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Abstract

An algorithm is presented to calculate likelihoods of acquisition routes solely using individual patient data concerning
period of stay and microbiological surveillance (without genotyping). The algorithm also produces estimates for the preva-
lence and the number of acquisitions by each route. The algorithm is applied to colonization data of third-generation-
cephalosporin-resistant Enterobacteriaceae (CRE) in two Intensive Care units (ICUs), using genotyping and epidemiologi-
cal linkage as reference standard. Surveillance cultures were obtained on admission and twice weekly thereafter. All CREs
were genotyped. Based upon the reference standard, daily prevalence of CRE in ICU1 and ICU2 was 26.1% (standard devi-
ation 15.4%) and 15.1% (standard deviation 13.4%), respectively, with five out of 23 (21.7%) and six out of 21 (28.6%) cases of
acquired colonization being of exogenous origin, respectively. The algorithm predicted the likelihood of predominance of
the endogenous over the exogenous route to be 99.7% and >99.9% for ICU1 and ICU2 respectively. The estimated number
of acquisitions is 29.8 and 27.2 and the estimated prevalence is 27.6% and 17.6% for ICU1 and ICU2, respectively. Using
longitudinal colonization data only, the algorithm can be used to determine the relative importance of acquisition routes
and to quantify effects of interventions, taking patient-dependency into account.
Running title: Modeling acquisition routes
Keywords: maximum likelihood, transmission parameters, algorithm, small populations, Enterobacteriaceae

Abbreviations: MLE, Maximum Likelihood Estimate; CRE, cephalosporin resistant Enterobacteriaceae; ICU, Intensive Care
Unit; MRSA, methicillin-resistant Staphylococcus aureus; VRE, vancomycin-resistant Enterococci; SD, standard deviation;
CI, confidence interval; MCMC, Monte Carlo Markov Chain
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Within health care settings, antibiotic resistance increas-
ingly hampers successful treatment of infections, especially
in intensive care units (ICUs) (1). For some pathogens (e.g.,
vancomycin-resistant Staphylococcus aureus, pan-resistant
Pseudomonas aeruginosa and Acinetobacter species) the post-
antibiotic era is approaching. With a limited armamentar-
ium of antibiotics remaining available for treatment, infec-
tion prevention becomes more and more important. The
epidemiology of antibiotic resistance in hospital settings,
however, is complex and quantitative understanding of the
dynamics is essential for designing efficient infection con-
trol strategies. As only a fraction of colonized patients will
develop infections (2), the true volume of antibiotic resis-
tance is best represented by asymptomatic carriage (i.e., col-
onization). Changes in the prevalence of colonization with
antibiotic-resistant microorganisms within hospital settings
may occur through different processes: admission and dis-
charge of colonized and non-colonized patients; mutations,
changing susceptible bacteria into resistant ones, followed

by selection due to antibiotic pressure; and cross transmis-
sion, usually via temporarily contaminated hands of health
care workers (3). A key characteristic of cross transmission
is dependence among patients. The risk of acquisition (also
called ‘colonization pressure’) is influenced by the coloniza-
tion status of other patients (4). This has been demonstrated
for methicillin-resistant Staphylococcus aureus (MRSA) (5),
vancomycin-resistant Enterococci (VRE) (6) and Enterobac-
teriaceae (7).

Because of the typically small patient populations in ICUs
(usually <20) and the rapid patient turnover, large fluctua-
tions in proportions of colonized patients occur naturally (3).
Also, the dependence created by cross transmission leads to
overdispersion and autocorrelation in the number of colo-
nized patients per day (8). So, the distribution of the number
of patients colonized at a given day will be skewed and the
variance to mean ratio of the number of patients colonized
per day will exceed 1. Processes in which patients interact
are usually called ‘non-linear’. In contrast, mutations, selec-
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tion of resistant flora and admission of colonized patients oc-
cur independently of the colonization status of other patients
and these processes are called linear. For these processes
there is still autocorrelation in the number of colonized pa-
tients per day (as patients stay in the unit for some time), but,
when data cover a long time period, the number of patients
colonized each day will be binomially distributed.

As the quantification of infection routes is relevant for the
design of infection control strategies, as well as for the inter-
pretation of the observed effects of interventions (8, 9), our
aim here is to determine from the available data the rela-
tive importance of the various routes leading to detectable
colonization. The Markov model proposed by Pelupessy et
al. (10), uses longitudinal data concerning the number of
patients colonized with a certain pathogen as input for max-
imum likelihood estimation of acquisition parameters. The
extension introduced here uses data on individual patients,
with the advantage that we
• can explicitly distinguish rates of admission of colo-

nized patients from endogenous selection rates
• can use the actual changes in bed occupancy (as in (13)),

i.e., there is no need to assume that all beds are occupied
and that the length of stay is exponentially distributed

• can take the moments of obtaining cultures and the re-
sults of these cultures as the bookkeeping cornerstone of
the model, while a stochastic model estimates the status
of patients in-between culture sampling moments.

• allow for incorporation of other patient characteristics,
e.g., antibiotic use.

So the model formulation is data driven from the very be-
ginning and incorporates all the information that is avail-
able. It yields maximum likelihood estimates (MLE’s), as
well as confidence regions, for acquisition parameters, thus
enabling the identification of the dominant acquisition route.
Moreover, the probability that a specific patient is colonized
at a given time can be determined. This allows for calcula-
tion of relevant quantities, e.g., the prevalence and the ex-
pected number of acquisitions in the unit.

