condition for I
2

-
optimality: if Z6X and Y

2
(j*)=p, then j* is I

2
-optimal. Moreover, if Z=X, then the

converse is also true. This follows because, in the case Z=X, I
2

-optimality is equivalent
to D/G-optimality.
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Example 5. As pointed out above, it is not necessary that the design space X and the
integration space Z coincide. One instance involves prediction or extrapolation in which
the design space is a proper subset of the integration space; for example, design support
points may only be chosen in the interval [a, b], but we wish to take account of the
predicted variance outside this region; see Spruill (1987; 1990a, b). Our general equivalence
theorem applies also in this situation. By way of illustration, consider again the problem
of determining the I1-optimal design for the quadratic model of Example 2. When we take
X=Z=[0, 1], we obtain j*

1
of Example 3.

In contrast, if we are interested in predicting out to z=2, so that Z=[0, 2], but can
only take design points in the interval X=[0, 1], the I1-optimal design is

j**
1

=q 0 1
2

1

0·165 0·452 0·383r .

The result of shifting the prediction space from [0, 1] to [0, 2] is thus an increase in the
weight on the upper support point.

The application of the general equivalence theorem shows that the function w1(x, j**
1

)
does not cross over the line y=1 on the design space X=[0, 1]. The inverse maximal
excess of the corresponding function for the design j*

1
over the line y=1 gives a lower

bound for the I1-efficiency, if j*
1

is used to extrapolate on Z=[0, 2], that is
eff1 (j*)�56·49%. We also note that the exact I1-efficiency of j*

1
for extrapolation on Z=

[0, 2] is given by 80·5%.
A second instance in which the design and prediction spaces differ is interpolation, in

which Z is a proper subset of X; some practical examples are provided in Cook &
Nachtsheim (1982). For the quadratic model with X=[0, 1] but with focus on the sub-
space Z=[1

4
, 3
4
], the I1-optimal design is now

j***
1

=q 0 1
2

1

0·126 0·748 0·126r
and, from Theorem 3, the efficiency of j*

1
for interpolation in Z=[1

4
, 3
4
] is at least 55·66%.

The exact efficiency is 80·23%.

4. C 

The I
L
-optimal designs may be obtained using software packages such as Gauss, Matlab,

SAS or S-Plus. For example, all I
L
-optimal designs given in this paper were obtained using

Gauss computer programs in which the objective function

y
L
(j)=qP

Z

dL(x, j, h0) dm(x)r1/L
is specified for the given model function and initial parameter estimate h0. The Broyden–
Fletcher–Goldfarb–Shanno minimisation routine, which calculates a numerical gradient
and Hessian, is used to obtain the corresponding locally I

L
-optimal design.

An alternative strategy would be to use the following algorithm which has been adapted
from Fedorov (1972).

A
1. Start with an arbitrary admissible p-point design j0 and let K=0.
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2. Obtain w
L
(x, j

K
) and x*

K
=arg sup

xµX
w
L
(x, j

K
).

3. For

j
a
=aj

K
+ (1−a) qx*K1 r,

find a*
K
µ[0, 1] to minimise w

L
(x*
K
, j
a
).

4. L et

j
K+1=a*

K
j
K
+ (1−a*

K
) qx*K1 r .

5. Repeat the loop and go to step 2 until {sup
xµX

w
L
(x, j

K
)}−1�1−e for some pre-

specified e.

Under fairly general conditions, the sequence {j
K
}
KµN obtained using this algorithm

converges to the I
L
-optimal design; see Fedorov (1972). Gauss computer programs to

obtain I
L
-optimal designs are available from T. E. O’Brien.

5. S 

5·1. Bayesian designs

In nonlinear models the locally optimal design criterion y
L

is useful if a best guess for
the unknown parameter is available; see e.g. Chernoff (1953). If less precise knowledge of
the unknown parameter is available a minimax approach (Fedorov & Atkinson, 1988) or
a Bayesian (Chaloner & Verdinelli, 1995) or robust (Pronzato & Walter, 1985) version of
the I

L
-optimality criterion could be used. For the sake of brevity we concentrate on the

last named criterion. More precisely, if p denotes a prior distribution for the unknown
parameter hµH, we define a Bayesian I

L
-optimal design with respect to the prior p as a

design which minimises

yp
L
(j))CP

Z
qP

H

d(z, j, h) dp(h )rL dm(z)D1/L.
Note that the case L =1 gives the Bayesian A-optimality criterion considered by Chaloner
& Larntz (1989) while the case L =2, Z=X corresponds to the Bayesian D-optimality
criterion (Pronzato & Walter, 1985). For an interpretation of the integrated variance
∆
H
d(z, j, h)p(dh ) in terms of approximate expected utility we refer to Chaloner & Verdinelli

(1995, p. 286). The criterion yp
L

is based on a posterior normal approximation which only
depends on the data through the maximum likelihood estimator h@ . An alternative criterion
can be obtained by using a normal approximation of the joint posterior distribution of h;
see Chaloner & Verdinelli (1995, p. 286). This is based on the matrix M(j, h)+n−1R,
where R is the matrix of second derivatives of the logarithm of the prior density function
or the precision matrix of the prior distribution.

