
D IMACS Series in Discrete :'--1athematics 
and T heo retical Computer Science 
Volume 21 , 1996 

On the Computational Power of 
DNA Annealing and Ligation 

Erik Winfree1 

Computation and Neural Systems 
California Institute of Technology 
Pasadena, California 91125, USA 

winiree@hope.caltech.edu 

Abstract 

In [20] it was shown that the DNA primitives of Separate, 
Merge, and Amplify were not sufficiently powerful to invert 
functions defined by circuits in linear time. Dan Boneh et 
al [4] show that the addition of a ligation primitive, Append, 
provides the missing power. The question becomes, "How 
powerful is ligation? Are Separate, Merge, and Amplify 
necessary at all?" This paper proposes to informally explore 
the power of annealing and ligation for DNA computation. 
We conclude, in fact , that annealing and ligation alone are 
theoretically capable of universal computation. 

1 Introduction 

When Len Adleman introduced the paradigm of using DNA to solve 
combinatorial problems [1], his computational scheme involved two 
distinct phases. To solve the directed Hamiltonian path problem, he 
first mixed together in a test tube a carefully designed set of DNA 
oligonucleotide "building blocks", which anneal to each other and are 
ligated to create long strands of DNA representing paths through the 
given graph. After this ligation phase, there ensue n steps of affinity 
purification, whereby exactly the strands representing Hamiltonian 
paths are separated into a test tube ("the answer"). 

Richard Lipton [13] subsequently refined the formalism for DNA­
based computation. He did away with Adleman's first phase, ligation, 
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and replaced it by starting all computations with a fixed set of DNA 
strands representing all n-bit strings. Lipton expanded on Adleman's 
second phase, separation, where he showed how all solutions to a given 
boolean formula f can be separated into a test tube ("the answer" ). 
The cost for the generality of this method is indicated by considering 
solving the Hamiltonian path problem: a straightforward method2 

takes about n3 separation steps using Lipton's approach, compared 
to the n steps used by Adleman. 

We can conclude from this circumstantial evidence that much of the 
physical computational power Adleman was exploiting was in his first 
phase, where annealing and ligation were used. Lipton has explored 
the power of generalizing Adleman's second phase; we would like now 
to explore the power of generalizing Adleman's first phase. 

An immediate stumbling block is that the chemistry of annealing 
is not fully understood. At best we can try to define some conditions 
under which the reactions are predictable, or at least under which it is 
reasonable to expect that the reactions could be made to be predictable. 

2 Some Basic Annealing Reactions 

The fundamental chemistry of DNA is based on the double helix and 
the principle of complementarity. Each strand of DNA is a covalently 
linked polymer, where each unit consists of a constant part (the sugar­
phosphate "backbone") and one of either adenine, thymine, cytosine, or 
guanine (the bases A, T , C, G). Each strand is oriented; it has a 3' and 
a 5' end. When DNA forms a double-stranded helix, the strands must 
be anti-parallel, and complementary bases align (A with T, C with G); 
such strands are called \\iatson-Crick complementary sequences. DNA 
also takes on more complicated configurations, including triple helix, 

2Let the graph have n vertices and e edges; e ~ n2
. The best boolean circuit 

I could devise uses O(enlogn) gates to verify a Hamiltonian ·path. Another 
issue is that Adleman's ligation phase requires the synthesis of about O (n + e) 
oligonucleotides, which is O(n2 ) if e = O(n 2 ) ; whereas Lipton needs only about 
4n log n oligonucleotides to create his standard initial test tube of DNA. However, 
technology is becoming readily available for synthesizing many oligonucleotides 
in parallel very quickly (see e.g. [5]); the same cannot be said for the affinity 
purification steps, which will likely remain expensive. Comparing volume for a 
graph with n / 2 edges out of each vertex, Adleman's method uses volume roughly 
proportional to (~ )n 1 while Lipton '8 method uses a volume of 2n log n 1 since it takes 
nlog n input variable bits to specify a potential path. 
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quad helix, super-coiled, and branched. 
A surprising number of possibilities are available, some of which 

one may want , and many of which one may not want. DNA is a 
particularly easy molecule to work with, because it has evolved to be 
stable, typically unreactive, yet manipulable. RNA and protein, which 
have evolved to serve many enzymat ic functions , are far more reactive, 
and thus it is less easy to predict how novel designs will behave in an 
experiment . 