Here, we have performed a ’proof of principle’ by making
a prospective comparison of model predictions on the rela-
tive importance of endogenous and exogenous acquisition of
third-generation cephalosporin-resistant Enterobacteriaceae
(CRE) in two ICUs to the reference standard derived from
extensive surveillance and genotyping data, that are avail-
able in this particular case. We have chosen CRE as marker
pathogen because, according to the literature, both endoge-
nous and exogenous acquisition can contribute to its epi-
demiology (11, 12). This is in contrast to the epidemiology
of MRSA and VRE, where exogenous acquisition is known
to be a much more dominant acquisition route.

The underlying acquisition model

An important building block for our algorithm is a mecha-
nistic acquisition model, which governs the changes in colo-
nization status. It incorporates the different infection routes
and, preferably, requires the specification of only few param-
eters. The mechanistic model that we employ in the present
study is characterized by the following assumptions:

• patients can be in two states: either a patient is colo-
nized, i.e., he/she carries the pathogen of interest at a
level that is, in principle, detectable or a patient is un-
colonized, i.e., does not carry the infective agent at a de-
tectable level.

• once a patient becomes colonized, he/she remains colo-
nized during the rest of the stay.

• uncolonized patients can acquire colonization exoge-
nously by transmission or can go through an endoge-
nous process in which the (already present) pathogen
grows to detectable levels.

• when we know the colonization status of all patients at
a certain time, we know the probability per unit of time
for uncolonized patients to acquire colonization. More
precisely, we assume that the probability per susceptible
patient to turn into a colonized patient per infinitesimal
small unit of time ∆t is (α + βI/n)∆t, where α repre-
sents the endogenous term and βI/n the cross transmis-
sion term, with I the number of colonized patients in the
ICU and n the total number of patients in the ICU. Both
α and β should be non-negative and are to be estimated
from the data. (Note incidentally that the parameter for
cross transmission β can also be expressed in terms of a
reproduction number RN which gives the average num-
ber of secondary infected cases if all individuals in the
ICU are non-colonized (23). For small values of β, RN is
approximately equal to βD, with D the average length
of stay in the unit.)

• as only the days of culturing/admission/discharge are
known, and not the exact moments, we use a day as the
smallest time unit in our model and pretend that admis-
sion and discharge always occur at one and the same
hour (say, 12.00).

• we assume that uncolonized patients can acquire colo-
nization only from those patients who were already col-
onized at the hour of admission and discharge and not
in a two step procedure during one and the same day
(i.e., patients who become colonized can not infect other
patients during the same day). This leads to a per diem
probability per susceptible patient to acquire coloniza-
tion of 1− e−(α+β I

n ).

The algorithm

As input data we need for each patient:
• day of admission
• day of discharge
• days at which a sample is taken (which is cultured)
• results of cultures (assumed, for the time being, to be

100 percent reliable)
• the colonization status at admission

The output are MLE’s (and confidence intervals) of the ac-
quisition parameters α and β, MLE’s for the probabilities
that patients are colonized on each day and related quanti-
ties as the total number of acquisitions and the fraction of the
acquisitions that can be ascribed to each acquisition route.

For those patients for which the colonization status is un-
known, we work with the probability of being colonized.
From day to day these probabilities evolve according to the
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mechanistic acquisition model. So once a culture result be-
comes available, we know how likely it was, given the pa-
rameters in the acquisition model. This ”knowledge” then
serves as the basis for the MLE. The rest is bookkeeping:
we need to incorporate that patients are discharged and that
new patients are admitted (note that it is difficult to assign a
probability of being colonized to a newly admitted patient,
but that it is straightforward if patients are cultured on ad-
mission).

A detailed technical description of the representation of
the ICU state and the various operations that update this
state on the basis of the mechanistic model and the data is
given in the appendix. There we also explain how to use
the algorithm to calculate relevant epidemiological quanti-
ties, e.g., the prevalence per day and the expected number of
acquisitions that can be ascribed to each acquisition route.

Justification of the use of the algorithm

The standard method (15) to calculate confidence sets is only
asymptotically correct (when the length of the study period
approaches infinity) and requires that the true parameters
are not on the boundary of the domain, hence that both of
the colonization routes are of importance. To test how well
the asymptotic theory performs for finite study periods and
when the true acquisition parameters are on the boundary
of the domain, we simulated an ICU with 10 beds, which are
always occupied. We varied the relative importance of the
acquisition routes, but kept the mean prevalence in the ICU
constant at 20 percent, while 5 percent of the patients was
colonized on admission. The length of stay in the ICU was
exponentially distributed with a mean of 8 days. Observa-
tion of colonization was assumed to be perfect. Results are
based on 100,000 simulations. For each simulation, we ap-
plied our algorithm to calculate 95% confidence sets for the
acquisition parameters and we calculated the fraction of the
simulations for which the true acquisition parameters where
contained in the calculated confidence set.

For the clinical study, a goodness of fit χ2-test (with two
free parameters) based on the MLE was performed to test
whether the model fitted the data accurately.

