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FORCED VIBRATIONS OF PIEZOELECTRIC CRYSTAL PLATES*

BY

H. F. TIERSTEN and R. D. MINDLIN
Columbia University

1. Introduction. In a previous paper [1] (referred to in the sequel as I), Cauchy's
two-dimensional equations of coupled flexural and extensional motion of crystal plates
were extended to the next higher order of approximation so as to accommodate the
two lowest thickness-shear modes. In the present paper a further extension is made to
include the piezoelectric relations and the electric field equations. The equations obtained
are also extensions of previous equations [2] in which the thickness-shear modes, the
piezoelectric effect and the electric field equations were taken into account, but coupling
with extensional modes was omitted. The new equations are deduced from the three-
dimensional, linear, piezoelectric equations by a procedure based, as in 7, on the series
expansion methods of Cauchy and Poisson and the variational method of Kirchhoff.
The theorems of uniqueness and orthogonality established in I for the approximate
equations are extended to include coupling with the electric field. The solution of prob-
lems of steady, forced vibration is considered and is reduced to the solution of the asso-
ciated free vibration problem plus some quadratures. The case of a plate driven by an
ac-voltage applied to electrodes on its faces is investigated and a formula is given for
the total surface charge. An application is made to the forced vibrations of rectangular,
rotated F-cut quartz plates.

2. Three-dimensional equations. The three-dimensional equations, from which
the plate equations will be deduced, are: the variational forms of the equations of
motion and electrostatics; the strain-displacement and electric field-potential relations;
and the linear, piezoelectric constitutive relations. They may be written, respectively, as

f (Tij.i — piij,Siij dR = 0, [ Di,i 5<p dR = 0 (2.1)J R J B

Sii = §(«;,; + UUi), Ei = (2.2)

Ta = CijkiSki CkijEk , Di = eaiSti 4" €,• kEk , (2.3)

where Tti , «,• , D, , Su , E{ are the components of stress, mechanical displacement,
electric displacement, strain and electric field, respectively; p, R and <p are the mass
density, volume and electric potential, respectively; and cEim , ehij , e?k are the elastic,
piezoelectric and dielectric constants, respectively. We employ rectangular coordinates
Xi , i = 1, 2, 3, and the summation convention for repeated tengor indices. A comma
followed by an index or t denotes differentiation with respect to a space coordinate or
time, respectively.

3. Expansion in power series. The faces of the plate are taken at x2 = ±h and
the remaining boundary is a cylindrical surface with generators perpendicular to the
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faces. We expand «,■ and Dt in a series of powers of the thickness-coordinate:

Uj = £ D, = Ex; D™ + d2ix'2+1 (3.1)
n = 0 n = 0

where g is a positive integer, 5,,- is the Kronecker delta and the variables w-n) , D'f are
independent of x2 . When the series expressions are substituted in (2.1) and the integra-
tions with respect to x2 are performed, the result is

f Z (tu.< ~ nT'T" + Fj"> - P Z \ Su^ dA = 0, (3.2)
J A n=0 \ m = 0 /

f Z (D<:l + (n + 1) D'n+1>) 8<p(n) dA = 0, (3.3)
J A n = 0

where A is the area of the plate and

Tlf e f xlTu dx2 , Fj" ^ [xlT2i]\ , <pw - [" xn2«, dx2 ,
J-h J-h

Hmn = f x™x2 dx2 = 2hm+n+1/(m + n + 1), m + n even;;' = 0, m + n odd. (3.4)
J -h

Since the variations 5w'n) and 8<p(n) are arbitrary, their coefficients in (3.2) and (3.3)
must vanish; and we have, as the two dimensional equations of motion and electro-
statics of order n,

Tfti - nTlrn + Ff = P Z + (» + 1) Z)<"+1) = 0. (3.5)
m = 0

If (3.1)2 is substituted in the three-dimensional equation of electrostatics, Diti = 0,
the result is

Z xi[D<:\ + (»+1) z>ri>] = 0,
n = 0

which is satisfied identically by virtue of (3.5)2 . This was the motivation for the special
form of the expansion of D, in (3.1)2 .