I will now comment on some reactions we may wish to exploit, 
presented in cartoon fashion (Figure 1). I will have to be more detailed 
with the reactions involved in the main thrust of this paper, where their 
computation-universality is demonstrated. 

(A) This is the canonical annealing reaction for DNA. Two strands 
with complementary subsequences will form hydrogen bonds and 
hybridize at the matching base pairs. The rate constants for this 
reaction, which is reversible, depend on the temperature and salt 
concentrations, among other things. The melting temperature, 
above which the complex is not stable, depends upon the number 
of matching base pairs. 

(B) A special case of the above, where the matched region occurs at 
the ends. Note that the two "sticky ends" (unmatched sequences) 
are available for further reactions with more DNA. 

(C) The above reaction can be used to join two double-stranded DNA 
molecules with complementary sticky ends. If ligase is present in 
the solution, the nicks in the backbone of the product will be 
repaired by the formation of a covalent bond, resulting in two 
continuous strands. 

(D) If mismatches occur flanked by matching regions , the unmatched 
DNA can bubble out. 

(E) As above, except t.hat the mismatch occurs here on both 
sides. Whether this structure is stable depends critically on the 
temperature and concentration of salts. For example, a rule of 
thumb is that the difference in melting temperature between 
a perfectly matched structure and an imperfectly matched 
structure is 1 degree per 1% mismatch [19]. 
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(F) This is the simplest DNA branched junction. The assembly of 
these structures consists of course of sequential steps; only the 
end product is shown. This 3-armed junction is probably floppy. 
However, how floppy it is depends upon the exact sequence of 
base pairs in the oligonucleotides. 

(G) This 4-armedjunction is commonly known as a Holliday junction. 
The two horizontal strands tend not to be parallel, but skew. 
If the sequences along both strands are homologous, then a 
phenomenon called branch migration can occur, in which the 
crossover point drifts right or left. 

(H) This is the most complicated structure we will consider. We will 
put it to good use later. It has been found to be fairly rigid and 
planar [7]. Note the sticky ends. Other related double-crossover 
junctions are possible, depending upon the number of half-turns 
present in the helical regions. Ted Seeman calls this molecule 
"DAE" for double-crossover, anti parallel helical strands, even 
number of half-turns between crossovers. "DAO", with an odd 
number of half-turns between the crossovers, has an interesting 
topological difference: It consists of only 4 strands. 

All of the structures above have been made in the lab and their 
structures verified (see, for example, [7]) . 

We would ultimately like a theory which could tell us, given a set of 
oligos, a temperature, and salt concentrations, what stable structures 
will form, as well as the kinetics. But this is a very complex task! 

3 Operations using linear DNA 

We will first briefly consider what computations can be performed 
using annealing and ligation of strictly linear DNA molecules. Many 
of the possibilities have already been discussed by other authors. For 
example, t he techniques used by Adleman [1] allow for the construction 
of all DNA representing strings accepted by a finite-state automata 
(also known as a regular language), using the annealing reactions (B) 
and (C) above. This is important, because it allows us to create a well­
defined, somewhat interesting set of inputs on which to compute in 
parallel. Beaver has discussed how, in conjunction with polymerase, 
reactions (D) and (E) can be used to make copies of DNA with 
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context-sensitive insertion, deletion, and replacement of substrings. 
In light of these powerful operations, it seems plausible that a "one­
pot" linear DNA reaction could be designed which performs universal 
computation. 

4 Operations using branched DNA 

There are many possibilities for computation using branched DNA. 
However, since the general chemistry is not well understood, we will 
try to avoid ungrounded speculation by focusing on one concrete 
possibility. The rest of this section3 will concentrate on how to assemble 
a large "weave" of branched DNA 4 which simulates the operation of a 
one-dimensional cellular automaton. 