Setting of the clinical study

Colonization with CRE was studied in a medical (ICU-1) and
a neurosurgical ICU (ICU-2) of the University Medical Cen-
ter Utrecht, The Netherlands. This study was approved by
the institutional review board. No informed consent was
required. ICU-1 has 10 beds, four of which are in separate
rooms and ICU-2 has 8 beds, one in a separate room. Nurs-
ing and medical staff is not shared between these ICUs. Stan-
dard infection control measures were used in both units and
these did not change during the period of study.

Microbiological surveillance and genotyping

During an eight-months period, rectal colonization with
CRE was determined in all patients admitted to the two

ICUs. Rectal swabs were obtained on admission and twice
weekly thereafter. Swabs were plated on Chromogenic UTI
Agar (Oxoid Limited, Basingstoke, UK) supplemented with
8 µg/ml cefpodoxime (Aventis Pharma, Paris, France) and 6
µg/ml vancomycin. All morphologically different colonies
were further processed. Species identification was per-
formed using VITEK II (bioMérieux Benelux B.V., ’s Her-
togenbosch, Netherlands). Additional susceptibility testing
was performed by microdilution according to CLSI guide-
lines and, subsequently, all isolates not resistant to either cef-
podoxime or ceftazidime were excluded from analysis. Two
morphologically different isolates per species per patient
(if available) were genotyped using Amplified Fragment-
Length Polymorphism (AFLP) (16). If more than two isolates
of one species were available, first and last isolates were se-
lected. Genetic relatedness was determined on the basis of
both visual and computerized interpretation of AFLP pat-
terns of isolates of epidemiological linked patients. A simi-
larity of more than 80 percent, based on similarities in AFLP-
patterns among multiple isolates obtained from individual
patients, was used as cut-off point.

Colonization with CRE was classified as ’present on ad-
mission’ when CRE was demonstrated in cultures obtained
<48 hours after admission and as ’acquired’ when demon-
strated in cultures obtained >48 after admission with a pre-
vious negative culture. Two patients in the same ICU were
considered to be epidemiologically linked when these pa-
tients had either an overlapping period of stay, or, to al-
low for survival of pathogens in unidentified reservoirs (17),
when the time between discharge from the ICU of one of the
patients and admission to the ICU of the other patient was
at most 7 days. We evaluated the effect of a change in the
length of this time window. Possible unidentified reservoirs
are health care workers, environmental contamination and
other patients, which are not sampled at the site of coloniza-
tion. Cross transmission was defined as acquired coloniza-
tion with a CRE that is genetically similar to one previously
found in an epidemiologically linked patient. Acquired col-
onization without epidemiological linkage or genetic relat-
edness was considered to be endogenous.

Results

Colonization characteristics

In all, 457 patients were studied: 277 admitted to ICU-1 and
180 to ICU-2 and 1,243 rectal swabs were obtained (753 in
ICU-1 and 490 in ICU-2) (Table 1). Adherence to the surveil-
lance protocol was close to 100%. Forty-eight patients in
ICU-1 and 35 patients in ICU-2 were colonized during their
stay. In ICU-1 23 patients were colonized on admission
and 23 patients acquired colonization. In ICU-2 ten patients
were colonized on admission and 21 patients acquired col-
onization. Routes of acquisition could not be determined
for six patients (2 in ICU-1 and 4 in ICU-2), because first
cultures were taken >48 hours after admission or because
patients had been admitted to the ICU before the start of
the study. The mean daily prevalence of colonization with
CRE was 26.1 (standard deviation (SD) 15.4) percent in ICU-
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1 and 15.1 (13.4) in ICU-2. Acquisition rates were, respec-
tively, 17/1,000 and 18/1,000 patient-days at risk in ICU-1
and ICU-2. The mean time to acquire colonization for pa-
tients who acquired colonization was 6 in ICU-1 and 8 days
in ICU-2 (SD 8 and 11 days respectively) (Table 1). In to-
tal, 174 isolates (107 patients from ICU-1 and 67 patients
from ICU-2) were genotyped. Based on AFLP results and
epidemiological linkage, five patients in ICU-1 and six pa-
tients in ICU-2 acquired colonization via cross transmission.
Therefore, five out of 23 (21.7 percent) and six out of 21 (28.6
percent) cases of acquired colonization resulted from cross-
colonization in ICU-1 and ICU-2, respectively, representing
cross transmission rates of 3.6 and 5.3 per 1,000 patient-days
at risk in ICU-1 and ICU-2, respectively. The ratios between
endogenous and exogenous acquisition were 3.6:1 for ICU-1
and 2.5:1 for ICU-2. The time interval in the definition of epi-
demiological linkage hardly influenced the number of acqui-
sitions that were ascribed to cross transmission. Indeed, in
both ICUs only one case of cross transmission would be mis-
classified if the length of the time window would be zero (ac-
tual durations between recipients and presumed donor pa-
tients were 3 and 4 days). Only if the time window allowed
would exceed 21 days, more cases of acquisition would have
been considered as cross transmission.

