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1. Introduction. It has been known for some time that'there exist relations be-
tween the transmitting and receiving properties of antennas. Such a relation was first
established by Carson,1 and results of like character have been given by Ballantine2
and Sommerfeld.3 Mention may also be made of discussions by Slater4 and Schel-
kunoff.6

When critically examined, however, both the statement and the proof of the re-
sults claimed leave much to be desired from the point of view of preciseness and
rigour. Without attempting a detailed criticism of previous discussions of the subject,
it appears to the writer that such discussions are all open to at least some of the
following objections.

(1) Results proved for circuits—e.g. Thevenin's theorem—are assumed without
proof to apply to antennas.

(2) The boundary conditions to be satisfied at the antenna by the field quantities
are not precisely stated.

(3) No distinction is made between an antenna acting as receiver, with connected
load impedance, and one acting as a parasite.

(4) The "impressed voltage" is introduced in an unsatisfactory manner which
is not consistent with Maxwell's equations. In particular, no account is taken of the
"gap."

(5) "Reciprocal theorems" proved for two antennas are assumed to establish
results relating to the transmitting and receiving properties for a single antenna.
Clearly, it should be possible to establish such results without referring to a second
antenna at all.

(6) The antenna is treated as an infinitesimal Hertzian dipole, which is an un-
necessary and unwarranted simplification (this applies to Sommerfeld's3 work).

In this paper, a discussion of the subject is presented which, it is believed, is more
thorough and rigorous than any hitherto given. In Sec. 2 a rigorous formulation, in

* Received Dec. 26, 1946.
1 J. R. Carson, Bell System Tech. J., 3, 393 (1924); 9, 325 (1930); Proc. I.R.E., 17, 952 (1929).
2 S. Ballantine, Proc. I.R.E., 17, 929 (1929).
3 A. Sommerfeld, Z. fur Hochfrequenztechnik, 26, 93 (1925). See also the article by Sommerfeld in

Frank-Mises, Differentialgleichungen der Physik, Rosenberg Publ. N.Y.C., 1943, vol. II, 7th ed., p. 576.
4 J. C. Slater, Microwave Transmission, McGraw-Hill, 1942, chap. 6.
6 S. A. Schelkunoff, Electromagnetic Waves, Van Nostrand 1943, p. 476.
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terms of field theory, of three fundamental mathematical problems associated with
an antenna, namely those of a transmitting, parasitic, and receiving antenna, is given,
it being assumed that the antenna is perfectly conducting. The surrounding medium
may be of a very general (linear) type. Attention is confined throughout to a steady
state with a definite frequency. In Sec. 3 it is shown that of the three problems men-
tioned, one, namely that of reception, can be solved very simply in terms of the solu-
tions of the other two. Incidentally, a rigorous proof of TheVenin's theorem for an-
tennas, without any appeal to circuit theory, is given. In Sec. 4 it is shown
further that there is a connection between the transmission and parasite problems
which, effectively, enables us to solve the latter problem (and hence also the reception
problem) once the former has been solved. An application is made to the case where
the whole medium is homogeneous and isotropic, and in particular to a linear antenna
in such a medium.

In Sec. 5 reciprocal relations between two antennas are discussed. These are of
the usual type, though it is believed that they are somewhat more precisely stated
than is usually the case. An apparent contradiction of the reciprocal relation which
has been put forward by Ballantine2 (originally in criticism of Sommerfeld's3 work)
is here briefly dealt with. In Sec. 6 the question is discussed as to whether the direc-
tional properties of an antenna, as exhibited by a polar diagram, are identical for
transmission and reception. Adopting a reasonable definition of "polar diagram," it is
concluded that the identity of the polar diagrams does not hold in general, although
it does so (at least approximately) in cases which are likely to occur in practice. In
Sec. 7 the results are extended to cover the case where the antenna is imperfectly con-
ducting. In an appendix a theorem of Lorentz, which is used in the course of the work,
is extended to the case where the medium is anisotropic.

The results of Sees. 4 and 5, and subsequent results based on these, involve a cer-
tain approximation; but the errors involved would be negligible in practical cases.

- 2. The three mathematical problems associated with an antenna. We shall con-
sider the antenna to be perfectly conducting, though this restriction will be removed
in Sec. 7. The surrounding medium will be supposed to be characterized by linear
constitutive relations so that the field equations are all linear. These relations need
not, however, unless the contrary is stated, be of the usual isotropic type. We may
suppose that the medium is crystalline and is characterized by symmetric dielectric,
permeability and conductivity tensors u,, M>/> whose components are arbitrary
functions of position. Further, these tensors may have arbitrary surfaces of discon-
tinuity.6 We shall confine ourselves to a steady state solution in which all field
quantities vary with the time according to the factor e~iut, this factor being omitted,
and we shall employ Gaussian units throughout.

