
D IMACS Series in Discrete :'--1athematics
and T heo retical Computer Science
Volume 21 , 1996

On the Computational Power of
DNA Annealing and Ligation

Erik Winfree1

Computation and Neural Systems
California Institute of Technology
Pasadena, California 91125, USA

winiree@hope.caltech.edu

Abstract

In [20] it was shown that the DNA primitives of Separate,
Merge, and Amplify were not sufficiently powerful to invert
functions defined by circuits in linear time. Dan Boneh et
al [4] show that the addition of a ligation primitive, Append,
provides the missing power. The question becomes, "How
powerful is ligation? Are Separate, Merge, and Amplify
necessary at all?" This paper proposes to informally explore
the power of annealing and ligation for DNA computation.
We conclude, in fact , that annealing and ligation alone are
theoretically capable of universal computation.

1 Introduction

When Len Adleman introduced the paradigm of using DNA to solve
combinatorial problems [1], his computational scheme involved two
distinct phases. To solve the directed Hamiltonian path problem, he
first mixed together in a test tube a carefully designed set of DNA
oligonucleotide "building blocks", which anneal to each other and are
ligated to create long strands of DNA representing paths through the
given graph. After this ligation phase, there ensue n steps of affinity
purification, whereby exactly the strands representing Hamiltonian
paths are separated into a test tube ("the answer").

Richard Lipton [13] subsequently refined the formalism for DNA­
based computation. He did away with Adleman's first phase, ligation,

'This work is supported in part by National Insti tute for Mental Health (NIMH)
Training Grant # 5 T32 MH 19138-05; also by General Motors' Technology
Research Partnerships program.

© 1996 A.mcrican !\Iathematicai Society

199

200 ERIK WINFREE

and replaced it by starting all computations with a fixed set of DNA
strands representing all n-bit strings. Lipton expanded on Adleman's
second phase, separation, where he showed how all solutions to a given
boolean formula f can be separated into a test tube ("the answer").
The cost for the generality of this method is indicated by considering
solving the Hamiltonian path problem: a straightforward method2

takes about n3 separation steps using Lipton's approach, compared
to the n steps used by Adleman.

We can conclude from this circumstantial evidence that much of the
physical computational power Adleman was exploiting was in his first
phase, where annealing and ligation were used. Lipton has explored
the power of generalizing Adleman's second phase; we would like now
to explore the power of generalizing Adleman's first phase.

An immediate stumbling block is that the chemistry of annealing
is not fully understood. At best we can try to define some conditions
under which the reactions are predictable, or at least under which it is
reasonable to expect that the reactions could be made to be predictable.

2 Some Basic Annealing Reactions

The fundamental chemistry of DNA is based on the double helix and
the principle of complementarity. Each strand of DNA is a covalently
linked polymer, where each unit consists of a constant part (the sugar­
phosphate "backbone") and one of either adenine, thymine, cytosine, or
guanine (the bases A, T , C, G). Each strand is oriented; it has a 3' and
a 5' end. When DNA forms a double-stranded helix, the strands must
be anti-parallel, and complementary bases align (A with T, C with G);
such strands are called \\iatson-Crick complementary sequences. DNA
also takes on more complicated configurations, including triple helix,

2Let the graph have n vertices and e edges; e ~ n2
. The best boolean circuit

I could devise uses O(enlogn) gates to verify a Hamiltonian ·path. Another
issue is that Adleman's ligation phase requires the synthesis of about O (n + e)
oligonucleotides, which is O(n2) if e = O(n 2) ; whereas Lipton needs only about
4n log n oligonucleotides to create his standard initial test tube of DNA. However,
technology is becoming readily available for synthesizing many oligonucleotides
in parallel very quickly (see e.g. [5]); the same cannot be said for the affinity
purification steps, which will likely remain expensive. Comparing volume for a
graph with n / 2 edges out of each vertex, Adleman's method uses volume roughly
proportional to (~)n 1 while Lipton '8 method uses a volume of 2n log n 1 since it takes
nlog n input variable bits to specify a potential path.

ON THE COM PUTATIONAL POWER OF DNA ANNEALING A. D LIGATION 201

quad helix, super-coiled, and branched.
A surprising number of possibilities are available, some of which

one may want , and many of which one may not want. DNA is a
particularly easy molecule to work with, because it has evolved to be
stable, typically unreactive, yet manipulable. RNA and protein, which
have evolved to serve many enzymat ic functions , are far more reactive,
and thus it is less easy to predict how novel designs will behave in an
experiment .

I will now comment on some reactions we may wish to exploit,
presented in cartoon fashion (Figure 1). I will have to be more detailed
with the reactions involved in the main thrust of this paper, where their
computation-universality is demonstrated.