All results of the previous sections can be easily transferred to the Bayesian criterion
yp
L
. As a simple demonstration we consider the bound for the efficiency of Theorem 3.

For the Bayesian yp
L
-optimality criterion this bound is given by

eff p
L
(j))

inf
g
yp
L
(g)

yp
L
(j)

�
1

sup
xµX

wp
L
(x, j)

,
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where

wp
L
(x, j)=

∆
Z

{∆
H
d(z, h, j) dp(h )}L−1{∆

H
d2(x, z, j, h) dp(h )} dm(z)

∆
Z

{∆
H
d(z, j, h) dp(h )}L dm(z)

if 0∏L <2, and

wp
2

(x, j)=
1

p P
H

d(x, j, h) dp(h )

if L =2, Z=X. Similarly, an analogue of Theorem 2 shows that jp
L

minimises yp
L

if and
only if wp

L
(x, jp

L
)∏1 for all xµX.

We illustrate these results for the intermediate product model (5) using independent
uniform priors p1 and p2 on the intervals [0·3, 1·1] and [0·15, 0·25] for the parameters
h1 and h2 , respectively. By numerical calculation the Bayesian yp

2
-optimal design with

respect to the prior p=p1×p2 , with Z=X=[0, 20], is found as

jp
2
=q1·236 6·15

0·5 0·5 r .

The function wp
2

(x, jp
2

) does not cross the line y=1, showing that jp
2

is Bayesian
yp
2

-optimal. We also investigated the locally I
2

-optimal design (h0
1
=0·7, h0

2
=0·2) given

in Example 2. The inverse maximal excess over the line y=1 gives the lower bound
for the efficiency of j*

2
with respect to the Bayesian I

2
-optimal design, that is

eff p
2

(j)�94·76%.

5·2. Model-robust designs

Since in practice the regression model is not known, Läuter (1974, 1976) proposed a
model-robust optimality criterion which averages various design criteria. Cook &
Nachtsheim (1982) applied such a criterion to design for polynomial regression when the
degree of the polynomial is unknown. In a similar way we can extend the I

L
-optimality

criterion to a design criterion for a class of models

F={g1(x, h1), . . . , g
k
(x, h

k
)},

yF
L

(j)= ∑
k

j=1
a
jqP

Z

dL
j
(z, j, h

j
)dm(z)r1/L,

where d
j
(x, j, h

j
) denotes the variance function for the model g

j
(x, h

j
) ( j=1, . . . , k) and

a
j
�0 reflects the experimenter’s belief about the adequacy of the model g

j
(x, h

j
)

( j=1, . . . , k). A design is called I
L
-optimal for the class of models F with respect to the

prior a=(a1 , . . . , a
k
) if it minimises the function yF

L
over the set of all approximate designs.

The cases L =2 and L =1 give similar optimality criteria (Z=X ) to those considered
by Läuter (1974) and Cook & Nachtsheim (1982). The corresponding function wF

L
is given

by

wF
L

(x, j)=
Wk
j=1 a

j
∆
Z

dL−1
j

(z, j, h
j
)d2
j
(x, z, j, h

j
) dm(z)

Wk
j=1 a

j
∆
Z

dL
j
(z, j, h

j
) dm(z)

(0∏L <2 )

and a design is IF
L

-optimal for the class F if and only if wF
L

(x, j)∏1 for all xµX. Similarly,
a lower bound for the IF

L
-efficiency of j is given by {sup

xµX
wF
L

(x, j)}−1.
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As a simple example consider the class of quadratic polynomials F2=
{a1+b1x, a2+b2x+c2x2} and a uniform prior for the linear and quadratic models, that
is, a1=a2=0·5. The IF

21
-optimal design, for Z=X=[0, 1], was found by Cook &

Nachtsheim (1982) to be

jF
21
=q 0 1

2
1

0·293 0·414 0·293r ,

and the IF
22
-optimal design, determined by the methods described in § 4, is given by

jF
22
=A0 1

2
1

1
4

1
2

1
4B .

5·3. Singular Fisher information

We can often extend the analysis to the case of singular information matrices. Typically,
singular optimal designs occur for prediction at fewer than p points in the design space,
that is #Z<p, Z5X (Kiefer & Wolfowitz, 1964; Herzberg & Cox, 1972; Spruill, 1987,
1990a, b).