Substituting (3.1)! in (2.2)! and rearranging terms, we obtain

S{f = £ xlS'T, S$ = |[u$ + Uj"\ + (» + l)(s2,w,-n+1) + 52iM,-n+1))]. (3.6)
n = 0

Next, multiply (2.2)2 by x\ dx2 and integrate over the thickness. With (3.4)3 and an
integration by parts, we find

E? = f xn2E( dx2 = - 52i($("> - Tup(-1)), S00 = [xlp\h-h . (3.7)
J — h *

At this stage we have converted (2.1) and (2.2) to two-dimensional form and there
remain the constitutive relations (2.3). We substitute (3.1)2 and (3.6)1 in (2.3), multiply
by x™ dx2 and integrate over the thickness, with the result

TV = c?,„ Z HmXV ~ ekiiE?\ Z Hmn(D<"> - eMSif) = e.W- (3.8)
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These may be written, in the abbreviated indicial notation, as

Tlm) = C ± HmXn) - Z HUD<n> - e<Xn)) = (3.9)
n=0 n=0

where ij or hi = 11, 22, 33, 23 or 32, 31 or 13, 12 or 21 are replaced by p or q = 1, 2, 3,
4, 5, 6, respectively; and S{vn) = , i — j and S(pn> = 2S-? , i ^ j.

Finally, we define two-dimensional kinetic energy, internal energy and electric enthalpy
[3] densities by, respectively,

X = f \puiAujA dx2 - X) Z) , (3.10)
J-h m=0 n=0

Ol S f WuSii + d,e%) dx2 = I i: (rS'Si? + £><"') + *E£'+1) Z^+1), (3.11)
J —h n = 0

3C = fk i(T„Sit - DiEf) dx2 = i ± (TlfSl? - D?) - §E(2'+1) D(2'+1), (3.12)
J—h n=0

where (3.1)i , (3.1)2 , (3.4)4 and (3.6)i have been used, along with the definitions (3.4)j
and (3.7), .

4. Truncation of series. In (3.9) we retain only T<0>, T'1', S'^, S^, D?\ Dj1',
D'f\ Ei0), E\l] and E22) whence, tentatively,

T<0) = 2kc*X0) ~ eivE?\ TlPv = IhXX" ~ eipE?\
W Z),a) = + efkEl", (4.1)

2h Dl0) + fh3 = 2heiX°) + UkEi°\
§h3 D<0) + §h5 D<2) = ih%X0) + (4.2)

Eqs. (4.2) may be solved for D -0) and Df with the result, again tentative,

D<°> = eiaS(Q0) + (9/8h)e?kEl0) - (15/8h3)esi2E?,

D'f = (15/8/i3)(3/i~2ef2£,22> - e?kEl0)). (4.3)

The components Sl0) and S"' involve only the displacements uf\ w;(1) and uf and
we neglect those of higher order. Then, following Cauchy, as in I, we neglect the velocity
u2]] in the kinetic energy and equations of motion and provide for the free development
of the thickness-strain S20) by setting T20) = 0 in (4.1)j . The condition T20> = 0 permits
the elimination of S20) from (4.1)i and (4.3)j with the result, still tentative,

T<0) = 2hc*X°' ~ e%Ef\ Df' = efQS(a0) + - (15/8h3)e%E™, (4.4)
where

c*a = c® — «/cf2 , ef„ = eiv — ei2cp2/c22 , ef,- = (9/4)e?,- + ei2ej2/c22 . (4.5)

The first order terms are treated as in J: all three velocities uft\ are neglected and
free development of the three strains is accommodated by setting = 0 in
(4.1)2 . Then, upon elimination of the $2}', (4.1)2 and (4.1)3 become

= fh3yr,S:v ~ ftX1', D?> = hX" + %h-3SuE?\ (4.6)
where, with i, j = 1, 2, 3; r, s = 1, 3, 5; v, w = 2, 4, 6:

7r» = cf„ — c?wc*(c?J-\ "Air = e,-r — ei,cftt(cf„)_1, f,-,- = ef,- + e,-,e,B(cf„)"1. (4.7)
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At this stage, the electric enthalpy is

x = Krr-sr + t-™s™ - er z><0) - e^ d- et d™)
= M2h&S<nSln - 2efXV + ih'yr.S^S™ - 2tirE?)S(r1) - W'&E^E?'