We shall, for the sake of generality, consider an "antenna" to be any closed per-
fectly conducting surface; usually this surface will, of course, take the form of a wire
or system of wires. Since the antenna is perfectly conducting, the tangential com-
ponents of E vanish everywhere on the antenna surface except where there is an
impressed (or induced) E.M.F. or "voltage." Such voltages occur when the antenna
is acting as a transmitter or receiver, but not, of course, when it is acting as a parasite.
To treat the case where there is a voltage in a reasonably simple manner which en-

6 There may also be perfect conductors in the surrounding medium (<r= °°). This case can either
be treated as a limiting case or considered ab initio.
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ables us to dispense with the connecting circuit (as is always done in such cases),
we shall ignore the connecting circuit, but suppose that there is a small "gap" on the
antenna surface where the transmitting or receiving circuit is connected.7 The com-
ponent of E across this gap does not vanish, but rises to a large value, in such a way
that the integral of this component taken across the gap defines the voltage. The
component of E "round" the gap, on the other hand, may be supposed to vanish.
This "model" is, effectively, that which has been adopted by Stratton and Chu for a
perfectly conducting (spherical or spheroidal) antenna,8 a detailed discussion of
which has recently been given by Infeld.9

With an ordinary antenna in the form of a wire, there will be no difficulty in
picturing this gap. To include the case where the antenna is of any shape, however,
we shall define the gap more precisely as a por-
tion of the antenna surface bounded by two
closed curves which are close together. We take
two orthogonal families of curves in the gap, the
two curves bounding the gap being members of
one family. At any point of the gap two direc-
tions are thus defined, which we may refer to as
"across the gap" and "round the gap." Let these
two directions be denoted by s, s' respectively,
related in such a way that a right-handed rota-
tion from 5 to 5' takes us along the inward nor- pIG y
mal to the antenna surface. This picture of an
antenna with a gap is illustrated on an exaggerated scale in Fig. 1.

By the "transmitting impedance" of an antenna, we shall mean, quite generally,
the ratio of the current across the gap, or, more precisely, the current across one of
the curves bounding the gap (and which we shall refer to simply as the "current at
the gap"), to the impressed voltage (the positive sense of the current being the direc-
tion of voltage rise). This impedance will, in general, depend on what may be termed
geometry of the gap (width, curvature, etc.)10 and also on the details of the applied
field, i.e. different applied fields, even with the same gap and the same voltage, may
give different impedances. It is reasonable to assume, however, that, within certain
limits as to the size of the gap,11 the impedance is very nearly independent of the gap-
geometry and of the details of the applied field, depending only on the position of the
gap on the antenna surface. This is the situation which is usually tacitly assumed in
engineering practice.

7 It may be noticed that, in order to apply this concept in some cases, it may be necessary to extend
the "antenna surface" beyond what is usually thought of as constituting the antenna. In the case of an
antenna protruding through the wall of a wave-guide, for instance, the walls of the guide must (at least
without further analysis) be treated as forming part of the antenna.

8 J. A. Stratton and L. J. Chu, J. App. Phys., 12, 241 (1941). These authors are only concerned with
a transmitting antenna, but the same procedure can obviously be adopted for a receiving antenna.

9 L. Infeld, Quart. Appl. Math, (appearing shortly).
10 I am indebted to the referee for emphasizing to me that fact that impedance may depend on gap-

width
11 The gap must not be too small, for, as gap-width tends to zero, the investigations of Stratton and

Chu (ref. 8) and Infeld (ref. 9) show that the reactive component of the current at the gap tends to
infinity. On the other hand, the gap obviously must not be too large, or the details of the applied field
become of importance.
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It is not the purpose of this paper to investigate the conditions under which this
"practical" case may be realized. The results to be proved, however, hold whether it
is realized or not (the approximations made in Sees. 4 and 5 merely require that the
width of the gap be not too great in order that they may be valid).

When the antenna is receiving, we have, similarly, an "induced voltage" and a
"current at the gap." When the antenna is acting as a parasite, there is, of course, no
gap. Since the same antenna may be imagined to act as a transmitter, parasite, or
receiver, we shall, however, speak of the "current at the gap" even in the parasite
case. By this we shall mean the current at what becomes the gap when the antenna
acts as transmitter or receiver. Alternatively, we may regard the parasitic antenna as
a special case of the receiving antenna when the gap is "filled up" (corresponding to
zero load impedance).

We shall now formulate the three mathematical problems associated with an
antenna as follows:

Transmission problem. We require a solution of Maxwell's equations in the region
outside the antenna surface which satisfies the following conditions:

(1) On the antenna surface the tangential components of E vanish except in the
gap, where the following relations must be satisfied:

E.. = 0, (1)

/
Esds = — V, (2)

where the integral in (2) is taken across the gap and V is the applied voltage, which
is supposed given (the integral is, of course, supposed to have the same value wherever
it is taken across the gap).

(2) In the surrounding medium, the tangential components of E and H are con-
tinuous across any surfaces of discontinuity of the tensors e<y,

(3) At infinity only outgoing waves are present.12
Parasite problem. We are given an incident field (whose source is assumed to be

unaffected by the presence of the antenna). We require a solution of Maxwell's equa-
tions for the total field (incident plus scattered) which satisfies the following con-
ditions:

(1) On the antenna surface, the tangential components of E vanish everywhere.
(2) Same as condition (2) in transmission problem.
(3) At infinity, the field must reduce to the incident field together with only out-

going (or damped) waves.
Reception problem. We are again given an incident field. We require for the total

field a solution of Maxwell's equations which satisfies the following conditions:
(1) On the antenna surface, the tangential components of E vanish except in the

gap, where the following relations must be satisfied

Es. = 0, (3a)

Esds = ZlI, (3 b)
/

12 If the medium is conducting, the corresponding condition is that the field must be space-damped
at infinity.
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where I is the current at the gap and Zl is the load impedance, i.e. the impedance at
the gap looking into the connecting circuit, We regard Zl as given.