4.1 Background: Blocked Cellular Automata 

This section develops a formal model of computation called blocked 
cellular automata5 (BCA). We will later show how BCA can be 
simulated by DNA. 

The operation of a BCA is diagrammed in Figure 2. As in 
the Turing Machine model, information is stored in an infinite one­
dimensional tape, where each cell contains one of a finite set of symbols. 
The computation proceeds in steps, where in each step the entire tape 
is translated, according to a given rule table, into a new tape. The 
translation occurs locally and in parallel; pairs of two cells are read, 
and which two symbols are written is governed by look-up in a rule 
tableB• It is of critical importance that the reading frame (which cells 
are paired together) strictly alternates from step to step. 

The set of entries {(x , y) --t (u, vn is called the rule table, or the 
program, of the BCA. By appropriately designing the rule table, t he 
BCA can be made to perform useful computation. In fact , BCA are 
computationally universal. A BCA with k + 38 symbols can simulate 
in linear time the operation of a Turing Machine with k tape symbols 

3The inspiration for this approach comes from the proof of the undecidability of 
the Tiling Problem (see [10], Chapter ll). 

'This is, clearly, highly speculative, but we hope not ungrounded. 
"Blocked cellular automata are a lD version of what Toffoli and Margolus call 

partitioning cellular automata in 2D [18J. 
6If the table contains multiple entries for a given pair of read symbols, then the 

BCA is said to be nondeterministic. 
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and s head states - the proof is analogous to that in [12]. Thus we can 
conclude that a BCA can be used to answer any question which can 
be phrased in terms of a computer program. Small BCA have been 
designed which sort lists of integers, compute primes, and many other 
tasks. 

A few more comments are in order concerning the abstract model 
of blocked cellular automata. First we consider t he finite-size case. In 
any attempted implementation of a BCA, we cannot actually construct 
an infinite tape. Thus boundary conditions become important . We 
consider the following cases: 

(a) _ TO update of boundaries. We start with a fi nite tape of length 
2n; at each step the tape become 2 cells shorter; and after n 
steps the computation can proceed no further. This case is not 
universal. 

(b) Inactive boundary conditions. Whenever there is an unpaired cell 
at either end of the tape, it is copied verbatim onto the new tape. 
The tape remains always the same size (n cells), and thus there 
are only kn possible tapes. As the computation must begin to 
cycle after kn steps, this case is also not universal. 

(c) Periodic initial conditions. On either side of the input cells we 
specify a repeating pattern of symbols. Starting with just one 
copy of the periodic block on either side of the input , computation 
proceeds as in (a) , but if the tape gets too short , we add another 
copy of the periodic block to either side of the input tape and 
start the computation anew7

. This case is universal. 

(d) Self-regulated boundary conditions. Depending upon what 
symbol is in the boundary cell , t he new tape will eit her shrink 
(as in (a)) or expand by appending a new cell to the end of the 
tape. This case is also universal. 

Finally, a word on how an answer is obtained from the BCA. This 
is a matter of convention. Typically, when t he computation is done, 
t he answer is written on the final tape. But how is it known when the 
computation is done? One possibility is that the tape stops changing; 
the system has reached a fixed-point. However in this paper we will 

7By memorizing boundary cells , we can avoid re-computing any cells and make 
the computation more efficient. 
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consider that a computat ion is done when a special symbol , called the 
halting symbol, has been written for the first t ime anywhere on the 
tape. 

4.2 Simulation of BCA by DNA 

We will now show how to use DNA to construct a BCA. In this section 
we will optimistically show what chemical reactions we hope will occur; 
in the following section we consider potential difficulties in finding 
conditions such that they will in fact occur as we have described. 