Model predictions

The MLEs for the parameters α, describing endogenous pro-
cesses, and β, describing cross transmission, with their 95
percent confidence areas and lines of equal importance of
both acquisition routes are depicted in Figure 1. In ICU-1,
MLEs for α and β were 0.022 (95 percent confidence inter-
val (CI): 0.013, 0.032) and 0 (95 percent CI: 0.0, 0.035) respec-
tively (Figure 1(a)). In ICU-2, MLEs for α and β were 0.024
(95 percent CI: 0.015, 0.035) and 0 (95 percent CI: 0.0, 0.054),
respectively (Figure 1(b)). A re-analysis of the current data
with the ’old’ model (10) yielded α = 0.027 (95 percent CI:
0.016, 0.036) and β = 0 (95 percent CI: 0, 0.050) for ICU-1 and
α = 0.019 (95 percent CI: 0.012, 0.027) and β = 0 (95 percent
CI: 0, 0.056) for ICU-2 where the parameter α for the endoge-
nous route also includes admission of colonized patients.

The estimated number of acquisitions was 29.8 (95 percent
CI: 28.3, 31.9) and 27.2 (95 percent CI: 26.1, 28.7) for ICU-1
and ICU-2, respectively, which exceeds the observed num-
ber of acquisitions by 30 percent. The proportion of acquisi-
tions due to cross transmission was estimated to be 0 percent
for both ICUs (95 percent CI: 0, 30 percent and 0, 25 percent
for ICU-1 and ICU-2, respectively). The calculated propor-
tions based on epidemiological linkage and genotyping is
21.7 and 28.6 percent for ICU-1 and ICU-2, respectively (Ta-
ble 2), and so is included in the confidence interval only in
case of ICU-1. Using the profile likelihood method, the algo-
rithm established with a confidence level of 99.7 percent and
>99.99 percent for ICU-1 and ICU-2, respectively, that less
than 50 percent of the acquisitions were due to cross trans-
mission .

The estimated endemic prevalences based on the MLEs for
α and β were 27.6 percent and 17.6 percent for ICU-1 and
ICU-2, respectively. Both values slightly exceed the observed
endemic prevalence (26.1 (SD 15.4) percent for ICU-1 and

ICU-1 ICU-2
Admitted pt. 277 180
Rectal swabs 753 490
Pat. colonized (%) 48 (17.3) 35 (19.4)
Pt. with CRE colonization 2 (0.7) 4 (2.2)
of unknown origin (%)
Pt. colonized on admission (%) 23 (8.3) 10 (5.6)
Pt. with acquired colonization (%) 23 (8.3) 21 (11.7)
Endemic prevalence, mean (SD) 26.1 (15.4) 15.1 (13.4)
Range (%) 0 - 60 0 - 50
Acquisitions/1000 pt.-days at risk 17 18
Mean time to acquisition (SD) 6 (8) 8 (11)
Length of stay, mean (SD) 8(11) 9 (11)

Table 1: Colonization characteristics of patients admitted to
the two ICUs. pt.=patients

ICU-1 ICU-2
Observ. Model Observ. Model

EP 26.1 ±15.4∗ 27.6 15.1 ± 13.4∗ 17.6
% T 21.7 0 (0, 30)† 28.6 0 (0, 25)†

Table 2: Epidemiological variables of cephalosporin-
resistant Enterobacteriaceae according to genotyping in
combination with epidemiological linkage (=Observ.) and
according to model predictions (=Model). ∗ mean ± SD, †

95% confidence intervals. EP= endemic prevalence, %T =%
of acquisitions due to cross transmission.

15.1 (SD 13.4) percent for ICU-2). Calculated RN values (ex-
pected number of secondary cases through cross transmis-
sion generated by a primary case in a pathogen-free ward)
were 0 (95 percent CI: 0.0, 0.25) and 0 (95 percent CI: 0, 0.44)
for ICU-1 and ICU-2, respectively. A goodness of fit test gave
no reason to question our mechanistic transmission model
(p=0.29 and p=0.28 for ICU-1 and ICU-2, respectively).

Simulations show that the confidence intervals calculated
by our algorithm are conservative when, as with our MLEs,
one of the colonization routes is of no importance (see Figure
2). When only the endogenous or the exogenous acquisition
route is present, the calculated 95 percent confidence sets
in fact represent 97 and 99 percent confidence sets respec-
tively. For other parameter combinations, 95 percent confi-
dence sets will cover the true parameter indeed in 95 percent
of the cases when the study period is sufficiently long. In the
worst case, for study periods of 6 months, the calculated 95
percent confidence sets still cover the true parameters in 93.5
percent of the simulations.

Discussion

According to the reference standard provided by a combi-
nation of genotyping and epidemiological linkage data, the
Markov chain model correctly established predominance of
endogenous over exogenous acquisition of colonization with
cephalosporin-resistant Enterobacteriaceae in two ICUs. The
Markov model, therefore, fulfils the need for a reliable tool
to evaluate the dynamics of antibiotic resistance and is able
to disentangle the relevance of patient-dependent and inde-
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Figure 1: Contour plots of the likelihood of the acquisi-
tion parameters α (endogenous acquisition) and β (exoge-
nous acquisition) for cephalosporin-resistant Enterobacte-
riaceae in ICU-1 and ICU-2. The shaded area represents the
95% confidence interval. The line represents the parameters
for which the endogenous route and the exogenous route
are equally important. Supplementary videos demonstrat-
ing the development of the confidence intervals in both ICUs
in time are available online.
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Figure 2: Fraction of simulations for which the true param-
eters are contained in the calculated 95% confidence set ob-
tained by our algorithm. The lines represent different val-
ues of the relative importance (in %) of cross transmission.
Results are based on 100,000 simulations of an ICU with 10
beds, which are always occupied. The mean prevalence in
the ICU was kept constant at 20%, while 5% of the patients
are colonized on admission. The length of stay in the ICU
was exponentially distributed with a mean of 8 days. Obser-
vation of colonization was assumed to be perfect. A perfect
method to determine 95% confidence sets would yield the
constant 0.95 irrespectively of the duration of the study pe-
riod.

pendent acquisition routes on the basis of longitudinal data
without requiring labour-intensive and costly genotyping
procedures.