(2), (3) Same as (2), (3) in parasite problem.
In accordance with what has already been said, the transmission problem, as

formulated above, has not, strictly speaking, a unique solution. Instead of specifying
the applied voltage V, in condition (1), we must specify the whole applied field Es (a
dependence of the solution on gap-geometry does not, of course, affect the uniqueness
of solution). Again, in the reception problem, it is not sufficient to specify the load
impedance Zl- To make the problem determinate we must specify something as to
the nature of the field Es within the gap. But any such possible indeterminancy in
the solution of the transmission or reception problems is immaterial for our purpose.

In the case of the parasite problem, there is no gap and no question as to the
uniqueness of solution arises.

3. Solution of the reception problem in terms of the solutions of the transmission
and parasite problems. Thevenin's theorem. It is now easy to show that the recep-
tion problem for any antenna can be solved very simply once the transmission and
parasite problems for the same antenna have been solved, it being assumed that the
gap is the same for the transmission and reception problems, and that the incident
field is the same for the parasite and reception problems.

Let (E,, HO be the total field (incident plus scattered) in the parasite problem, and
(E2, H2) the field in the transmission problem when there is unit applied voltage (or
one such field in the case where the transmission problem is not uniquely determined
by specifying the voltage). Then a field which is a linear combination of these two
fields of the form

E = Ei -f- «E2, H = Hi QH2, (4)

where a is a properly chosen constant, gives the solution of the reception problem
(or a solution, if there is more than one).

For, in the first place, this field is a solution of Maxwell's equations, since all
equations are supposed linear. Again, taking account of the conditions satisfied by the
(Ei, HO and (E2, H2) fields, it is evident that conditions (2) and (3) of the reception
problem, and also condition (1) except in the gap, are satisfied. Further, in the gap
we have, by virtue of the conditions satisfied there for the (Ei, HO and (E2, H2) fields:

= 0, (5)

f Esds = a J" E2tSds = — a, (6)

while the current at the gap for the (E, H) field is given by

1 = 11 + 01I2 = Ii + ol/Zt, (7)

where 11, /2 are the currents at the gap for the (Ej, HO, (E2, H2) fields respectively,
and Zt is the transmitting impedance of the antenna as defined in the previous sec-
tion (in the general case, we would have to say the transmitting impedance for the par-
ticular applied field chosen). From (5), (6) and (7) we see that condition (1) of the re-
ception problem is satisfied in the gap if a = Zz,(Ii+a/ZT), or

a = — Z lZtI\/(Z l + Zt). (8)
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Hence (4) gives the solution of the reception problem in terms of the solutions
of the transmission and parasite problems, since (8) determines a in terms of known
quantities, Zt being known from the solution of the transmission problem, Ii (the cur-
rent at the gap in the parasite problem) from the solution of the parasite problem, and
ZL being one of the data of the reception problem. We thus see that the solution of
the reception problem as formulated in the previous section is unique if, with the given
gap, the transmitting impedance Zt is uniquely defined.

In particular, we find from (7) and (8) for the current at the gap in the reception
problem

I = ZTh/(ZL + ZT), (9)

where I\ is the current at the gap in the corresponding parasite problem. Hence the
voltage which appears across the gap in the reception problem is

V = -ZjJ = - ZLZTh/(ZL + ZT). (10)

The results (9) and (10) show that Thevenin's theorem, suitably interpreted, holds
for an antenna. It may be remarked that these results are rigorous with the assump-
tions here made and apply formally to an arbitrary gap provided that the impedance
Zt be understood in the general sense already explained.

4. Connection between the transmission and parasite problems. We have shown
in the previous section that the reception problem may be solved very simply in
terms of the solutions of the transmission and parasite problems. We shall now estab-
lish a connection between the transmission and parasite problems. To be precise, we
shall show that if the transmission problem has been solved, then the current at the
gap in the parasite problem can be found, provided: (1) the incident field can be replaced
by the field of an equivalent Hertzian (infinitesimal) dipole, (2) the medium, in the neigh-
borhood of this dipole, is homogeneous and isotropic, being characterized by a dielectric
constant e, permeability n and (possibly) conductivity a. These restrictions are prac-
tically always satisfied in practice. At some distance from the source of the incident
field, this field is the same as that of an appropriately chosen Hertzian dipole (or a
superposition of such dipoles) and it is only the incident field in the neighborhood of
the parasitic antenna which is of significance for the satisfaction of the boundary
conditions in the parasite problem. Again, the medium can always, at least to a
sufficient approximation, be treated as homogeneous and isotropic in the neighbor-
hood of the equivalent Hertzian dipole.