The DNA representation of the BCA tape is a lit tle counter­
intuit ive, so we will explain by example. Figure 3 shows part of the 
DNA molecule encoding the init ial tape (the input to the computat ion). 
To each tape symbol corresponds a short oligonucleotide sequence, 
which appears in the initial molecule as a sticky end overhang in the 
appropriate positions. The rest of the DNA in each segment does not 
vary with content, and is chosen to maximize structural stability. Note 
that the reading frame is implicit in the structural form of the DNA. 
Although Figure 3 is schematic, the 2D picture is meant to imply that 
the whole DNA complex is roughly planar. This is critical , and luckily, 
it is physically plausible. 

There are a variety of ways to make the initial molecule. Note that 
the initial molecule can be thought of as consisting of several double 
crossover junctions (from Figure IH, with the modification that the 
top and bottom strands are made to be an odd number of half-turns 
in length - see Figure 6 for detail) linked together by pieces of linear 
helical DNA. The sticky ends can be designed such that only this unique 
molecule will self-assembles. Ligase can be added to make the segments 
of the initial molecule covalently bonded. 

We ,,,,ill now explain how the program, that is the rule table , of 
the BCA is represented in DNA. For each rule, e.g. (x , y) --> (u, v) , 
we create a double crossover molecule whose sticky ends on one helix 
are x and y, and on the other helix u and v9 (see Figure 6). All 

BIt is easy to see that sticky end sequences can be chosen, using the same 
techniques as Adleman (see Section 3) , such that a periodic initial molecule will 
form, creating periodic initial condit ions as mentioned in section 4.1 (c) above. 
Similarly, a regular language of inputs could be made in parallel. 

9The lengths of all parts of the rule molecules are chosen to be constant for 
simplicity, but it is conceivable that by using variable length as well as sequence to 
encode symbols, greater specificity could be achieved. 
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such rule molecules are added to the solution containing the initial 
molecule. As shown in Figure 4, what is required for computation is 
that rule molecules will anneal into position if and only if both sticky 
ends match. 

Eventually, a triangular lattice of linked DNA will form , simulating 
a triangular region of a BCA corresponding to boundary conditions (a) 
or (c) in Section 4.1 above (see Figure 5). Boundary conditions (b) 
and (d) can be simulated by using special rule molecules for the edge 
of the lattice; the details are not presented here. Note that each level 
of the lattice has a single strand of DNA which travels the entire length 
of the lattice at that level , and where the coded symbols occur in the 
sequence in in which they occur in the BCA at time t. 

Finally we ask, how can we access the output of the computation? 
This breaks down into two questions: How do we know when the 
computation is done? And what is on the tape at that point? There 
are many possible approaches to take; here we will merely sketch one. 
As mentioned above, we will consider the computation to be done 
when a special halting symbol is written on the tape10 In DNA, 
this corresponds to the special sticky end motif being incorporated 
into the lattice. When this occurs, the motif will be present as a 
double-stranded molecule for the first time, and this site can be be 
chosen as the recognition domain for a binding proteinll , which could, 
for example, subsequently catalyze a phosphorescent reaction, turning 
the solution blue. To determine what is "on the tape" at this point , 
it is necessary to extract the single strand of DNA corresponding to 
the final level of the BCA. To do this, first add ligase to covalently 
bond all the annealed segments12 Then add resolvase to break all the 
crossover junctionsla Finally, heat to separate the strands, and use 

10 At this point other parts of the tape will typically "not know" that the 
computation is done, so the lattice will continue to grow. However: it is also 
possible to design the cellular automaton such that all cells go into a special state 
to halt computation at the same time (the Firing Squad Problem, see e.g. [21]), 
thereby allowing us to design linear pieces of DNA which fit into the gaps at the 
final level of the lattice, so that it cannot grow further. This may make extraction 
of the final tape configuration easier. 

lIThe protein must have an active bound form, and inactive unbound form. 
Furthermore, we must be sure it doesn't bind to rule molecules in the solution. 

12lt is a valid concern that ligase may not be able to bind to any but the outermost 
strands in a lattice. It may be better to reverse the order of the ligase and resolvase 
steps. 

13 Although a resolvase has been shown to cut crossovers in double-crossover 
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affinity purification to extract the strand containing the halting motif. 
Amplify and sequence that strand however you desire (e.g. via PCR 
and standard sequencing gels). 