The Markov algorithm ascribed less cases to cross trans-
mission than found by way of genotyping in combination
with epidemiological linkage data. Note, however, that this
reference standard does not give a cast-iron answer whether
acquisition was exogenous or endogenous. The definition of
epidemiological linkage contains an arbitrary time window
of 7 days, but more importantly, if two patients are colonized
with the same genotype and are epidemiologically linked,
this does not necessarily imply that one patient acquired col-
onization from the other. For instance, a widely spread clone
in the extramural population could falsely give the impres-
sion that many acquisitions are exogenous. So it may in fact
be that the algorithm provides more reliable estimates.

Although the details of the algorithm as presented in the
appendix may seem complicated for an audience without a

mathematical background, the input to the model consists
only of a database with the moments of culturing and the re-
sults of these cultures combined with the admission and dis-
charge data from the patients. The output of the algorithm
provides results with a clear medical interpretation, e.g., the
relative importance of different acquisition routes. Hence,
when made user friendly, the software can be a valuable tool
which can be used routinely in settings where colonization
data are collected.

The framework allows adaptation to alternative Marko-
vian transmission models also and, importantly, individual
patient characteristics, such as antibiotic use, the room in
which the patient is treated, scores for the severity of ill-
ness or multiple sites of colonization, can be incorporated
(14). The Markov methodology may also improve the re-
liability of the interpretation of interventions. Many infec-
tion control interventions (such as improving hand hygiene,
use of gloves and gowns and antibiotic cycling) have been
analyzed in quasi-experimental designs, such as before-after
studies (6, 9, 18–21). Results were evaluated by standard sta-
tistical tests, such as χ2 test, Student’s t-test and regression
analysis that neglect dependence among patients. If cross
transmission is relevant, differences between baseline and
intervention period, considered to be significant according
to these statistical tests, do not necessarily show causality
between intervention and outcome (see (22) for a quantita-
tive example of how wrong conclusions can be when de-
pendence is simply ignored). The Markov model provides
estimates of confidence intervals for endogenous and ex-
ogenous transmission, in itself correcting for autocorrelation
when cross transmission is relevant and for chance processes
such as a temporarily lower admission rates of colonized pa-
tients.

Our model has some limitations. First, only acquisition
routes that comply with the Markov property can be incor-
porated. For instance, environmental contamination, which
can persist even after patient discharge (24), does not have
the Markov property. However, when environmental con-
tamination depends instantly on the colonization status of a
patient, it could be considered as an extension of that patient
and the Markov model would still apply. (This is in fact the
way we model implicitly temporarily colonized health care
workers that act as vectors). Also, the role of persistently
colonized health care workers has not been incorporated.
Although outbreaks of Enterobacteriaceae caused by health
care workers have been reported (25, 26), health care work-
ers are, in general, not considered relevant sources for noso-
comial pathogens. But as permanently colonized health care
workers would impose a colonization pressure independent
of the prevalence of colonized patients, they are mathemat-
ically incorporated in the endogenous process. It is possi-
ble to explicitly incorporate more complex acquisition routes
by adjusting the choice of ’state’ and thus retain the Markov
property.

Second, colonization is assumed to remain until discharge,
which holds true for many but not all antibiotic-resistant
nosocomial pathogens. Yet, the possibility of intermittent
colonization and eradication, can easily be included. Third,
the running time of the algorithm increases with an increas-
ing number of patients with unknown colonization status
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(e.g., when incorporating the possibility of false positive and
false negative culture results). The actual unit size, on the
other hand, can be very large, as long as the number of pa-
tients for which the actual colonization status is not known,
does not become much larger than 10. If it does, the method
can still be used but techniques to approximate the likeli-
hood (e.g., EM algorithm, (27)) have to be used. Fourth, only
a limited number of acquisition routes can be incorporated
in the model, as otherwise there will be too many parame-
ters that have to be estimated from the (limited amount of)
data.

After the initial work of Pelupessy et al. (10), estima-
tion of the relative importance of the different acquisition
processes of antibiotic resistance was pursued in two stud-
ies. Cooper and Lipsitch (8), building on the work of (10)
(and with the same limitations as (10)) proposed a ‘hidden
Markov model’. Their model uses infection data only and
they assume that the Markov model of (10) governs the un-
observed dynamics of colonization. Colonized patients then
have a constant probability per day to develop an infection,
which is observed. As infection rates only represent the tip
of the iceberg, long surveillance periods (during which the
parameters should remain constant) are needed to derive re-
liable estimates of the parameters in the underlying trans-
mission process. The counterbalance is that longitudinal
data on infection are easier to obtain than data on coloniza-
tion. The study of Forrester and Pettitt (13), also based on
the model of (10), used Monte Carlo Markov Chain meth-
ods (MCMC) (28, 29). They estimated transmission rates
for MRSA in an ICU where cultures were performed twice
weekly. No cultures were performed on admission, all pa-
tients were swabbed at the same days of the week (which
was required in their analysis) and they assumed that all
acquisitions of colonization in between two successive cul-
ture moments were independent of each other. Although
MCMC is a useful and flexible tool for many situations, a
direct calculation of the likelihood avoids typical problems
of the MCMC-approach like 1) choosing a prior-distribution
of the parameters 2) choosing the burn-in period and 3) bad
mixing properties of the Markov-chain.