~ fh-'!ttE\"E\xi + (15/4)h~3MV ~ (45/8)A-5«2)£<2)], (4.8)

and an analogous expression may be written for the internal energy 11.
The final step in the process of truncation is to introduce the usual shear-correction

factors by replacing S[0) and S'60), in 3C and 11, with k4S10) and k6SI°\ where the values
of k4 and kq are to be fixed so as to adjust the two thickness-shear frequencies to their
exact values. The correction factors may be inserted in the appropriate positions by
replacing c.* and e(* , in 3C and 11, by

c** = K°Kfc*0 , ef* = /aefa (no sum) (4.9)

where a and /S are the powers a = cos2 (pir/2), @ = cos2 (qir/2). Thus, k° (or k£) is
equal to k4 , k6 or 1 according as p (or q) in c* and e* is 4, 6 or neither, respectively.
The same definitions hold for cf*kl , effi , kif and q are replaced by ij and Id.

To recapitulate, after the truncation and adjustments, we have the following*:
Electric enthalpy density. 3C is given by (4.8) with c* and e ,* replaced by c** and ef*.
Internal energy density.

<U = 3C + 1?50) D<0) + EiV DI" + E? Di2) (4.10)

Kinetic energy density.

X = Ph(uf\uf\ + (4.11)
Constitutive relations:

T™ = dK/dSl0) = 2hc**S™ - et*Ei°\

Tr = dX/dS™ = ih3yr.S™ ~

Dl0) = -d3C/dE\a) = ef*S(a0) + lh~\%Ef - (15/8h3)e?2E<22), (4.12)

= -dK/dEl" = tirSln + § h~zUiE?\
D™ = -d3C/dE{22) = (15/8/j5)(3e2s2Ef) - h\s2kE[0)).

Equations of motion:

TlZ + Fl0) = 2phUj°], , - nV + Fl" = |ph'uft, ■ (4.13)
Equations of electrostatics:

£<°> + 2)»> = o, + 2 D{2) = 0 (4.14)

Strain- displacement relations:

Si? = + <> + 52MV + = IKI + <l). (4.15)

*Here and in the sequel indices o, 6, c, d range over 1, 3; r, s over 1, 3, 5; i, j, k, I over 1, 2, 3.
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Electric field-potential relations:
j$°> = - 5i2$(0), E,a) = + 5,2(<p(0) - #">), E?y = 2<pa> - $<2), (4.16)

and we note that $<2) = /t2<I><0).
Eqs. (4.12)-(4.16) comprise thirty-seven equations in the thirty-seven variables:

five each of Tl„0) and S„0)-, three each of Tlv, S?\ Df \ Ef\ D"\ E\v and w<0); two w"';
and D'22), E'2\ <p(0) and <pa). The thirty-seven equations may be reduced to seven in
seven variables by first substituting (4.15) and (4.16) in (4.12), with the result

= 2 hc*Uul°.\ + 82lul") + et*,^ + el*$w,

TlV = lh\ahciu^d - t2abV>m + iiab^ + t2ab$w,

Dl0) = e%*M°,\ + S2!u<v) - ih-'efoj? - (15/4h3)eUm - (4.17)
Div = iiatuiw + §hr3u«Pm - §&~W"' - §h-r„*w,
D(22) = (15/8h5)(h2e2k<p[V + 6t22<pn) - 2h2e22<J>m),

where t'i2 = 41,% — 15ef2 ; and then substituting (4.17) into (4.13) and (4.14) to obtain

2hctltMVu + *»<«) + et&Z) + f}#) 4- = 2phu«)tt ,
ih3yabcyc]l - 2hc?b*kl(ul°,\ + 82ku\l)) - e%%^ + ~ S2,*«?)