(A) This is the canonical annealing reaction for DNA. Two strands
with complementary subsequences will form hydrogen bonds and
hybridize at the matching base pairs. The rate constants for this
reaction, which is reversible, depend on the temperature and salt
concentrations, among other things. The melting temperature,
above which the complex is not stable, depends upon the number
of matching base pairs.

(B) A special case of the above, where the matched region occurs at
the ends. Note that the two "sticky ends" (unmatched sequences)
are available for further reactions with more DNA.

(C) The above reaction can be used to join two double-stranded DNA
molecules with complementary sticky ends. If ligase is present in
the solution, the nicks in the backbone of the product will be
repaired by the formation of a covalent bond, resulting in two
continuous strands.

(D) If mismatches occur flanked by matching regions , the unmatched
DNA can bubble out.

(E) As above, except t.hat the mismatch occurs here on both
sides. Whether this structure is stable depends critically on the
temperature and concentration of salts. For example, a rule of
thumb is that the difference in melting temperature between
a perfectly matched structure and an imperfectly matched
structure is 1 degree per 1% mismatch [19].

202 ERIK WINFREE

(F) This is the simplest DNA branched junction. The assembly of
these structures consists of course of sequential steps; only the
end product is shown. This 3-armed junction is probably floppy.
However, how floppy it is depends upon the exact sequence of
base pairs in the oligonucleotides.

(G) This 4-armedjunction is commonly known as a Holliday junction.
The two horizontal strands tend not to be parallel, but skew.
If the sequences along both strands are homologous, then a
phenomenon called branch migration can occur, in which the
crossover point drifts right or left.

(H) This is the most complicated structure we will consider. We will
put it to good use later. It has been found to be fairly rigid and
planar [7]. Note the sticky ends. Other related double-crossover
junctions are possible, depending upon the number of half-turns
present in the helical regions. Ted Seeman calls this molecule
"DAE" for double-crossover, anti parallel helical strands, even
number of half-turns between crossovers. "DAO", with an odd
number of half-turns between the crossovers, has an interesting
topological difference: It consists of only 4 strands.

All of the structures above have been made in the lab and their
structures verified (see, for example, [7]) .

We would ultimately like a theory which could tell us, given a set of
oligos, a temperature, and salt concentrations, what stable structures
will form, as well as the kinetics. But this is a very complex task!

3 Operations using linear DNA

We will first briefly consider what computations can be performed
using annealing and ligation of strictly linear DNA molecules. Many
of the possibilities have already been discussed by other authors. For
example, t he techniques used by Adleman [1] allow for the construction
of all DNA representing strings accepted by a finite-state automata
(also known as a regular language), using the annealing reactions (B)
and (C) above. This is important, because it allows us to create a well­
defined, somewhat interesting set of inputs on which to compute in
parallel. Beaver has discussed how, in conjunction with polymerase,
reactions (D) and (E) can be used to make copies of DNA with

ON THE COMPUTATIONAL POWER OF DNA ANNEAL! G A ND LIGATION 203

context-sensitive insertion, deletion, and replacement of substrings.
In light of these powerful operations, it seems plausible that a "one­
pot" linear DNA reaction could be designed which performs universal
computation.

4 Operations using branched DNA

There are many possibilities for computation using branched DNA.
However, since the general chemistry is not well understood, we will
try to avoid ungrounded speculation by focusing on one concrete
possibility. The rest of this section3 will concentrate on how to assemble
a large "weave" of branched DNA 4 which simulates the operation of a
one-dimensional cellular automaton.

4.1 Background: Blocked Cellular Automata

This section develops a formal model of computation called blocked
cellular automata5 (BCA). We will later show how BCA can be
simulated by DNA.

The operation of a BCA is diagrammed in Figure 2. As in
the Turing Machine model, information is stored in an infinite one­
dimensional tape, where each cell contains one of a finite set of symbols.
The computation proceeds in steps, where in each step the entire tape
is translated, according to a given rule table, into a new tape. The
translation occurs locally and in parallel; pairs of two cells are read,
and which two symbols are written is governed by look-up in a rule
tableB• It is of critical importance that the reading frame (which cells
are paired together) strictly alternates from step to step.

The set of entries {(x , y) --t (u, vn is called the rule table, or the
program, of the BCA. By appropriately designing the rule table, t he
BCA can be made to perform useful computation. In fact , BCA are
computationally universal. A BCA with k + 38 symbols can simulate
in linear time the operation of a Turing Machine with k tape symbols

3The inspiration for this approach comes from the proof of the undecidability of
the Tiling Problem (see [10], Chapter ll).

'This is, clearly, highly speculative, but we hope not ungrounded.
"Blocked cellular automata are a lD version of what Toffoli and Margolus call

partitioning cellular automata in 2D [18J.
6If the table contains multiple entries for a given pair of read symbols, then the

BCA is said to be nondeterministic.