In this paper we focussed on the methodology and the
data analysis, rather than on the clinical effects of candidate
infection control measures in the considered units or on risk
factors for colonization. So one should not apply our find-
ings concerning the unimportance of cross transmission too
readily to other settings with different patient populations,
infrastructure, ecology, antibiotic use, infection control ad-
herence, patient-staff ratio and colonization pressure. Our
aim here has simply been to introduce a reliable method for
obtaining clear conclusions from data that are not too dif-
ficult to collect. We hope that the method will be fruitfully
applied to investigate obscure details of acquisition for many
other nosocomial pathogens in a variety of hospitals/ICUs.
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Appendix

Definitions

We divide the period of stay of a patient retrospectively into
(at most) 3 periods based on the results of the culturing :

- - - + +

time
tet0 t1 t2

1. patient is known to be uncolonized t0 ≤ t ≤ t1
2. patient may or may not be colonized t1 < t < t2
3. patient is known to be colonized t2 ≤ t ≤ te

Per day, we have three categories of patients, uncolonized
patients, patients whose colonization status is uncertain and
colonized patients. We label these three categories U , Q (for
’questionable’) and C respectively. The number of patients
in the categories are represented by, respectively, u, q and c.
For later convenience, for every time t, we order the patients
in categoryQ in increasing order of the time they are already
in category Q, i.e., a patient entering category Q will be the
first one in the ordering.

By definition of the categories, we are certain about the
colonization status of the patients in U and C. For each day,
the number of patients in these two categories can be de-
termined from the data directly. Hence, u and c are treated
as (time-dependent) parameters and, for computational rea-
sons, patients in U and C are not included in our definition
of the state space. As each of the patients in Q can be colo-
nized or not, the total number of possible states for the ICU
is (Z2)q = {0, 1}q. Note that the dimension of the state space,
2q, changes over time as q may change from day to day.

Each ICU state is denoted by a vector v = (v1, v2, . . . , vq),
with vk ∈ {0, 1}, where vk denotes whether the kth patient
in Q is colonized or not. The state (v1, v2, . . . , vq) can also be
represented by the binary number v1v2 . . . vq and therefore
we have a natural labeling j of each of the 2q states (0 ≤ j ≤
2q − 1).

For notational convenience, we would like to be able to
switch back and forth between a state represented as a fi-
nite sequence of 0’s and 1’s, i.e., as an element of (Z2)q, and
its corresponding number. Therefore we introduce the num-
bering function defined as:

N : (Z2)q → Z2q ⊂ N; (v1, v2, . . . , vq) 7→
∑q

i=1 vi2(q−i) 1

The inverse of the numbering function, N−1, relates a state
number m (0 ≤ m ≤ 2q − 1) to the colonization status of
the individuals in Q. Specifically, the component N−1(m)k

shows whether in ICU state m individual k (1 ≤ k ≤ q) is
colonized or not. We also introduce an ordering on (Z2)q.

v ≥ w ⇔ vi ≥ wi ∀ 1 ≤ i ≤ q 2

and the l1-norm: |v| =
∑q

i=1 vi.
As the state is actually uncertain, we want to employ a

stochastic description and assign to each state a probabil-
ity that it is the actual (unknown) state. So we introduce
the probability vector p(t) = {p0(t), p1(t), . . . , p2q−1(t)} of
length 2q in which pj(t) denotes the likelihood that the ICU
is in state j.

We consider a period of observation from time 0 till time
T . The observations can be divided into two parts: those
before or at time t and those after time t. We define the ’for-
ward’ vector vf , a column vector, based on the observations
until time t. The forward vector has as its components the
unnormalized (i.e., relative) probabilities that the system is
in a specific state at time t if we take into account only the ob-
servations until time t. However, the best estimate for p(t) is
no longer vf (t) when results of cultures performed after time
t become available. To take such additional information into
account, we define the ’backward’ vector vb(t), a row vector,
for which the ith component is the unnormalized probability
that, given that the ICU is at time t in the state numbered i,
the ICU will develop in a way that is compatible with all ob-
servations after time t. With these definitions, the ith compo-
nent of the probability vector p(t) that takes all observations
into account is

pi(t) = vbi(t)vf i(t)/
2q−1∑
j=0

vbj(t)vf j(t). 3

All observations before or at the start of the study period
are incorporated in vf (0). In the case that all patients are
cultured at t = 0, we know the ICU state at time t = 0 with
certainty and the component of vf (0) corresponding to this
state will be one while all other components of vf (0) are zero.
When t = T , all states are compatible with the observations
after time T as there are no such observations, and hence
vb(T ) = 1, with 1 the row vector with all elements equal to
one.

We now construct an algorithm to calculate the forward
and the backward vector for all 0 ≤ t ≤ T .