Thus we can determine the current at the gap in the parasite problem when once
the transmission problem has been solved. The results (9) and (10) then give the
current at the gap and the voltage across the gap in the reception problem (with the
same incident field). By varying the gap in the transmission problem we can de-
termine the current distribution everywhere in the antenna in the parasite problem.13
Knowing this, it is usually possible to completely determine the field in the parasite
problem (and hence also in the reception problem). Thus we may say that a complete
solution of the transmission problem furnishes also a complete solution of the parasite
and reception problems. However, in the reception problem, it is usually only the
voltage induced across the gap which is of interest.

13 This statement requires some modification in the case of an antenna of arbitrary shape, since what
is actually furnished is the current across a closed curve on the antenna surface. For the usual case of an
antenna in the shape of a wire, however, the statement remains true.
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We shall now establish the result stated above, namely, that a solution of the
transmission problem furnishes also the current at the gap in the parasite problem
under the conditions stated. Our method of analysis is here similar to that of Sommer-
feld,3 except that we deal with a real antenna and a (fictitious) Hertzian dipole,
whereas Sommerfeld considered two Hertzian dipoles. Our point of departure is the
reciprocal theorem of Lorentz,14 which may be stated as follows: If (Ei, Hi) and
(E2, H2) are two Maxwellian fields which have no singularities in the region external
to any number of closed surfaces U, and which both give only outgoing (or damped)
waves at infinity, then

f (Ej X HdndS = f (E2 X Hr)ndS, (11)
J u J u

where n denotes (say) the outward normal to the surfaces U. The result (11) applies
if the medium outside the surfaces U is of the general linear type specified at the
beginning of Sec. 2. It was proved by Lorentz for the case of an isotropic medium,
but the extension to the case of a crystalline medium is easily made; this is shown in
the appendix.

Now let A denote the antenna surface (Fig. 1) and S a small sphere of radius r
whose center is the point P where the equivalent Hertzian dipole is situated (Fig. 2).

21

Fig. 2 Fig. 3

Also, let (El( Hi) denote the field (or a field) when the antenna is transmitting with
unit current at the gap and no dipole is present at P, and (E2, H2) the field when the
dipole at P is transmitting and the antenna is acting as a parasite. Then, from (11),
we have

f (Ei XH,),^ = f (E,XH,)AJ A+S J A+S
(12)

when n denotes the outward normal to A or S.
On using the boundary conditions satisfied by the (E2, H2) field, we have at once

/,
(E2 X Hi)nrfS = 0. (13)

' H. A. Lorentz, Amsterdamer Akad. van Wetenschappen 4, 176 (1895).
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To calculate the other integral over A in (12), we introduce orthogonal curvilinear
coordinates (£,17) in the gap, the curves r; = constant being in the '^"-direction, and
the curves £ = constant in the "s"' direction (Fig. 1). Let the line element in the gap
be

ds2 = &i(£, ri)d£2 + h2(£, v)dv2-

Then, taking account of the boundary conditions satisfied by the (Ei, Hi) field, we
have

Elf(H2fVhih2d£dij,

where the double integral is taken over the surface of the gap, and the limits for £, 77
are constants.

We shall now assume that we can neglect the dependence of H2,v and h2, or at
least of the product H2ir,h2, on £. This amounts to neglecting the variation of the
current density across the gap when the antenna is acting as parasite, and to neglect-
ing the width of the gap in comparison with the radius of curvature of the s-curves.
The former involves an error which would usually be of the order w/X, where w is
the width of the gap and X the wave-length. The latter involves an error of the order
w/R where R is the radius of curvature of the s-curves.

With this assumption we now have

f(E,XH,US=f Ei,(h\d^- J" Hi,vhi.dr\

J* EXiSds- <j>Eiyds', (13a)

where the first integral in the last expression in (13a) is taken across the gap and the
second integral is taken round the gap along any one of the s'-curves. The first integral
is equal to the voltage across the gap when the antenna is transmitting, while the
second integral (since the antenna is perfectly conducting) is equal to 4-7r/c times the
current at the gap when the antenna is acting as a parasite (the difference between the
currents across any one of the s'-curves is neglected, according to our assumption).
Remembering that in the (Elf Hi) field, the applied voltage is assumed to give unit
current at the gap, we thus finally have

X 4ir
(Ei X H.),rf5 = -—ZTh, (14)

a c

where Zt is the transmitting impedance of the antenna, and 11 is the current at the
gap in the (E2, H2) field.

We shall now calculate the integrals over .S in (12) when we proceed to the limit
r—>0. For this purpose, let us take axes (Fig. 2) with the origin at P, and the z-axis
in the direction of the axis of the dipole. Then, since the medium is supposed to be
homogeneous and isotropic in the neighborhood of P, we have for the (E2, H2) field
on the sphere 5, correct to terms of order 1/r2:

E2,x = 2>Mzx/r5, E2,v = 3Mzy/r5, E2lZ = M\7^_±\
V r6 r3/'

H2,x — ike'My/r3, H 2,„ = — ike'Mx/r3, H2,z = 0,

(15)
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where
k = «/C, e' = e + 47rzV/a>, (16)

and M denotes the strength15 of the dipole. We thus see that E2 is of order 1 /r3,
whereas H2 is of order 1/r2, on 5. Hence, to calculate the limit of the integrals over
S occurring in (12), it is sufficient to put

Ex = (E,)p, (17)
but it is not sufficient to put Hi = (Hi)p. We must, instead, put