204 ERIK WINFREE

and s head states - the proof is analogous to that in [12]. Thus we can
conclude that a BCA can be used to answer any question which can
be phrased in terms of a computer program. Small BCA have been
designed which sort lists of integers, compute primes, and many other
tasks.

A few more comments are in order concerning the abstract model
of blocked cellular automata. First we consider t he finite-size case. In
any attempted implementation of a BCA, we cannot actually construct
an infinite tape. Thus boundary conditions become important . We
consider the following cases:

(a) _ TO update of boundaries. We start with a fi nite tape of length
2n; at each step the tape become 2 cells shorter; and after n
steps the computation can proceed no further. This case is not
universal.

(b) Inactive boundary conditions. Whenever there is an unpaired cell
at either end of the tape, it is copied verbatim onto the new tape.
The tape remains always the same size (n cells), and thus there
are only kn possible tapes. As the computation must begin to
cycle after kn steps, this case is also not universal.

(c) Periodic initial conditions. On either side of the input cells we
specify a repeating pattern of symbols. Starting with just one
copy of the periodic block on either side of the input , computation
proceeds as in (a) , but if the tape gets too short , we add another
copy of the periodic block to either side of the input tape and
start the computation anew7

. This case is universal.

(d) Self-regulated boundary conditions. Depending upon what
symbol is in the boundary cell , t he new tape will eit her shrink
(as in (a)) or expand by appending a new cell to the end of the
tape. This case is also universal.

Finally, a word on how an answer is obtained from the BCA. This
is a matter of convention. Typically, when t he computation is done,
t he answer is written on the final tape. But how is it known when the
computation is done? One possibility is that the tape stops changing;
the system has reached a fixed-point. However in this paper we will

7By memorizing boundary cells , we can avoid re-computing any cells and make
the computation more efficient.

ON THE COMPUTATIONAL POWER OF DNA ANNEALING A . D LIGATION 205

consider that a computat ion is done when a special symbol , called the
halting symbol, has been written for the first t ime anywhere on the
tape.

4.2 Simulation of BCA by DNA

We will now show how to use DNA to construct a BCA. In this section
we will optimistically show what chemical reactions we hope will occur;
in the following section we consider potential difficulties in finding
conditions such that they will in fact occur as we have described.

The DNA representation of the BCA tape is a lit tle counter­
intuit ive, so we will explain by example. Figure 3 shows part of the
DNA molecule encoding the init ial tape (the input to the computat ion).
To each tape symbol corresponds a short oligonucleotide sequence,
which appears in the initial molecule as a sticky end overhang in the
appropriate positions. The rest of the DNA in each segment does not
vary with content, and is chosen to maximize structural stability. Note
that the reading frame is implicit in the structural form of the DNA.
Although Figure 3 is schematic, the 2D picture is meant to imply that
the whole DNA complex is roughly planar. This is critical , and luckily,
it is physically plausible.

There are a variety of ways to make the initial molecule. Note that
the initial molecule can be thought of as consisting of several double
crossover junctions (from Figure IH, with the modification that the
top and bottom strands are made to be an odd number of half-turns
in length - see Figure 6 for detail) linked together by pieces of linear
helical DNA. The sticky ends can be designed such that only this unique
molecule will self-assembles. Ligase can be added to make the segments
of the initial molecule covalently bonded.

We ,,,,ill now explain how the program, that is the rule table , of
the BCA is represented in DNA. For each rule, e.g. (x , y) --> (u, v) ,
we create a double crossover molecule whose sticky ends on one helix
are x and y, and on the other helix u and v9 (see Figure 6). All

BIt is easy to see that sticky end sequences can be chosen, using the same
techniques as Adleman (see Section 3) , such that a periodic initial molecule will
form, creating periodic initial condit ions as mentioned in section 4.1 (c) above.
Similarly, a regular language of inputs could be made in parallel.

9The lengths of all parts of the rule molecules are chosen to be constant for
simplicity, but it is conceivable that by using variable length as well as sequence to
encode symbols, greater specificity could be achieved.

206 ERlK WINFREE

such rule molecules are added to the solution containing the initial
molecule. As shown in Figure 4, what is required for computation is
that rule molecules will anneal into position if and only if both sticky
ends match.

Eventually, a triangular lattice of linked DNA will form , simulating
a triangular region of a BCA corresponding to boundary conditions (a)
or (c) in Section 4.1 above (see Figure 5). Boundary conditions (b)
and (d) can be simulated by using special rule molecules for the edge
of the lattice; the details are not presented here. Note that each level
of the lattice has a single strand of DNA which travels the entire length
of the lattice at that level , and where the coded symbols occur in the
sequence in in which they occur in the BCA at time t.