To summarize the model suggested here , a computation would 
proceed as follows. 

l. First, express your problem via computer program. Convert 
that program into a (possibly nondeterministic) blocked cellular 
automaton. 

2. Create small molecules (H-shaped and linear) which self-assemble 
to create the init ial molecule (or initial molecules , if search over a 
FSA-generated set of strings is desired). Add ligase to strengthen 
the molecule. 

3. Create small H-shaped molecules encoding the rule table for your 
program. 

4. Mix the molecules created in steps 2 and 3 together in a 
test t ube, and keep under precise conditions (temperature, salt 
concentrations) as the DNA lattice crystallizes. 

5. \\Then the solution turns blue, ligate, cut the crossovers, and 
extract the strand with the halting symbol. 

6. Sequence the answer. 

4.3 Analysis and Estimates. Will it work? 

Let's begin the analysis optimistically. The above construction is just 
one implementation possible in a general class that might be called 
"crystal computation" 14. In t his class, we design a system where we 
can tailor-make the energy (and hence free energy) as a function of the 
configuration. We design it such that the lowest energy state (or in 
our case, the lowest free-energy state at a given temperature) uniquely 

molecules [8], it is unknown whether the enzyme will be functional on the inner 
strands in t he lattice. However, t he enzyme may be able to, at diminished speed, 
work from the edges in. 

14It has been suggested t hat we shouldn't use t he term "crystal", because it has 
a well-defined special meaning. At best, our constructions yield Hpseudo-crystals") 
because any useful computation is aperiodic. We beg the reader to give us slack in 
using t his term. 
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represents the answer to our computation. This is closely related to 
the approach taken by J. J . Hopfield [llJ in his seminal work on neural 
networks. In our case the lowest energy configuration is one where 
every rule molecule has all four sticky ends bound. Given the presence 
of the initial molecule, this can only occur if t he computation proceeds 
as desired. 

The above analysis is a simplification that fails to take into 
consideration many aspects of the proposed implementation. For 
example, it completely ignores the dynamics involved; one simply 
anneals at a slow enough schedule, the argument goes, and the crystal 
is the result. Whereas in fact the crystallization proceeds at the edges 
only, according to kinetics that significantly influence the result. 

Can a temperature be found such that two sticky ends bound is 
stable, while one sticky end bound is unstable? In other words, let 
To, TI , and T2 be the melting temperatures for a rule molecule fitting 
into a lattice slot where respectively 0, 1, and 2 of the sticky end 
pairings match. We want to keep the test tube at a temperature T 
such that To < TI < T < T2 • This should be possible, but how large 
is the difference between TI and T2? Although this is unknown for the 
particular molecules we use, we can get some idea by looking at what's 
known about linear DNA annealing. For example, under standard 
conditions 20 base-pair oligonucleotides (representing rule molecules 
with two length 10 sticky ends bound) melt at 70° C, while 14 base-pair 
oligonucleotides (representing rule molecules with only one length 10 
sticky end bound, and the other matching partially) melt at 58° C [19J. 
T = 65° C would then discriminate the two cases. However , the analogy 
of rule molecules with two separate binding domains to variable-length 
oligonucleotides with continuous binding domains is questionable. 

A definitive answer to "But will it work?" requires a chemist's 
knowledge and actual experiments. But we can immediately bring 
some more concerns to light. Since I do not have answers to them, 
I will merely mention them in passing. First, to read out an answer 
of more than one bit, our implementation requires ligating the rule 
molecules and cutting them with resolvase. It is not at all clear that, 
in the crowded confines of the DNA lattice, either ligase or resolvase 
will have room enough to perform its job'5 . Second, it is possible that, 