More precisely, assume that j is a design such that g(x, h0) is estimable for all
zµsupp(m); that is the range inclusion (6) holds for all zµsupp(m). The I

L
-optimality can

be exactly defined as in § 2, where the inverse in the variance function (3) has to be
replaced by a generalised inverse of M(j, h0). The results of Theorems 2 and 3 can be
rewritten as follows. If 0∏L <2, then j*

L
is I

L
-optimal if and only if there exists a

generalised inverse, G, say, of M(j, h0) such that the inequality

w
L
(x, j*

L
, G))

P
Z

dL−1 (z, j*
L
, h0) q∂g(x, h)

∂hT K
h=h

0

G
∂g(z, h)

∂h K
h=h

0

r2 dm(z)

∆
Z

dL (z, j*
L
, h0) dm(z)

∏1

holds for all xµX. Moreover, the I
L
-efficiency of a design j is bounded from below by

eff
L
(j)�

1

inf
G

sup
xµX

w
L
(x, j*

L
, G)

,

where the infimum is taken over the set of all generalised inverses of M(j, h0 ). An ana-
logous statement holds for the case L =2 and is omitted for the sake of brevity. These
results can be derived from a general bound for design efficiencies given by Dette (1996).
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A

Proofs of T heorems 2 and 3

In definition of y
L

in Definition 1 put L =−p where pµ[−2, 0]. We obtain

y−1
L

(j)=CP
Z

{d(z, j, h0 )}−p dm(z)D1/p.
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It follows from results of Pukelsheim (1993, p. 77) that y−1
L

(j) is a concave function on the set of
designs with nonsingular information matrices. For fixed designs j, g with nonsingular information
matrices define j

a
= (1−a)j+ag, g(a)=y−1

L
(j
a
)=y−1

L
{(1−a)j+ag} and assume that the order

of differentiation and integration can be interchanged in the I
L
-optimality criterion, i.e.

d

da P
Z

[tr{M−1 (j
a
, h0 )B(z)}]L dm(z)= P

Z

d

da
[tr{M−1 (j

a
, h0 )B(z)}]L dm(z),

where

B(z)=A∂g(z, h)

∂h B A∂g(z, h)

∂h BTK
h=h

0

.

Well-known results (Fedorov, 1972, p. 21) show that

d

da
g(a)={y

L
(j
a
)}−L−1 P

Z

[tr{M−1 (j
a
, h0 )B(z)}]L−1

×tr[M−1 (j
a
, h0 ){M(g, h0 )−M(j, h0 )}M−1 (j, h0 )B(z)] dm(z) (A1)

=y−L−1
L

(j
a
) AP

X
P
Z

[tr{M−1 (j
a
, h0 )B(z)}]L−1

×[tr{M−1 (j
a
, h0 )B(x)M−1 (j

a
, h0 )B(z)}

−tr{M−1 (j
a
, h0 )M(j, h0 )M−1 (j

a
, h0 )B(z)}] dm(z) dg(x)B (A2)

∏y−L−1
L

(j
a
) Csup

xµX
P
Z

dL−1 (z, j
a
, h0 )d2 (x, z, j

a
, h0 ) dm(z)

− P
Z

dL−1(z, j
a
, h0 ) tr{M−1 (j

a
, h0 )M(j, h0 )M−1 (j

a
, h0 )B(z)} dm(z)D .

Observing the definition of w
L

in (9) we obtain

d

da
g(a)∏y−1

L
(j
a
) sup
xµX

w
L
(x, j

a
)−y−L−1

L
(j
a
)

× P
Z

dL−1 (z, j
a
, h0 )tr{M−1 (j

a
, h0)M(j, h0 )M−1 (j

a
, h0 )B(z)} dm(z). (A3)

The mean value theorem, the concavity of g and the inequality (A2) imply for some a*µ(0, 1) that

1

y
L
(g)

−
1

y
L
(j)

=g(1)−g(0)=
d

da
g(a)K

a=a*
∏

d

da
g(a)K

a=0+
∏

sup
xµX

w
L
(x, j)

y
L
(j)

−
1

y
L
(j)

,

which is equivalent to

y
L
(g)

y
L
(j)

�
1

sup
xµX

w
L
(x, j)

. (A4)

The statement of Theorem 3 is now obtained by inserting g=j*
L

in this inequality. Moreover, for
g=j=j*

L
we obtain from (A3) that sup

xµX
w
L
(x, j*

L
)�1. On the other hand j*

L
minimises y

L
(j)

and an argument similar to that used in (A1) and (A2) shows, for a Dirac measure g
x

at x, that

0�
d

da
y−1
L

{(1−a)j*
L
+ag

x
}K
a=0+

=y−L−1
L

(j*
L
) P

Z

dL−1(z, j*
L
, h0){d2(x, z, j*

L
, h0)−d1(z, j*

L
, h0)} dm(z)

=
w
L
(x, j

L
)−1

y
L
(j
L
)

,
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which establishes the converse inequality. Consequently j*
L

is I
L
-optimal if and only if

sup
xµX

w
L
(x, j*

L
)=1,

which proves inequality (8) of Theorem 2. The assertion regarding the support points follows by
standard arguments of optimal design theory and the proof will be omitted. %
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