/ dH i,A / dH 1 A /dHi,x\
Hi., = (HUx)P + xl ) + yl ) + 2  ) , (18)

\ dx /p \ dy /p \ dz /p

with similar expressions for H\,yt H\,z.
Using (15), (17), (18), the calculation of the integrals over S is straightforward

and similar to the corresponding calculations of Sommerfeld,3 except that he omitted
to take account of the variation of Hi over S (in our notation), as expressed by
(18).16 We thus find that, as r—>0,

f (E, X H2)JS = — Tike'M(E\_z)p, (19)
J ,s 3

/" 4 /dH\y dH 1,A ^
(E, XH,)ndS = — tM ( ) = tikt'M(Eu,)p. (20)

J ,s 3 \ dx dy )p 3

The last step in (20) follows from the Maxwell equation

curl Hi = — i&e'Ei,

which, by supposition, holds in the neighborhood of P.
Substituting (13), (14), (19), (20) in (12), we now have

ZtI\ = - iwt'MEc, (21)

where Ed= (-Ei.z)p denoted the component along the axis of the equivalent dipole of
the electric field generated when the antenna is transmitting with unit current at
the gap. We repeat here that M is the strength of the equivalent Hertzian dipole, and
e' the "complex dielectric constant," defined by (16), of the medium at the position
of the equivalent dipole. This is the required result. For, if the transmission problem
has been solved, Zt and Ed are known, and (21) then gives 2i, the current at the gap
in the parasite problem. In general, both Zr and Ed might depend on the details of
the applied field, but (21) shows that, to the approximation with which (13a) holds,
the ratio Zr/Ed is independent of such details.17

The position and strength of the equivalent dipole can usually be assigned very

16 The "strength" of the dipole can be defined by saying that the field is given by (15) in the immedi-
ate neighborhood of the dipole; alternatively, by saying that the field is that derived from a Hertz vector
whose components are (0, 0, M exp (ik\/efir)/r.

16 Sommerfeld thus obtained the incorrect result zero for the integral in (20). This error does not
appear in his final result, since he was dealing with two Hertzian dipoles. It is essential to correct it in
the present calculations, however.

17 The case of unit current at the gap has been chosen simply for convenience. In general, the ratio
V/Ed appears in place of the ratio Zr/Ed in (21), where V is the applied voltage and Ed the correspond-
ing value of Ed.
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easily when once the incident field is given. The assignment is usually by no means
unique. In the common case of a plane-polarized wave, the equivalent dipole can
conveniently be taken at a large distance from the antenna, and the strength of the
dipole expressed in terms of the amplitude of the incident wave. If the incident field
is the same as that of two equivalent Hertzian dipoles which are out of phase, as is the
case with an elliptically-polarized wave, we need merely superpose the fields of each
dipole separately, obtaining in place of (21)

ZTU = - iue'(M1Eil + M2Ei2), (22)

where the suffixes 1 and 2 on the right-hand side refer to the two equivalent dipoles.
Let us, for instance, apply (21) to the case where the whole medium is homo-

geneous and isotropic, being characterized by constants e, n, a, and where the inci-
dent field is that of a plane-polarized wave. Let us take polar coordinates (R, 6, <j>)
with the origin in the neighborhood of the antenna, and let us take the equivalent
dipole at a large distance from the antenna in the direction from which the incident
wave arrives, the axis of the dipole being in the direction of the electric vector of the
incident wave. Then if Ejnc is the (complex) amplitude of the electric vector in the
incident wave at the origin, we have

Einc = k"Meik'R/R, (23)

where e' is again the "complex dielectric constants" defined by (16), and k' = \/e'nk.
Again, for any shape of antenna, we can always express Ed in the form

Ed = 4>, i)eik'R/cR, (24)

where ^ is an azimuthal angle with respect to the radius vector which defines the
direction of the electric vector in the incident wave, and/(0, 0, is a dimensionless
function which can be calculated when the transmission problem of the antenna has
been solved. This function determines the directional and polarization characteristics
of the antenna when transmitting. Substituting for M and Ed from (23), (24) in (21),
we have for the current at the gap in the parasite problem in the present case

I\ = Einaf(e, <t>, +)/kZT. (25)

Equation (25) gives the current at the gap in the parasite problem in terms of the
amplitude of the incident wave and quantities which are known from the solution of
the transmission problem. From (10), we then have for the voltage induced at the
gap in the reception problem

V = - ZLEincf(6, <f>, i)/k{ZL + ZT). (26)

Consider, for example, the well-known case of a linear antenna of length 21, with
the gap at the middle point. Let us take \[/ to be the angle between the electric vector
of the incident wave and the plane containing the antenna and the direction of the
incident wave (Fig. 3). Also let us take the origin at the center of the antenna with
the polar axis along the antenna (in the direction in which the voltage rise is meas-
ured), so that 6 is the angle which the direction of the incident wave makes with the
antenna. Then, with the usual simplified treatment and the assumption of a sinu-
soidal current in the antenna for the transmission problem, we have for the function
/in (24)
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cos (kl cos 6) — cos kl
m <t>, i) = 2 . .    cos i>. (27)

sin kl sin 6

Hence (26) now gives for the voltage induced at the gap in the reception problem

2 Zi,£ino cos (kl cos 8) — cos kl
V = — —   cos (28)

k Zl+ Zt sin kl sin 6

The result (28) is in agreement with one obtained by Hallen18 by a direct treatment
of the reception problem, to the order to which (27) is true, i.e., with the usual
assumption of a sinusoidal current in the antenna when transmitting. A more accurate
treatment of the transmission problem would yield a more accurate expression than
(27) for the function /, and hence also a more accurate expression than (28) for the
induced voltage in the reception problem.