Finally we ask, how can we access the output of the computation?
This breaks down into two questions: How do we know when the
computation is done? And what is on the tape at that point? There
are many possible approaches to take; here we will merely sketch one.
As mentioned above, we will consider the computation to be done
when a special halting symbol is written on the tape10 In DNA,
this corresponds to the special sticky end motif being incorporated
into the lattice. When this occurs, the motif will be present as a
double-stranded molecule for the first time, and this site can be be
chosen as the recognition domain for a binding proteinll , which could,
for example, subsequently catalyze a phosphorescent reaction, turning
the solution blue. To determine what is "on the tape" at this point ,
it is necessary to extract the single strand of DNA corresponding to
the final level of the BCA. To do this, first add ligase to covalently
bond all the annealed segments12 Then add resolvase to break all the
crossover junctionsla Finally, heat to separate the strands, and use

10 At this point other parts of the tape will typically "not know" that the
computation is done, so the lattice will continue to grow. However: it is also
possible to design the cellular automaton such that all cells go into a special state
to halt computation at the same time (the Firing Squad Problem, see e.g. [21]),
thereby allowing us to design linear pieces of DNA which fit into the gaps at the
final level of the lattice, so that it cannot grow further. This may make extraction
of the final tape configuration easier.

lIThe protein must have an active bound form, and inactive unbound form.
Furthermore, we must be sure it doesn't bind to rule molecules in the solution.

12lt is a valid concern that ligase may not be able to bind to any but the outermost
strands in a lattice. It may be better to reverse the order of the ligase and resolvase
steps.

13 Although a resolvase has been shown to cut crossovers in double-crossover

ON THE COMPUTATIONAL POWER OF DNA ANNEALING AND LIGATION 207

affinity purification to extract the strand containing the halting motif.
Amplify and sequence that strand however you desire (e.g. via PCR
and standard sequencing gels).

To summarize the model suggested here , a computation would
proceed as follows.

l. First, express your problem via computer program. Convert
that program into a (possibly nondeterministic) blocked cellular
automaton.

2. Create small molecules (H-shaped and linear) which self-assemble
to create the init ial molecule (or initial molecules , if search over a
FSA-generated set of strings is desired). Add ligase to strengthen
the molecule.

3. Create small H-shaped molecules encoding the rule table for your
program.

4. Mix the molecules created in steps 2 and 3 together in a
test t ube, and keep under precise conditions (temperature, salt
concentrations) as the DNA lattice crystallizes.

5. \\Then the solution turns blue, ligate, cut the crossovers, and
extract the strand with the halting symbol.

6. Sequence the answer.

4.3 Analysis and Estimates. Will it work?

Let's begin the analysis optimistically. The above construction is just
one implementation possible in a general class that might be called
"crystal computation" 14. In t his class, we design a system where we
can tailor-make the energy (and hence free energy) as a function of the
configuration. We design it such that the lowest energy state (or in
our case, the lowest free-energy state at a given temperature) uniquely

molecules [8], it is unknown whether the enzyme will be functional on the inner
strands in t he lattice. However, t he enzyme may be able to, at diminished speed,
work from the edges in.

14It has been suggested t hat we shouldn't use t he term "crystal", because it has
a well-defined special meaning. At best, our constructions yield Hpseudo-crystals")
because any useful computation is aperiodic. We beg the reader to give us slack in
using t his term.

208 ERIK WINFREE

represents the answer to our computation. This is closely related to
the approach taken by J. J . Hopfield [llJ in his seminal work on neural
networks. In our case the lowest energy configuration is one where
every rule molecule has all four sticky ends bound. Given the presence
of the initial molecule, this can only occur if t he computation proceeds
as desired.

The above analysis is a simplification that fails to take into
consideration many aspects of the proposed implementation. For
example, it completely ignores the dynamics involved; one simply
anneals at a slow enough schedule, the argument goes, and the crystal
is the result. Whereas in fact the crystallization proceeds at the edges
only, according to kinetics that significantly influence the result.

Can a temperature be found such that two sticky ends bound is
stable, while one sticky end bound is unstable? In other words, let
To, TI , and T2 be the melting temperatures for a rule molecule fitting
into a lattice slot where respectively 0, 1, and 2 of the sticky end
pairings match. We want to keep the test tube at a temperature T
such that To < TI < T < T2 • This should be possible, but how large
is the difference between TI and T2? Although this is unknown for the
particular molecules we use, we can get some idea by looking at what's
known about linear DNA annealing. For example, under standard
conditions 20 base-pair oligonucleotides (representing rule molecules
with two length 10 sticky ends bound) melt at 70° C, while 14 base-pair
oligonucleotides (representing rule molecules with only one length 10
sticky end bound, and the other matching partially) melt at 58° C [19J.
T = 65° C would then discriminate the two cases. However , the analogy
of rule molecules with two separate binding domains to variable-length
oligonucleotides with continuous binding domains is questionable.