+ Fl" - e$2*b&0) + = fph3ul]\t , (4.18)

f■AV.rf, + + «„«,»}) - ~ tMY ~ S2i<pm)
- 5/2«- (1 /12)h*tl,*y - f22$(1) = 0,

fh3\l/iabul]li — fi,■(<?"; — 82j<p\V) + 5/2e2k<f>("k + 15h ?t22<pw
- 54$<o) - = 0.

These are seven second order differential equations in the seven dependent variables
u<i0\ u'al)t <pm and <pw with seven non-homogeneous (forcing) terms: the five surface
tractions Ff\ F'b1' and the two surface potentials <3>(0), $(1).

5. Uniqueness of solution. To establish a theorem of uniqueness of solution of the
thirty-seven equations (4.12)-(4.16)1 we consider two sets of the thirty-seven variables,
each set satisfying the equations, and form a system comprising the thirty-seven differ-
ences between corresponding variables in the two sets. In terms of variables in the
difference-system, we form the equation

f' dt £ + Fj0) - 2Phu?\t)uZ + (Till - T{2V + Ft" - bh3ui\\t)u?\-\ dA = 0,

which can be transformed, by a process analogous to that employed in I, to

£ [11 + 3C]|. dA = J'dtf ».(0*}?i + TX\ - <pm D[°\ - <pm D^t) ds

+ I" dt [ [Ff'uf,] + F^ul1.] ~ $<0,(^?! + h2 DZ) ~ $U) D(2)]] dA, (5.1)
J to J A

in which the line integral is around the edge, C, of the plate and the na are the components
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of the outward normal in the plane of the plate. From (5.1), by the usual argument,
there are seven conditions to be specified at each point of the interior and at each point
on the edge of the plate in addition to the initial values of w,-0), uP, <p'n\ <pa\ and

• Referred to orthogonal coordinates n, s, x2 , the edge conditions are one member
of each of the seven products

mm in 7i(o) (o) mmm mm a) Ta)na) ,«(0) D<0) ,«(1) D(1>
nn *"n j ■*- ns n2 W2 j nn j J- ns s j *P j *P -^n •

In terms of orthogonal coordinates a, j3, x2 , the interior conditions are one member of
each of the seven products

FX, FPu?\ FPu™ F™u™, F^u^, &°\DP + h2 DP), *"> DP.
The terms DP + h2 DP and DP, in the interior conditions, can be interpreted by

recalling that, to our approximation,

D2 = DP + x2 DP + x\ DP. (5.2)
Hence

DP + h2 DP = i[D2(h) + D2(-h)] and DP = %K~l[D2{h) - D2(-h)].

6. Orthogonal functions. Consider two solutions

(uP,uP,<pm,vw) =

of the equations of motion (4.13) and electrostatics (4.14) with (Fj°\ FP) = 0. By a
process similar to that employed in I, we find

2ph(al - <o2,) J {uP"uP° + \h2uP"uP") dA

= J [$m"(DP" + h2 D^") - $(0>'(D<0"' + h2 D(22)") + $<1)" DP" - DP"] dA

+ <f>na(TP'uP" - TP"uP' + TP'uP" - TP"uP") ds

+ j) na(DPV0)" ~ Dj°V0>' + DP'<pm" - DP"<pn)r) ds. (6.1)

The surface integral in (6.1) vanishes for either zero electric potential or zero electric
displacement on both faces of the plate; and the line integrals vanish for homogeneous
boundary conditions on the edge. Thus, for homogeneous conditions on the faces and
edge, (6.1) becomes

J (uP"uPv + ih2uP"uP') dA = Nw , (6.2)

where Nw is a normalization factor and is the Kronecker delta.
7. Steady forced vibrations. A problem of technological interest is that of steady

vibrations forced by an ac-voltage applied to electrodes on the faces of a plate with
its edge free. This case is included in solutions of (4.18) with prescribed tractions F'p, FP
and potentials $<0), $(1) on the faces and with boundary conditions