5. Reciprocal relations between two antennas. The results of the two preceding
sections establish relations between the performance of a single antenna when acting
as transmitter, parasite or receiver. They deal with the fields generated or received by
the antenna, and make no mention of the second antenna which is required to detect
the transmitted field, or to generate the incident field. Such relations would seem to be
those of most use in establishing a connection between the transmitting and receiving
properties of antennas. The more usual results establishing this connection, however,
such as have been given by Carson1 and Sommerfeld,3 relate to the performance of
two antennas. We shall now establish such "reciprocal relations."

Consider two antennas, Ai, A 2, with gaps Gi, G2 (Fig. 4). Let us apply the Lorentz

Fig. 4

relation (11) to the region outside Alt A2, taking for (Ei, Hi) the field (or a field) when
Ai is transmitting with an applied voltage V\ and A2 acting as parasite, and for
(Es, HO the field when A 2 is transmitting with an applied voltage F2 and A1 acting as
parasite. By an exactly similar method to that used in deriving (13a) and (14), and
with a similar approximation (i.e. neglecting terms of order iv/\ and w/R) we now
have:

f (Ei X H2)nrfS = — I,Vh (29)
J At C

/' 4t(E2 X Hi)„dS = — /2F2, (30)
a2 c

f (Ex X H2)nJ5 = f (E2 X Hi)nrfS = 0, (31)
J A- J A.

18 E. Hallen, Nova Acta Reg. Soc. Upsaliensis 11, No. 5 (1938).
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where I\ is the current induced at G\ in the (E2, H2) field, and J2 the current induced
at G2 in the (Ex, Hi) field. Substituting (29), (30), (31), in (11) we obtain19

VJi = \\h. (32)
This is the required reciprocal relation. We may state the content of the relation

in words as follows: Let A1, A2 be two antennas with gaps G\, Gt respectively. Then the
current induced at Gx when A 2 is transmitting and A1 acting as parasite is equal to the
current induced at G-t when A \ is transmitting and A 2 acting as parasite, providing that
the applied voltages in the two cases are equal}0 This is the more precise form of Carson's1
original reciprocal theorem.

More generally, if each antenna acts as a receiver instead of a parasite when the
other is transmitting, let Zrx be the transmitting impedance of A\, and Zl\ the load
impedance when A\ is receiving, the gap being at G1 in both cases. Let Zt2, Zi2
denote similar quantities for A 2, the gap being at G2. Then (9) and (32) lead to the
relation

(1 +ZLi/Zri)V1I1 = (1 +ZL2/Zr2)V2/2 (33)

in place of (32), where I\ is now the current induced at G\ when An is transmitting
with applied voltage V2 and A\ receiving, and I2 is the current induced at G2 when A\
is transmitting with applied voltage V\ and A 2 is receiving. If, instead of induced
currents, we deal with induced voltages, the relation (33) becomes

(Zn "+ Zli)V 1*1 = (ZT2 + ZL2)V2V2, (34)

where V\ is the voltage induced at G\ when A\ is receiving and A 2 transmitting, and i>2
is the voltage induced at G2 when the roles of transmitter and receiver are inter-
changed. Vi, V2 denote, as before, the applied voltages.

We may here briefly refer to an apparent contradiction of the relation (32) which
has been put forward by Ballantine.2 It was originally given by this author in criticism
of Sommerfeld's3 form of reciprocal theorem; but it would apply equally well to the
more exact form of the theorem given above. Let the antenna Ax considered in the
relation (32) be a linear whole-wave antenna which, when transmitting, has a sinu-
soidal current distribution which is antisymmetrical about the middle point ("com-
plete positive and negative current loops"), a!s shown in Fig. 5. Let the second antenna
A2, which may be of arbitrary shape,21 be situated at a large distance from A, and
in a direction perpendicular to it (Fig. 5). Then, when A\ is transmitting, with
the assumed current distribution, the field-strength generated is zero in the direction
of A 2,22 so that no current will be induced anywhere in A 2 when A 2 is acting as parasite.
On the other hand when A2 is transmitting and Ai acting as parasite it is certainly

19 In the notation more generally used, h and 72 are interchanged in (32).
20 It should be recalled that we are dealing with complex amplitudes. What is implied, therefore, is

that if the (real) amplitudes of the applied voltages are equal in the two cases, then both the current
amplitudes and the phase differences between induced current and applied voltage are also equal. The
frequencies must, of course, be the same in the two cases.

21 Ballantine supposes that the second antenna is exactly similar to the first (but not parallel to it)
in order to comply with the conditions of Sommerfeld's theorem. But this restriction is of no importance
in the present connection.