A definitive answer to "But will it work?" requires a chemist's
knowledge and actual experiments. But we can immediately bring
some more concerns to light. Since I do not have answers to them,
I will merely mention them in passing. First, to read out an answer
of more than one bit, our implementation requires ligating the rule
molecules and cutting them with resolvase. It is not at all clear that,
in the crowded confines of the DNA lattice, either ligase or resolvase
will have room enough to perform its job'5 . Second, it is possible that,

ISIf there is an angle between the plane of the lattice and a rule molecule which
has just fit in place, then in our construction, an opposite angle is formed when a
rule molecule fits into the subsequent layer. Consequently, the 20 lattice, rather
than being perfectly planar, folds back and forth like a paper fan, which we call

ON THE COMPUTATIONAL POWER OF DNA ANNEALING AND LIGATION 209

at a low rate, incorrect rules will be incorporated into the lattice. If this
occurs, the computation is ruined. It is thus not clear at this time what
yields of correct computation are to be expected, and whether a means
could be devised to separate the good from the bad. It is additionally
conceivable that stable structures form in the solution unconnected to
the initial molecule. For example, four rules molecules could connect
in a stable "diamond"; we might think that these complexes will only
rarely be formed, because the intermediate steps are unstable (only one
sticky end joins molecules), and for similar reasons they would grow
slowly. However, they and other types of spurious connections and
tangles could form, ruining the computation. A final concern is that
there may be some systematic molecular stress or strain that comes
into play when building a large crystal, and that beyond a certain size
tearing would result. All these issues, and surely others, deserve more
attention and study.

If for the moment we suppose that the implementation operates
correctly, let us consider what advantage would be derived. Take the
following with a bucket of salt: First , a small rule molecule (see Figure 6
for a close-up) consists of 50 base-pairs of DNA, sufficient for sticky
ends of length 5, which gives us "'" 10 symbols16 That's 33 K Dalton /
rule molecule , with a size probably less than 20 x 44 x 85 Angstroms,
for 3 bits / rule molecule.

Assessing speed is even more speculative. Suppose we perform a
computation of a 10000-cell SeA with inactive boundary conditions,
and compute for 10000 time steps. Suppose it takes 1 second for a rule
to fit in when its slot is exposed. Since the 5000 slots are simultaneously
exposed, all should be filled in approximately 1 second on average.
This leads to a rough estimate of 3 hours for comput ing the 100002

cell lattice. Using lkg of DNA, we could assemble 1019 rule molecules,
that is , 1011 such calculations in parallel. That leads to a total of 1015

operations per secondH There is no lab work to be done during this

a "corrugated" lattice. The corrugated latt ice exposes more of the double helix
strands in each rule molecule, possibly making the strands more accessible to ligase
but making the crossovers less accessible to resolvase.

16We optimistically require only 2 mismatches between sequences representing
differing symbols. We also require the complement of a symbol's sequence does
not code for a symbol, and that every code sequence has 3 C-G bonds and 2 A-T
bonds, for more consistent melting temperatures.

l7This compares to 300 GFLOPS ('" 1014 basic operations per second) attainable
by the best modern supercomputers, e.g. a 7000 processor Intel Paragon. Of course,
the ('operations" we compare are apples and oranges.

210 ERIK WINFREE

the major stage in the computation. Of course time would also be
required in the input and output stages.

4.4 Open questions, extensions, and other
speculation.

In addit ion to the essential question of whether the ideas above can be
made to work in the lab, there are many other issues to be investigated.

How energy-efficient is crystal computation?

It is interesting to note that what might be called t he computation
proper (crystallizing the DNA lattice) theoretically requires no energy
at all ; in fact , crystallization must be exothermic. Of course, a great
deal of energy may be used to heat the mixture up, or to pulse the
temperature to dissolve defects. Furthermore, the input and output
stages require synthesis and analysis of DNA molecules, and thus also
much energy. Our proposal is possibly the most nearly implementable
example of the principle that computation is free, but input and ouput
are costly [3].

Why use the DAE structure for rule molecules? Clearly
the particular choice of molecule is not of intrinsic importance to the
idea of this construction. The logical essence is to have an "H"­
shaped molecule with four designable sticky ends. At its simplest ,
one could imagine making the "H" out of two chemically cross-linked
strands of DNA (Figure 7a). Another alternat ive is the slight ly larger
single crossover Holliday junction. However, it is important for the
construction of the lattice that the two linear pieces in the "H" be
planar; Holliday junctions have been shown to prefer a (flexible) 60°
skew angle [6]. The chemically linked strands imagined above have
not yet been characterized. The reason we propose the large double
crossover molecules18 is that they have already been characterized
in the lab and are thought to be rigid (which may help prevent
tangled lattices) and planar [7] . We chose DAE in preference to
other topological variants of double crossover molecules, such as DAO,
because the topology of the rule molecule leads to a different "weave"
of DNA strands in the lattice (Figure 7bcde). We prefer to have a

18Ned Seeman suggested we consider double crossover molecules as an
improvement over the more awkward branched junction constructions we were
originally considering.