The forward process

To calculate the time evolution of the forward vector vf , we
need the mechanistic model. The mechanistic model gives
probabilities Amn, (0 ≤ m,n ≤ 2q − 1), which describe how
likely state m is at time t + 1 just before culturing, discharge
and admission, given that the system was in state n at time
t just after the culturing, discharge and admission. At this
point we do not yet express in the notation that Amn de-
pends on t, simply since q does; note that it depends on q
what the numbers m and n tell us about the ICU state. The
evolution can then be defined in terms of matrix multiplica-
tion:

A : R2q → R2q

; w 7→ Aw with A = (Amn) 4
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The matrix A has a special structure. Let π(k) be the proba-
bility that an uncolonized patient acquires colonization dur-
ing a day, given that there are k colonized patients in the
ward. Each transition probability in column m is either zero,
when the transition to state m is not allowed by the mecha-
nistic model, or it can be written as a product of powers of
π(c + j) and (1 − π(c + j)) with c the number of colonized
patients in C and j the number of patients in Q that are colo-
nized when the system is in state n. Explicitly,{

Amn = 0 if N−1(m) � N−1(n)
Amn = (1− π(k))uπ(k)l(1− π(k))q−l if N−1(m) ≥ N−1(n)

with l = |N−1(m)| − |N−1(n)| and k = c + |N−1(n)|
5

For instance, in the case that there are 2, c and u patients in
Q, C and U respectively, with ρ(k) = 1 − π(k) the matrix A
becomes:ρ(c)2+u 0 0 0

ρ(c)1+uπ(c) ρ(c+1)1+u 0 0
ρ(c)1+uπ(c) 0 ρ(c + 1)1+u 0
ρ(c)uπ(c)2 ρ(c+1)uπ(c+1) ρ(c+1)uπ(c+1) ρ(c+2)u


Note that, when u 6= 0, the matrix A does not preserve the

norm of the vector on which it acts. (This is due to the fact
that we leave out of consideration all transitions that could
in principle have happened to the U category.)

We now will use the culture results, the discharge data and
the admission data. Suppose that the kth patient in Q is cul-
tured. By the definition of the categoryQ, this culture will be
positive. Therefore only the states m, 0 ≤ m ≤ 2q − 1, with
N−1(m)k = 1 are allowed by the data and the other states
have zero a posteriori probability. Mathematically, culturing
of patient k in Q amounts to projecting the vector Aw on a
linear subspace isomorphic to R2q−1

. The diagonal matrix

Ck : R2q → R2q

; w 7→ Ckw with Ck = (cmn) 6

is given by: cmn =
{

0 if n 6= m or N−1(n)k = 0
1 if n = m and N−1(n)k = 1 .

Example: In the case that q = 3 and we culture the second
patient in Q and before the culturing the state vector is w =
(w0, w1, . . . , w7), then after the culturing, the vector will be
(0, 0, w2, w3, 0, 0, w6, w7).

If several category Q patients are cultured at the same
time, the operator C(t) consists of a product of Ck’s. When
a category Q patient ‘leaves’ Q, either because he/she was
cultured or because he/she leaves the unit without being
cultured, the number of possible states is reduced by a factor
2.

For 1 ≤ k ≤ q we can define the operator Rk that removes
the kth patient in Q via:

Rk : R2q → R2q−1
; w 7→ w′ 7

where the components of w′ are defined by: w′
N(v1,...,vq−1)

=∑
i∈{0,1} wN(v1,...,vk−1,i,vk,...,vq−1) This operator Rk adds the

probabilities of the two states for which the colonization sta-
tus of the remaining q − 1 patients is identical.

If several category Q patients ‘leave’ Q at the same time,
the operator R(t) consists of a product of Rk’s. To avoid con-
fusion about which of the patients inQ ‘leaves’Q, we should
use some convention, for instance, order the operators such

that we do the removal in decreasing order of the patient
number in Q.

Suppose now that l patients enter category Q at a certain
time t. By the definition of the categoryQ, patients enter cat-
egoryQ directly after their last negative culture, so we know
that these patients enter category Q uncolonized. As we or-
dered the patients in category Q according to the day they
entered this category, these l patients correspond to the first
l digits in the binary expansion. Due to this ordering, the
function Il that deals with the admission of l new patients to
Q is defined by:

Il : R2q → R2q+l

; w 7→ w′ 8

where the elements in the vector w′ are given by (0 ≤ k ≤
2q+l − 1):

w′
k =

{
0 if k ≥ 2q

wk if k < 2q 9

Note that R(t) and Il involve a change of the dimension of
the state space. Indeed, we ’glue’ together state spaces of
different size according to the need as exposed by observed
events.

With the previous definition of the operators, the ’forward
vector’ can be written as:

vf (t) =
t−1∏
τ=0

I(τ + 1)R(τ + 1)C(τ + 1)A(τ)vf (0) 10

or derived iteratively from the recursion:

vf (t) = I(t)R(t)C(t)A(t− 1)vf (t− 1). 11

The likelihood of the observed events during one day is
the norm of the final state vector (assuming that the initial
state vector had norm 1). More precisely, the likelihood is
given by |CAvf |/|vf |. The likelihood of the observed events
over several days is the product of the relevant 1 day like-
lihoods and the overall likelihood is given by |vf (T )|. This
likelihood function leads to maximum likelihood estimates
of parameters and to confidence regions (15).