nJlf = naTP = n. DP = na DP = 0 (7.1)
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on the edge. Although (7.1) appear to be homogeneous boundary conditions, they are
actually inhomogeneous due to the presence of the prescribed potentials <3?<0) and $a)
in (4.17). A general solution will be obtained by an adaptation of the classical device [4]
of introducing an auxiliary function which transfers the boundary inhomogeneity to
the differential equations, leaving a residual problem of inhomogeneous differential
equations and homogeneous boundary conditions. In our case, the eqautions of motion,
(4.18)i and (4.18)2 , and electrostatics, (4.18)3 and (4.18)4 , are initially inhomogeneous.
We shall choose the auxiliary function so that it removes the inhomogeneity not only
from the boundary conditions but also from the electrostatic equations, leaving a re-
sidual problem of inhomogeneous equations of motion, homogeneous electrostatic
equations and homogeneous boundary conditions. Let
A,(0) (0> <°>a _L A/0'* <°>fl (n ty,(Uj ,ub ,<P ,<P ) = {v.,- ,ub ,<p ,<p )e + (uf ,ub ,<p ,<P )e , (7.2)

where the superscript A identifies the auxiliary functions and R the residual solution.
Inserting (7.2) in (4.17) and cancelling the factor e'°", we obtain expressions of the type

T(0) = Ti0)R + rco )A + (7.3)

where

r,(r = 2 hciUulT + s»vi1,R) + etr,<pT,
Tfr = 2hcUMT + 82lui1)A) + et*<p(,l)A.

With resolutions like (7.3) for all of (4.17), Eqs. (4.8) become

T$\f + 2phu2Uj0)R + T^f + 2Phuu?)A + F?' + = 0,
rp(l)R rji (0) R I 2 Z,3 I rpWA rpWA
J-ab.a ~ 1 2b + 3 phWUb -f" lab,a — 1 2b

+ fph,Wb1)A + Fl» - e2*2t$(0) + = 0,
D<T + Di1)R + D?,)A + D^A - ~ 22$<u = 0,

+ 2 D?)R + + 2 D?)A - (15/2/i3)e2s2$<0) - = 0, (7.4)

and the boundary conditions (7.1) become

naT™R + naT<?A + njsS$*m = 0, naT%* + naT(al)A + nj2ab$w = 0,

na Dl0)R + na Di0)A - = 0, na D?)B + na D<1M - fhr'naU&" = 0. (7.5)

We now choose the auxiliary functions u\0)A, u(a1)A, <p(0)A, <pWA to be particular solu-
tions of the differential equations

DZa + D«)A = + I

D?\A + 2 D?)A = (15/2)/r3e22$co) + |(7.6)

and to satisfy the boundary conditions

naT™A + n„e2^$<0) = 0, naT%A + n^2a6$(I) = 0, (? ?)

na Dl0)A - = 0, na D{\)A - = 0.

Then, inserting (7.6) and (7.7) in (7.4) and (7.5), respectively, we find the residual
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problem governed by the differential equations

7\(°;? + 2 phxJu)0)B + 2 phu2u<0)A + = 0, (7.8)

Til!? - K)R + fphWul1)S + fphWul1)A + = o, (7.9)
D(0)« + DU)R = ^(1)8 + 2 = 0) (7-10)

and the boundary conditions

naTl?B = naT(al)R = na D[0)B = na D[1)R = 0,

where

gjCO) = yCOM + F<0, +

G?" = 3h~2(Tal\i - m)A + Ft" - e^$(0) + fcrt*!i').
The solution of the residual problem may be expressed as an infinite series

/„,«>) fl ,,(D« <0)S _ V d ^,<0>" -(0)" «(1'^ C7 11\(Uj ,ub , <p , <p ) = 2_, A^Uj ,ub ,<p ,<p ), (7.11)
M

where m-0)", m"'", ^<0>", <p!1>M are the orthogonal solutions of the homogeneous (F-0) =
= $'0) = $(1> = 0) system

+ 2ph»W» = 0, Til]: ~ T^" + fph'ofal"' = 0, (7.12)
D\«" + D"'" = 0, 2>£}' + 2 Z^2"* = 0, (7.13)
naTif = naT(al)lx = n0 Di0,M = na Z^1'" = 0. (7.14)