ON THE COMP UTATIONAL POWER OF DNA A NNEALING A ND L IGATION 211

single strand which, if covalently linked, runs along an ent ire level of
the lattice, t hus encoding the BCA state for that t ime step.

Why keep around the entire history of the computation?
Only the most recent level is necessary for the next step of the
computation. Open question19 : Can condition be found such that the
bottom of the lattice is dissolving while the top of the lattice is growing?
Rule molecules which dissolve at the (hotter?) bottom of the latt ice
could later be re-used at the (colder?) top.

Automatic programming by evolving rule molecules.
Suppose we are interested in finding a small BCA program which
generates a part icular string, or set of strings. Speculatively, we might
begin with a nondeterministic set of all possible rule molecules of
a particular size, including some molecules for nondeterminist ically
constructing init ial molecules. We grow some 1018 lattices, and
somehow extract those which compute the desired string. The rule
molecules present in these lattices are known to be sufficient to compute
the string, but they probably do not contain all possible rules. We now
dissolve the "good" lattices and somehow amplify the rule molecules
present. Letting lattices grow again, and selecting again for the desired
string, we further reduce the nondeterminism of the rule molecules
present. We can also consider adding a tiny amount of ligase, thus
occasionally creating larger rule molecules from sm aller ones - a
form of "compiling" . Perhaps after a few iterat ions we look and see
what rule molecules are present , or - presuming there is still some
nondeterminism - look at what other strings they form. This process
is closely related to universal search and can be used, for example, for
Kolmogorov complexity based induction[17].

Why a ID BCA? Why not build a 3D lattice to simulate a
2D BCA? We started with ID BCA because they can be immediately
explored used existing DNA technology. Two dimensions offers several
advantages, however , such easier design of efficient computations.
Perhaps more importantly, in higher dimensions it becomes easier to
design error-tolerant rules [9]; intuit ively, point defects in 2D can be
filled-in from adj acent correctly-computed cells , while in ID a point
defect severs communication between the left and right side. Open
question: Can the DNA rule molecules be modified so as to build 3D
DNA lattices? Speculatively, one could propose a variant of the double
crossover Holliday junction, the "multiple strand double crossover

!"Suggested by Len Adleman, private communication.

212 ERIK WINFREE

junction" (Figure S) , as a means to implement the read-4, write-4
operation required by 2D blocked cellular automata (see e.g [IS], Ch.
12). Unfortunately, the proposed building-block molecule has not yet
been synthesized.

Potential uses in nano-technology. This paper has suggested
an approach to molecular computation via programmable self-assembly.
Programmable self-assembly may have other applications. Open
question: Can cellular automata generated lattices be used to define
ultra-high resolution electronic circuits ? One possibility, along the lines
investigated by Robinson and Seeman [14], would be to conjugate nano­
wire onto individual rule molecules, such that when the rule molecules
fit together, an electrical circuit is formed. This proposal differs from
Robinson and Seeman's suggestion in that whereas they envisioned
a periodic lattice of identical memory cells, we suggest that cellular
automata rules could be used to build more complicated circuits, either
in 2D or 3D.

Why use DNA at all? The principle of computing via
crystallization is not restricted to DNA. Open question2o : Can non­
DNA -based molecules could be used to design desired computations
carried out on the surface of a growing crystal?

5 Comparison with other approaches

Perhaps the most practical suggestion for universal computation via
DNA is that of Boneh, Dunworth, Lipton, and Sgall [4J. Their approach
makes straightforward use of well understood laboratory techniques
for manipulating DNA. They are able to simulate nondeterministic
boolean circuits, which seems very efficient for some calculations, and
which gives them universal computational ability. Because circuits
allow non-local interact ions of variable, circuits can be very compact.
However, it should be pointed out that the computation requires a lab
technician to sequence operations on multiple test t ubes; the logic of
the program being computed is external to the DNA, which is used as
a memory. Small scale computations could be immediately attempted
with reasonable chance for success; however due to the weakness of
single-stranded DNA and other factors , it is not clear how this approach
will scale.

20Suggested by Stuart Kauffman, private communication.

o ' THE COMPUTATIONA L POWER OF DNA A NNEALING AND LIGATION 213

Other authors have proposed DNA implementations of Thring
Machines directly (e .g. [2], [16], [15]). The approaches vary from
using PCR to relying on restriction enzymes. These approaches show
promise, although the reliability and efficiency of the steps is unclear.
Furthermore, single-tape, single-head Turing Machines are particularly
cumbersome logically; circuits will typically compute the same function
in many fewer steps (and single steps take comparable t ime in both
systems - on the order of hours!) . In short , although they are of
theoretical interest, it is unlikely that anyone will actually go into the
lab and solve problems this way.