Note that for calculation of the likelihood of the observa-
tions, it suffices to consider only the forward vector. When
during a certain period the dynamics of acquisition in an
ICU is followed, the new observations that become available
each day can be processed by the algorithm to improve the
estimates of the transmission parameters as more data be-
come available.

The backward process

The ’backward vector’ can be written as:

vb(t) = 1
T−1∏
τ=t

I(τ + 1)R(τ + 1)C(τ + 1)A(τ) 12

or derived iteratively from the backward recursion:

vb(t) = vb(t + 1)I(t + 1)R(t + 1)C(t + 1)A(t) 13

To explain equation 13, we consider the special case that both
R(t+1) and I(t+1) are the identity operator or, in words, the
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case that neither discharge nor admission occurs at t+1. (The
general case differs from the special case in bookkeeping as-
pects, all truly probabilistic considerations are incorporated
in A(t) and C(t + 1).) Let S(t) denote the state at time t and
letOτ2

τ1
denote the observations for τ1 ≤ t ≤ τ2. We can write:

vbi(t) =P (OT
t+1|S(t) = i) =

=
∑

j P (OT
t+2|S(t+1) = j)P (S(t+1) = j,Ot+1

t+1|S(t) = i) =∑
j vbj(t + 1)Cjj(t + 1)Aji(t)

which is exactly the ith component of the identity 13. Here
we have used in particular that when we look at times≥ t+2
and condition on the state being j at t + 1, knowledge about
the state at t is irrelevant.

Combining both processes

Note first of all that the inner product vb(t)vf (t) is indepen-
dent of t and hence is equal to 1vf (T ) = |vf (T )|, the over-
all likelihood of the observations. Once we know vf (t) and
vb(t), and hence, given all the information that we possess,
the true probabilities for each state at all times, we can calcu-
late the expected prevalence by averaging over all the states.
Calculation of the number of acquisitions per day and the
subdivision of this number according to the routes requires
one additional step.

Fix t. Let P (j, i) be the probability that the ICU is in state
j at day t and in state i at day t + 1. With Km the projection
operator on the mth component, we can write:

P (j, i)=
vb(t+1)KiI(t+1)R(t+1)C(t+1)A(t)Kjvf (t)

|vf (T )|
14

To explain equation 14, we again focus on the case in which
there is neither discharge nor admission.

P (j, i) = P
(
S(t) = j, S(t+1) = i|OT

0

)
=

P(S(t)=j,S(t+1)=i,OT
0 )

P(OT
0 ) =

P(S(t)=j,S(t+1)=i,OT
0 )

|vf (T )|
15

We can write:

P
(
S(t) = j, S(t+1) = i,OT

0

)
=

P
(
S(t) = j, S(t+1) = i,Ot+1

0

)
P

(
OT

t+2|S(t) = j, S(t+1) = i,Ot+1
0

)
= P

(
S(t) = j, S(t+1) = i,Ot+1

0

)
P

(
OT

t+2|S(t+1) = i
)

=

P
(
S(t) = j, S(t+1) = i,Ot+1

0

)
vbi(t+1)

16
and

P
(
S(t) = j, S(t+1) = i,Ot+1

0

)
=

P
(
S(t+1) = i,Ot+1

t+1|S(t) = j,Ot
0

)
P (S(t) = j,Ot

0) =
P

(
S(t+1) = i,Ot+1

t+1|S(t) = j
)
P (S(t) = j,Ot

0) =
P

(
S(t+1) = i,Ot+1

t+1|S(t) = j
)
vf j(t) =

Cii(t+1)Aij(t)vf j(t)

17

Combining the identities 15, 16 and 17 we obtain equa-
tion 14. (Strictly speaking the derivation above only applies
when P (j, i) > 0.)

The expected number of acquisition during day t is:∑
i,j P (j, i)gij with gij the expected number of acquisitions

during the transition from ICU state j to i. Clearly, gij de-
pends on whether patients who were discharged at day t+1

without being cultured at discharge, acquired colonization
during day t or not. Therefore, it is convenient to count the
number of acquisitions before performing the bookkeeping
operations. So we adapt the evolution matrix and define the
matrix m(t) by:

mij(t) = aij(t)fij(t) 18

with aij(t) the components of the evolution matrix A(t) and
fij(t) the expected number of acquisitions by a route or com-
bination of routes in case of a transition from state j to state
i. Note carefully that several choices of fij are relevant; also
note that these numbers depend on t simply because the
state space, and hence the precise meaning of i and j changes
with time. In case we are interested in the number of acqui-
sitions by the endogenous route, we define:

fij(t) =
(
|N−1(i)|−|N−1(j)|

) α

α + β (c(t) + |N−1(j)|) /n
19

The expected number of acquisitions θ(t) during day t by
the route(s) under consideration is given by the following
inner product:

vb(t + 1)I(t + 1)R(t + 1)C(t + 1)m(t)vf (t)
|vf (T )|

20

When we sum over all days, we obtain the expected total
number of acquisitions per route during the study period.
We use these expressions to calculate the relative importance
of each route. By comparing the maximum likelihood with
the maximum likelihood constrained to the parameter space
for which the relative importance of cross transmission is
less than 50 percent, we can establish a confidence level that
less than 50 percent of the acquisitions were due to cross
transmission.
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