Noting that, from (7.11) and (4.17), with $<0) = $(1> = 0,

(7\<°)S, Tll)R, D?)R, D?)R, D{2)R) = £ A^Tif", T(aV, D?u, D"'", Z^2>"), (7.15)
M

we see, from (7.13), that the electrostatic equations (7.10) are satisfied identically by
the solution (7.11). To find the A„ which will make (7.11) satisfy the equation of motions
(7.8) and (7.9), we must first express the known inhomogeneous terms, in the latter, in
series form:

Gj0) = z B;u,(0", uf)A = £ c,u)0u, (7.16)
M M

Gll) = D u?)A = £ Or*- (7-17)

Multiplying (7.16) by w,-0)", (7.17) by \h2u{bl)", adding, integrating over the area of the
plate and using (6.2), we find

B, = AC [ (Gj0)u}0)' + lh2GlV) dA,
J A

c, = J (UrAur + iwv*) (7.i8)
Then, substituting (7.11), (7.15), (7.16) and (7.17) in (7.8) and (7.9), using (7.12),
multiplying (7.8) by uf" and (7.9) by u{b)", adding, integrating over the area and
then using (6.2), we find

A, = (B„ + 2phw2C,)/2ph(^ - w2) (7.19)
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Thus we have

(uj0>,uj1,l*(0,j*(1)) = (urA,n(bl)A,<pmA,^1'A)ei'"

+ E Mu™*, ul1", <PW", vW")eiut (7.20)

as the complete, steady state solution of (4.18) with boundary conditions (7.1).
8. Surface charge. If the ac-voltage is applied uniformly over traction-free faces,

by means of a thin, perfectly conducting film, we have-

F<0) = = $u> = 0, $(0) = TV", (8.1)

where V is the constant voltage drop across the thickness. The current through the
plate is proportional to the integrated surface charge, Q, over the whole area of a face,
where

- L 4,Q = \ DA dA. (8.2)
-h

Inserting (5.2) in (8.2) and using (4.14), the divergence theorem and boundary condi-
tions (7.1), we find

Q = [ Dl0) dA. (8.3)
J A

Then, substituting (7.20) in the third of (4.17) and the resulting expression for Do'1' in
(8.3) we have, for the total surface charge,

Q = V(L - \h~\LA + £ A,YJ, (8.4)
M

where A is the area of the plate, A„ is given by (7.19) and

Y, = f [ett(uiT + S2luy") - ih-Wf' - (15/4h%Wl>n dA, (8.5)
J A

L = f [e^(u(tT + S2lul1,A) - - (15/4A»)4#(1M] dA, (8.6)
J A

with the constant V factored out. The formula (8.4), for surface charge, takes account
of the action of the crystal both as a capacitor, in the terms outside the summation
sign, and as a charge generator; including, in both cases, the distortion of the field due
to the finite dimensions of the plate.

9. Application to rectangular, rotated- 7-cut, quartz plates. Quartz is a trigonal
crystal and a rotated-F-cut is a plate which contains a digonal axis and whose normal
makes an angle, say 9, with the trigonal axis [3]. When referred to rectangular axes in
and normal to the plane of the plate, the constitutive relations exhibit monoclinic
symmetry. We take x, as the digonal axis in the plane of the plate. A solution [5] of the
equations in I for modes independent of x3 has given a frequency spectrum of coupled
thickness-shear, flexure and face-shear modes, for rectangular AT-cut plates (9 =
35°15'), very close to that determined experimentally by Koga and Fukuyo [6]. We
shall obtain the analogous solution of the present equations for the general rotated- F-cut
and give the formula for the integrated surface charge.
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With (8.1), monoclinic symmetry and independence of x3 , we may separate, from
(4.18), the four equations

Ce6K6(?4?n + Ui)\) + C56K6U3°h + pofu^ = 0,

CsrKb(u2°,\i + u[]\) + C5bU3°\x + pw2ui0) = 0,

§ ffYuU^h — 2h4cS6(u2°l + Ml1') — 2hK6c56u(3°l

+ 2 + §/i3pco2wiu — Ke,e26V = 0,

fAVnMiih - fn?::; + - s&v = o, o.i)
in the four variables u20), ui0>, w^1' and p,-" while u[0), m"' and <p'0) may be taken as zero.
If the piezoelectric constants e26 and \pu were absent, the first three of (9.1) would be
the equations which were solved in reference [5] for the coupled thickness-shear, flexure
and face-shear modes. The constant e2f, couples the thickness-shear deformation with
the applied voltage; and tpn couples the fiexural deformation with the induced electric
field.