22 The longitudinal component of field-strength is actually only zero when terms of order higher
than 1 /r, where> denotes distance from the antenna, are neglected. This is all that is required for the
argument, however.
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not true in general that no current is induced in Ai. This contradicts the reciprocal
relation (32).

The explanation is that a completely antisymmetrical current distribution of the
type postulated when A\ is transmitting cannot occur. Ballantine makes no men-
tion as to where the antenna is supposed to be fed. If fed at the center, the current
distribution is symmetrical, not antisymmetrical. If fed at some other point, well
away from the center, the current distribution will be approximately of the type
postulated, but not exactly, since the usual sinusoidal theory is not exact. The field-

^1/
/
I
I\\\

Fig. 5

strength generated by Ai in the direction of A2 is thus not zero, but is comparatively
small. The reciprocal relation then tells us (quite correctly) that A\ will be compara-
tively weakly affected when A 2 is transmitting.

6. Are the directional properties (polar diagrams) of an antenna identical for
transmission and reception? It is commonly stated that the directional properties
of an antenna, as exhibited in a polar diagram, are identical for transmission and
reception. It is of interest to see whether the results of the two preceding sections
confirm this or not.

The reciprocal relation (32) shows at once that, in a certain sense, the directional
properties are identical. Consider an antenna A and a large number of other antennas
(which need not necessarily be identical) situated at a large distance from A in dif-
ferent directions. Then we might define the polar diagram of A for transmission
by means of the currents induced at certain "gaps" in these antennas when they act
as parasites, and the polar diagram of A for reception by means of the currents
induced at the gap in A when A acts as parasite and any one of the distant antennas
is transmitting, the same voltage being applied in every case. The relation (32) then
shows that the polar diagrams are the same.

Again, instead of considering the antennas as acting as parasites, we might con-
sider them as acting as receivers, the load impedance being the same for all the dis-
tant antennas, and use the induced voltages, rather than the parasitic currents, to
define the polar diagrams for transmission and reception. The relation (34) then
shows that the polar diagrams are identical [vi/v^. constant for Vi/V2 constant) only
if the transmission impedances Zt are identical for all the distant antennas. If all
these antennas are identical, this would only be the case if the whole medium is
homogeneous and isotropic; otherwise, the equality of the transmission impedances
could be achieved by proper choice of the distant antennas.

Neither of the above ways of defining the polar diagrams is very satisfactory,
however, and neither of them corresponds to what is usually adopted in practice. The
polar diagram for transmission is usually defined by means of the field generated, or
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the intensity, at distant points, and the polar diagram for reception by means of the
voltage induced by, or the power absorbed from, an incident wave of given strength
arriving from different directions.

For definiteness we shall, in an endeavor to treat the matter quite generally,
define the polar diagrams of an antenna for transmission and reception (with the
same gap) as follows: draw a large sphere 523 surrounding the antenna A. Then the
polar diagram for transmission is constructed by making the length of the radius
vector in any direction in the diagram proportional to the maximum amplitude of
the electric field-strength generated (for constant applied voltage23") at the point
on 5 which lies in this direction. For reception, we suppose that the source of the
incident field can be replaced by an equivalent Hertzian dipole (cf. Sec. 4) at some
(variable) point P on S, the axis of the dipole being in the direction in which the
electric field-strength generated at P when A is transmitting is a maximum.24 The
strength of the equivalent dipole is then adjusted so that the maximum amplitude
of the electric field-strength in the incident field at A is the same for all points
P on S. Then the polar diagram for reception is constructed by making the length
of the radius vector in the direction of P in the diagram proportional to the voltage
induced in A when the equivalent dipole is at P, the gap in A being the same as
for transmission and the load impedance being kept constant. It is perhaps worth
pointing out that the direction of P (i.e., of the source) is not necessarily the same
as the direction of arrival of the incident wave if inhomogeneities of the medium
are present. The incident field at the antenna need not, in fact, be a plane wave
at all, in which case we cannot even speak of the direction of the incident wave.

With these definitions, it follows from (21) and (10) that the polar diagrams for
transmission and reception are identical if, and only if, the expression \e'M/Ei*0\
is constant for all directions from the antenna (i.e. for all points on the distant
sphere), where |jEin0| denotes the maximum amplitude of the electric field-strength
in the incident field when the strength of the equivalent Hertzian dipole is M, and t'
is the complex dielectric constant of the medium at the position of this dipole.

The expression \t' M/E-ine\ is certainly constant if the whole medium is homo-
geneous and isotropic, for e' and are then both constant. It is also constant,
for instance, if we are considering transmission and reception over a perfectly con-
ducting earth, or over an imperfectly conducting, but homogeneous, earth. It is not
in general constant, however, when inhomogeneities are present—e.g. for a hetero-
geneous imperfectly conducting earth.

We conclude, therefore—at least with the above definitions of the polar dia-
grams—that the identity of the polar diagrams is not a general property of antennas
when inhomogeneities of the medium are present, although the diagrams are prob-
ably identical, or approximately so, in practically-occurring cases.

We may note incidentally that (21) and (10) show that the voltage induced in an
antenna by an equivalent Hertzian dipole of given moment, and situated at a given
point, is a maximum when the axis of the dipole lies in the direction in which the
electric field-strength generated at that point when the antenna is transmitting is a

23 In general, the polar diagrams obtained from our definitions may depend on the radius of this
sphere. In practice they will usually not do so, however, provided that the sphere is large.