ISIf there is an angle between the plane of the lattice and a rule molecule which 
has just fit in place, then in our construction, an opposite angle is formed when a 
rule molecule fits into the subsequent layer. Consequently, the 20 lattice, rather 
than being perfectly planar, folds back and forth like a paper fan, which we call 
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at a low rate, incorrect rules will be incorporated into the lattice. If this 
occurs, the computation is ruined. It is thus not clear at this time what 
yields of correct computation are to be expected, and whether a means 
could be devised to separate the good from the bad. It is additionally 
conceivable that stable structures form in the solution unconnected to 
the initial molecule. For example, four rules molecules could connect 
in a stable "diamond"; we might think that these complexes will only 
rarely be formed, because the intermediate steps are unstable (only one 
sticky end joins molecules), and for similar reasons they would grow 
slowly. However, they and other types of spurious connections and 
tangles could form, ruining the computation. A final concern is that 
there may be some systematic molecular stress or strain that comes 
into play when building a large crystal, and that beyond a certain size 
tearing would result. All these issues, and surely others, deserve more 
attention and study. 

If for the moment we suppose that the implementation operates 
correctly, let us consider what advantage would be derived. Take the 
following with a bucket of salt: First , a small rule molecule (see Figure 6 
for a close-up) consists of 50 base-pairs of DNA, sufficient for sticky 
ends of length 5, which gives us "'" 10 symbols16 That's 33 K Dalton / 
rule molecule , with a size probably less than 20 x 44 x 85 Angstroms, 
for 3 bits / rule molecule. 

Assessing speed is even more speculative. Suppose we perform a 
computation of a 10000-cell SeA with inactive boundary conditions, 
and compute for 10000 time steps. Suppose it takes 1 second for a rule 
to fit in when its slot is exposed. Since the 5000 slots are simultaneously 
exposed, all should be filled in approximately 1 second on average. 
This leads to a rough estimate of 3 hours for comput ing the 100002 

cell lattice. Using lkg of DNA, we could assemble 1019 rule molecules, 
that is , 1011 such calculations in parallel. That leads to a total of 1015 

operations per secondH There is no lab work to be done during this 

a "corrugated" lattice. The corrugated latt ice exposes more of the double helix 
strands in each rule molecule, possibly making the strands more accessible to ligase 
but making the crossovers less accessible to resolvase. 

16We optimistically require only 2 mismatches between sequences representing 
differing symbols. We also require the complement of a symbol's sequence does 
not code for a symbol, and that every code sequence has 3 C-G bonds and 2 A-T 
bonds, for more consistent melting temperatures. 

l7This compares to 300 GFLOPS ('" 1014 basic operations per second) attainable 
by the best modern supercomputers, e.g. a 7000 processor Intel Paragon. Of course, 
the ('operations" we compare are apples and oranges. 
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the major stage in the computation. Of course time would also be 
required in the input and output stages. 

4.4 Open questions, extensions, and other 
speculation. 

In addit ion to the essential question of whether the ideas above can be 
made to work in the lab, there are many other issues to be investigated. 

How energy-efficient is crystal computation? 

It is interesting to note that what might be called t he computation 
proper (crystallizing the DNA lattice) theoretically requires no energy 
at all ; in fact , crystallization must be exothermic. Of course, a great 
deal of energy may be used to heat the mixture up, or to pulse the 
temperature to dissolve defects. Furthermore, the input and output 
stages require synthesis and analysis of DNA molecules, and thus also 
much energy. Our proposal is possibly the most nearly implementable 
example of the principle that computation is free, but input and ouput 
are costly [3]. 

Why use the DAE structure for rule molecules? Clearly 
the particular choice of molecule is not of intrinsic importance to the 
idea of this construction. The logical essence is to have an "H"­
shaped molecule with four designable sticky ends. At its simplest , 
one could imagine making the "H" out of two chemically cross-linked 
strands of DNA (Figure 7a). Another alternat ive is the slight ly larger 
single crossover Holliday junction. However, it is important for the 
construction of the lattice that the two linear pieces in the "H" be 
planar; Holliday junctions have been shown to prefer a (flexible) 60° 
skew angle [6]. The chemically linked strands imagined above have 
not yet been characterized. The reason we propose the large double 
crossover molecules18 is that they have already been characterized 
in the lab and are thought to be rigid (which may help prevent 
tangled lattices) and planar [7] . We chose DAE in preference to 
other topological variants of double crossover molecules, such as DAO, 
because the topology of the rule molecule leads to a different "weave" 
of DNA strands in the lattice (Figure 7bcde). We prefer to have a 

18Ned Seeman suggested we consider double crossover molecules as an 
improvement over the more awkward branched junction constructions we were 
originally considering. 
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single strand which, if covalently linked, runs along an ent ire level of 
the lattice, t hus encoding the BCA state for that t ime step. 