The plate is bounded by xj = ±I, x3 = ±w. The appropriate boundary conditions
on Xx = ±Z are

r<2°> = y<°> = tIV = a(1) = o (9.2)
and we ignore the boundary conditions on x0 = ±w. Substitution of (4.17) in (9.2)
converts the latter to: on x^ = d-I,

2 + «"') + 2 hcMv?\ + e26V = 0, §h37llu^ + = 0,

2/i/c6C56«! + «T) + 2hcui4°X + e25V = 0, = 0.

A set of auxiliary functions which may be used to remove the inhomogeneous terms,
V, from the electrostatic equation (9.1)4 and the boundary conditions (9.3), is

%&nA = hh~lVP2Xl , ui0)A = ih~1VP3xi , ui1)A = 0, <pWA = \h2V, (9.4)

where

P2 = (C25C56 626^55)7^6^55^66 C5e) ) P3 = (^26^56 G25C66)/(C55C66 C56)

Then G,-0> = G','1' = 0 and the residual inhomogeneous differential equations are

C66Ke(M2?if + W^!*) + C56Ksui°,\f + pu2U2°)R + fpco2/l lVP2Xx = 0,

cssKe(uW? + ulT) + C55K6«3?1? + M0)* + ipw2h-1VP3xl = 0,

fA37u«"!f - 2hKlc66(u(2T + u[,)R) - 2hK6c5eu(3T

+ Zhtnv™ + f PhWu[l)R = 0,

- WT + 15h~W = 0. (9.5)
In this case, we see that (9.1)3 has also become homogeneous.

The boundary conditions to be satisfied by the residual solution are

2W66«i* + u[1)R) + 2 hc^T = 0, f h3yilulT + +llV™ = 0,

2hK&csMT + <1)R) + 2te55M<°ls = 0, = 0.
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We must now find the orthogonal functions for the series solution of the residual
problem; i.e., we must find the solutions of (9.1) and (9.3) with V = 0. Consider

(W20),W30>) = (A, B) sin , (mJ", <pw) = (C, D) cosfrj . (9.7)

These satisfy (9.1), with V = 0, if

^.(KeCee?2 — pu2) + Bk6c5^2 + CkIc6 6£ = 0,

A Kac5rji? + B(c55£2 — poj2) + Ck6c56£ = 0,

AkIc6£ + B Ke,cr>l£ + C(k6c66 + \h2 Yn£2 — | ph2u) + = 0,

C^,f2 - Dih~3(15h~2t22 + ?nf) = 0, (9.8)

For a non-trivial solution, the determinant of the coefficients of A, B, C, D must vanishi
leading to a quartic equation in £2 as against a cubic when the piezoelectric constant
\pu , is zero. The additional root is imaginary for all w, i.e., it produces a non-propagating
mode. Thus, there will be no additional resonances due to the piezoelectric effect. The
remaining three roots are almost the same as those with if/n = 0, due to the fact that
tl/2n is small in comparison with fuTn and e^Yn • Hence there will be little effect on the
wave numbers £ by computing all four roots from the determinant of (9.8) with = 0.
Thus we have £„ , n = 1, 2, 3, as functions of co2 from the first three of (9.8) and

£ = -15 e2Vf„/i2, (9.9)

independent of w, from the fourth. Corresponding to £„ , n = 1, 2, 3, we may compute
amplitude ratios

Vn = AJCn , qn = BJCn , (9.10)
from the first two of (9.8) and

r, = 4 ZVfciC. = W'4£/(is42h-2 + f„£2), (9.11)
from the fourth. To the approximation (9.9), A4 = Bt = C4 = 0. Consequently, we
may write (9.7), with ££ = , as