230 The diagram thus obtained is independent of the applied voltage by (21) and Footnote 17.
24 This somewhat arbitrary choice is made so as to render conditions most favorable for the identity

of the two polar diagrams. It implies, of course, a certain restriction on the source of the incident wave.
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maximum. When the whole medium is homogeneous and isotropic, this means that
the voltage induced by a plane-polarized incident wave is a maximum, other things
being equal, when the polarization of the incident wave is the same as that of the wave
generated when the antenna is transmitting (or, in the general case, where the
generated wave is elliptically-polarized, when the electric vector of the incident
wave is in the direction of the major axis of the ellipse described by the electric
vector of the generated wave).

7. Extension of the results to include imperfect conductivity of the antenna. So
far, we have dealt entirely with the case where the antenna is perfectly conducting.
We shall now indicate briefly how the results can be extended to include the case
of an imperfectly conducting antenna.

We shall now adopt the following "mathematical model" for a transmitting or
receiving antenna (cf. Sec. 2): there is a "gap" as before, and the conditions (1), (2)
or (3a), (3b) again hold; but we now postulate in addition that over the ends of the
gap (i.e., the cross-sections of the antenna through the curves marking the position
of the gap) the tangential components of E vanish, both in transmission and recep-
tion. The "gap" is thus now a kind of "box," and the surrounding medium now in-
cludes the interior of the antenna which lies outside this "box." The transmission and
reception problems for an antenna now require a solution of Maxwell's equations in
the region outside the "box," subject to the proper boundary conditions in this region,
which are the same as before, and subject to the appropriate surface boundary con-
ditions on the box. The latter are the same as before, with the additional condition
that the tangential components of E vanish over the ends of the box. The condition
that the tangential components of E vanish on the surface of the antenna now disap-
pears. In the parasite problem, there is no "box" and hence, of course, no conditions
to be applied to its surface.

We shall now make the followed additional assumptions:
(1) The displacement current at the gap is negligible compared with the conduc-

tion current.
(2) When the antenna is acting as a parasite, the integral fEsds, taken across the

gap (Fig. 1), is negligible.
(3) When the antenna is acting as a parasite, the component Zv (Fig. 1) and the

tangential components of E over the ends of the gap are negligible.
The only one of these assumptions to which exception might be taken is the last,

which is certainly not true for an antenna of arbitrary shape and with an arbitrary
gap. It is, however, very approximately true for the usual wire-shaped antenna, so
that it seems reasonable to adopt it as a general assumption, particularly in view of
the somewhat arbitrary character of our "box model."

It is now readily verified that the general results of sections 3-5 can be proved as
before, by merely substituting the surface of the box for the surface of the antenna
(not all the assumptions (l)-(3) above are needed in the proof of each result). The
discussion of section 6 then applies as before. The formula (27) (and hence (28)),
which relates to a special problem, requires modification, of course, if the imperfect
conductivity of the antenna is taken into account.

Appendix
We shall here establish the Lorentz relation (11) when the medium outside the

surfaces U is anisotropic, being characterized by the symmetric tensors eijt /x<y, <7^-,
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which may be arbitrary functions of position (cf. Sec. 2). Adopting for a moment the
indicial notation, so that, e.g., we write (£j, E2, E3) in place of (Er, Ey, Ez), Maxwell's
equations for the steady state (with the time-factor e~"")» and for the postulated
type of medium, can be written

io}
(curl E), = 2^ Mij,

c i

m 4ir
(curl H)< = — 2^ (aEi H 2^ <mEi,

C j C j

for i= 1, 2, 3, the summations running in all cases from 1 to 3.
Suppose now we have two fields (E(1), H(1)) and (E(2), H(2)) which satisfy these

equations. Then we can write:

(curlE <»)< = (Al)
7

(curl H(1))i = TsPijE?', (A2)
7

(curl E<2>)< = (A3)
7

(curl H(2,)i = £ PnE™, (A4)
i

where

ia) ioo 4w
Otij fiij fij' "f- ^ij* (A5)

c c c

Multiplying (Al), (A2), (A3, (A4) by i?4(2), E\2\ —H^, — £((1) respectively, adding,
and summing with respect to i, we obtain, on using the identity A* curl B —B* curl
A = div (BXA):
div [E«> X H(2) - E(2) X H(1)]

Zr .„(1)„C2) „<2) (1) (1) (2) (2) (1) ,[ft!i y(IIj Hi H j Hi ) -j- Ei Ej Ei )J
*. 7

= £ [(«./ - + (ft, - fi^E^F.r1} = 0,
»,7

since, from (A5), the tensors ajy, fty are symmetric.
Hence, using the notation of (11),

div (E, X HO = div (E, X Hi). (A 6)

From (A6) the required relation (11) follows in the usual way by integrating each
side of the equation over the region bounded by the surfaces U and an infinite sphere,
and applying Green's theorem. This sphere, and also any surfaces of discontinuity,
give no contributions to the surface integrals on account of the boundary conditions
(outgoing waves at infinity; continuity of tangential components of E and H at a sur-
face of discontinuity).