Our hypothetical cellular automaton implementat ion differs in a
number · of ways: First and foremost, our proposal is a "one-pot"
reaction. Dump in the rule molecules encoding your problem, and all
the logic of the computation is carried out autonomously. No lab work
is involved. Furthermore, in addition to running a massive number
of computations in parallel, each cellular automaton performs its own
computation in parallel - thus fully exploiting the parallelism available.
The major and significant drawback of our proposal is t hat it makes use
of chemistry which is not yet fully understood, and thus going into the
lab to do a computation this way would be a real technical challenge.

The main conclusion of this paper is that annealing and ligation
alone may be sufficient for universal "one-pot" DNA computation.
Whether the particular scheme envisioned here can be made to work
in the lab is a matter for further research. In any case, it is
clear that better experimental characterization of the chemistry of
annealing is required, and may open up new possibilities for DNA based
computation.

Acknowledgments

I would like to thank Paul W. K. Rothemund and Sam Roweis
for their stimulating discussion. I am indebted to Ned Seeman for
many excellent suggestions, as well as fundamental research on the
biochemistry this proposal hopes to exploit; and to Len Adleman
for inspiration and great discussions. John Baldeschwieler, Tom
Theriault, Marc Unger, Sanjoy Mahajan, Carlos Brody, Dave Kewley,
Pam Reinagel , Al Barr, and Stuart Kauffman gave many useful
suggestions. Thanks to my advisor John Hopfield for his support and
encouragement .

214 ERIK WINFREE

Bibliography

[1] Adleman, LeonaId, MoleculaI computation of solutions to
combinatorial problems, Science 266:1021-1024 (Nov. 11) 1994.

[2] Beaver, Don, A Universal MoleculaI Computer , Penn State
University Tech Report CSE-95-001

[3] Bennett, Charles H. , The Thermodynmnics of Computation - a
Review, International Journal of Theoretical Physics 21 (12):905-
940, 1982.

[4] Boneh, Dan, C. Dunworth, R. Lipton, and J. Sgall, On
Computational Power of DNA, to appear.

[5] Chetverin, Alexander B. , and Fred Russell Kramer,
Oligonucleotide Arrays: New Concepts and Possibilities, Bio /
Technology 12:1093-1099, November 1994.

[6] Eis, P. S., and D. P. MillaI, Conformational Distributions of
a Four-Way Junction Revealed by Time-Resolved Flourescence
Resonance Energy Transfer, Biochemistry 32 (50:13852- 13860,
1993.

[7] Fu, Tsu-Ju, and Nadrian C. Seeman, D A Double-Crossover
Molecules, Biochemistry 32:3211- 3220, 1993.

[8] Fu, Tsu-Ju, Biirries Kemper, and Nadrian C. Seeman,
Cleavage of Double-Crossover folecules by T4 Endonuclease
VII, Biochemistry 33:3896- 3905, 1994.

[9] Gacs, P. , and J. Reif, A Simple Three-Dimensional Real-Time
Reliable Cellular Array, Journal of Computer and System Sciences
36 (2):125- 147, 1988.

[10] Griinbaum, Branko, and G. C. Shephard, Tilings and Patterns,
'0,1. H. Freeman and Company, New York, 1987.

[11] Hopfield, J. J., Neural Networks and Physical Systems with
Emergent Collective Computational Abilities.

[12] Lindgren, K. , and M. Nordahl , Universal Computation in Simple
One-Dimensional Cellulm' Automata, Complex Systems 4 (3):
299- 318, 1990.

ON THE COMPUTATIONAL POWER OF DNA ANNEALING AND LIGATION 215

[13] Lipton, Richard, Using DNA to Solve NP-complete Problems,
Science 268:542- 545 (Apr. 28) 1995.

[14] Robinson, Bruce H., and Naill·ian C. Seeman, The Design of
a Biochip: A Self-assembling Molecular-scale Memory Device,
Protein Engineering 1 (4) :295- 300, 1987.

[15] Rothemund, P. W. K. , A DNA and Restriction Enzyme
Implementation of Turing Machines, this volume.

[16] Smith, Warren D., and Allan Schweitzer , DNA Computers in Vitro
and Vivo, NECI Technical Report , March 20, 1995.

[17] Solomonoff, Ray, The Applications of Algorithmic Probability to
Problems in Artificial Intelligence, In Uncertainty in Artificial
Intelligence, L. N. Kanal and J . F. Lemmer (editors), Elsevier
Science Publishers B. V., North Holland, 1986.

[18] Toffoli , Tommaso, and Norman Margolus, Cellular Automata
Machines, MIT Press, Cambridge, MA, 1987.

[19] Wetmur , James G., DNA Probes: Applications of the Principles
of Nucleic Acid Hybridization, Critical Reviews in Biochemistry
and Molecular Biology 36 (3/4) :227- 259, 1991.