(w2°\«30)) = Z) (p„ , g„)C„ sin ZnX! , w"' = X) Cn cos£„x„ ,
n=1 n=1

<P(1) = Di cosh + (^11/(22) Z) '"nCn C0S . (9.12)
TO= 1

We now insert (9.12) in the boundary conditions (9.3), with V = 0, and find
3

X Cn[4cM(pn£n + 1) + K6c56qr^n] cos |„Z = 0,
71= 1

3

X C„[k6C58(p„£„ + 1) + c5S?„y cos = 0,
n= 1

3

sinh Z/ CB(P 711*22 ~f~ '/'iiO?" sin = 0,
n = 1

sinh + \pu X) C„(f/i34 — fnr„)£n sin f J = 0. (9.13)
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Elimination of C„ and D4 from (9.13) results in a transcendental frequency equation
relating l/h to the frequency. For a given l/h, the frequency equation has an infinity of
roots, co„, to each of which there correspond amplitude ratios p"n , q", r*, from (9.10) and
(9.11), and amplitude ratios

ft. = Cn/C3 , n = 1,2; ft = 1; ft = D4/C3 (9.14)

obtained from (9.13). Inserting these results in (9.12), we obtain the expressions for
the orthogonal functions:

(Iii0", UzU) = £«, q:)p: sin gr, , = £ « cos {fc, ,
n=l n=1

<p(1>" = ft" cosh + (iA,i/«m) 2Z r»/3» cos^Xi , (9.15)
n — 1

in which the common factor C3 has been set equal to unity.
Little error in a computation of frequencies and amplitude ratios will result if the

frequency equation is obtained from the first three of (9.13) with D± = 0. The frequency
equation would then have the same form as that in reference [5] but the material con-
stants in the coefficients of the transcendental functions would have slightly different
values due to the presence of the piezoelectric constants. In such an approximation the
amplitude ratios ft and ft would be obtained from the first two of (9.13) and ft from
the fourth.

The normalization factor is found by inserting (9.15) in (6.2), remembering that
= w'1'* = 0, with the result

#(,> = /M(kk + qu: + W)§-„ - (P:P: + &£ - jocj, ©.i6)
m = l n = 1

where S*„ = (£*Z ± gl)'1 sin (£$ ± £"nl). Then, from (7.18)! , we have B„ = 0 since
(7-0) = Gll) = 0; and, from (7.18)2 , noting that u[0)A, u[l)A and u3i)A are also zero,

c, = £ (p2P: + p3q:m/&m:iy sin & - c0S gq. 0.17)
n = 1

Finally, from (7.19),

A, = C>7(»; - J2). (9.18)

When (9.18), (9.15) and (9.4) are substituted in (7.20) the solution is completed
except for a formula for the correction factor k6 . This is found by equating the frequency
of free thickness-shear vibrations, from (9.1)3 , with Lawson's analogous solution [7]
of the three-dimensional equations. The result, as obtained previously [2], is

Kl = l«o(l + eV4c6E6), (9.19)

where a0 is the lowest, non-zero root of

tana = a(l + (9.20)

The formula (8.4) for surface charge requires expressions for F„ and L, in addition
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to A„ . These are obtained by substituting (9.15) and (9.4) in (8.5) and (8.6), respectively,
with the results:

Y, = A Z WMl + 1) + e25qX - (15/4h3)hi<WJl;W sin
71= 1

- A(15/4/i3)I)~1 sinh &l,

L = iAh~\K6e26P2 + e25P3 — [5/2]ef2), (9.21)

The expression (9.18) for A„ has, of course, the term a>1 — u2 in the denominator.
Hence, near a resonance only one term of the infinite series in the formula (8.4), for the
surface charge Q, need be computed. We have suggested that, in computing the roots
of the equations obtained by setting the determinants of the coefficients of (9.8) and
(9.13) equal to zero, certain of the terms having <//n as a factor be neglected. One would
thereby take into account the coupling between the applied voltage and the strain,
through e26 , and the generation of the induced electric field by the curvature, through
the amplitude ratios r„ ; but a part of the small counter effect of the induced electric
field on the strain would be neglected. This approximation need not be made if adequate
facilities are available for computing the roots of the quartic equation obtained from
(9.8) and the complete 4X4 transcendental determinantal equation which would be
obtained from the equations which would replace (9.13).
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