[20] Winfree, Erik, Complexity of Restricted and Unrestricted Models
of Molecular Computation, this volume.

[21] Yunes, J. , Seven-state Solutions to the Firing Squad Synchron­
ization Problem, Theoretical Computer Science 127 (2) :313-332,
1994.

216

Fi ure 1.
(A)

(8)

(C)

(D)

(E)

, .. ~ .. : .-

•
.......... ~
' -

•

•

•
G.: ''::':-?
"t B

ERIK WINFREE

Some basic

-~

-
-~

types of annealing
(F)

• r .

(G)

,pU.

reaction.

Figure 1: Curves represent single strands of DNA oligonucleotide. The half
arrow-head represents the 3' end of the strand. Small lines between strands
represent hydrogen bonds joining the strands. The helical structure of the
DNA is not represented visually. Letters signify sequence motifs. A bar
above a letter signifies the Watson-Crick complement of the motif.

ON THE COM PUTAT IONAL POWER OF DNA ANNEALING AND LIGATION 217

Figure 2. Operation of a blocked cellular automaton.

I f(X'Y1 g(X,Yll

~

I ! ! le i lot I 10 1e ' I iol. ' I I 1. 1 t+3
IIIIIIIII
I I le i 10) ! ! 1. lo! I le la! I 1. 1 ! H2

IIIIIIII
V;2!q~pQj~p~~g2!!lQ~ 1+1
IIIIIIIII
II I 101 ! I 'e l I I le lo l I lo le' I ! t

Figure 2: The tape of a BGA, divided into cells, is shown at the bottom
right . Each cell contains one of three symbols: blank, black dot , or white
dot . The tapes at successive time steps are stacked vertically above t he
init ial tape. The inset , left , details the form of a rule table entry, which
governs how new tapes are created.

Figure 3. Encoding the initial tape in a DNA molecule .

• u --~----~====~====~====~====~-----r--
A • C A A C

ON":

~'<J:(0 r! c~'<J:(0 ~ ~~ ''' ' '' r-c

....... "' . ,"I';"'!i" ">.r,1 ,!,;;, ,; b , !'I';!!,,, "">~ I" , ,,,, b " '''' H ' '' ; ,; '>..rr1 ~::) h<' ,; d lll; J, ,,,' i

Figure 3: The sequence of sticky ends in the init ial molecule encodes the
init ial tape of the BGA. Thus ' A' denotes a symbol in the BGA diagram,
whereas in the DNA diagram it denotes the unique sequence of bases
associated with that symbol.

218 ERIK WINFREE

Figure 4. Rule table molecules assemble into the lattice.

Figure 4: We see free-floating rule table molecules above and the initial
molecule at the bottom (both correspond to the BCA in Figure 2). A
rule table molecule, with sticky ends Band C, is about to anneal to the
initial molecule. At the left, a rule molecule which matches only at A will
ultimately not stick. Note that the rule molecule with sticky ends A and A
will also not stick, because the orientation of its strands is wrong; this rule
molecule will be useful on alternate levels of the lattice.

Figure 5. The DNA lattice resulting from a finite initial
. molecule.

Figure 5: At the chosen annealing temperature, which is above the melting
temperature for 8 base-pair annealing but below the melting temperature
for 28 base-pair annealing, no more rule molecules can stably attach to this
structure. However, if the bottom level (the initial molecule) were extended,
then a larger triangle could form. 8 is the length of the sticky ends in the
rule molecules.

'-',

ON THE COMPUTATIONAL POWER OF DNA ANNEALI NG AND L IGATION 219

Figure 6. Detail of a small rule molecule.

E

f(X'Y) .y~.~.

~~~~ 
E 

8SA 

Figure 6: This is the smallest DAE/ even style rule molecule possible. It 
has sticky ends of length 5, and internal region of length 10. Every base 
pair is shown. 



220 ERIK WINFREE 

Figure 7. Alternative Topologies for 2D Lattice. 

T Y 

::: :!L II II 

(a) T .,. 

(b) 

(d) 

~
""""""" ~5~~~ 

···' ··' · ··'······ · ·'· ~r 
, ~ ,. . "' .. =.1:-

(e) ~~~C 

Figure 7: (a) Rule molecules based on cross-linked DNA. (b) DAE rule 
molecules with odd-length spacing. (c) DAE rule molecules with even-length 
spacing. (d) DAO rule molecules with odd-length spacing. (e) DAO rule 
molecules with even-length spacing. 



ON THE COMPUTATIONAL POWER OF DNA ANNEALING AND LIGATION 221 

Figure 8. A possible 3D lattice of DNA for simulating 2D 
BCA. 

iI (A .B.C,O) 

A 
f4( .... B.C.D) 

Figure 8: Four DNA double helices may be bound together by crossover 
junctions (left ). Sticky ends determine 2D BCA rules as the rule molecules 
assemble in an alternative cubic lattice (right). 