Why keep around the entire history of the computation? 
Only the most recent level is necessary for the next step of the 
computation. Open question19 : Can condition be found such that the 
bottom of the lattice is dissolving while the top of the lattice is growing? 
Rule molecules which dissolve at the (hotter?) bottom of the latt ice 
could later be re-used at the (colder?) top. 

Automatic programming by evolving rule molecules. 
Suppose we are interested in finding a small BCA program which 
generates a part icular string, or set of strings. Speculatively, we might 
begin with a nondeterministic set of all possible rule molecules of 
a particular size, including some molecules for nondeterminist ically 
constructing init ial molecules. We grow some 1018 lattices, and 
somehow extract those which compute the desired string. The rule 
molecules present in these lattices are known to be sufficient to compute 
the string, but they probably do not contain all possible rules. We now 
dissolve the "good" lattices and somehow amplify the rule molecules 
present. Letting lattices grow again, and selecting again for the desired 
string, we further reduce the nondeterminism of the rule molecules 
present. We can also consider adding a tiny amount of ligase, thus 
occasionally creating larger rule molecules from sm aller ones - a 
form of "compiling" . Perhaps after a few iterat ions we look and see 
what rule molecules are present , or - presuming there is still some 
nondeterminism - look at what other strings they form. This process 
is closely related to universal search and can be used, for example, for 
Kolmogorov complexity based induction[17]. 

Why a ID BCA? Why not build a 3D lattice to simulate a 
2D BCA? We started with ID BCA because they can be immediately 
explored used existing DNA technology. Two dimensions offers several 
advantages, however , such easier design of efficient computations. 
Perhaps more importantly, in higher dimensions it becomes easier to 
design error-tolerant rules [9]; intuit ively, point defects in 2D can be 
filled-in from adj acent correctly-computed cells , while in ID a point 
defect severs communication between the left and right side. Open 
question: Can the DNA rule molecules be modified so as to build 3D 
DNA lattices? Speculatively, one could propose a variant of the double 
crossover Holliday junction, the "multiple strand double crossover 

!"Suggested by Len Adleman, private communication. 
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junction" (Figure S) , as a means to implement the read-4, write-4 
operation required by 2D blocked cellular automata (see e.g [IS], Ch. 
12). Unfortunately, the proposed building-block molecule has not yet 
been synthesized. 

Potential uses in nano-technology. This paper has suggested 
an approach to molecular computation via programmable self-assembly. 
Programmable self-assembly may have other applications. Open 
question: Can cellular automata generated lattices be used to define 
ultra-high resolution electronic circuits ? One possibility, along the lines 
investigated by Robinson and Seeman [14], would be to conjugate nano­
wire onto individual rule molecules, such that when the rule molecules 
fit together, an electrical circuit is formed. This proposal differs from 
Robinson and Seeman's suggestion in that whereas they envisioned 
a periodic lattice of identical memory cells, we suggest that cellular 
automata rules could be used to build more complicated circuits, either 
in 2D or 3D. 

Why use DNA at all? The principle of computing via 
crystallization is not restricted to DNA. Open question2o : Can non­
DNA -based molecules could be used to design desired computations 
carried out on the surface of a growing crystal? 

5 Comparison with other approaches 

Perhaps the most practical suggestion for universal computation via 
DNA is that of Boneh, Dunworth, Lipton, and Sgall [4J. Their approach 
makes straightforward use of well understood laboratory techniques 
for manipulating DNA. They are able to simulate nondeterministic 
boolean circuits, which seems very efficient for some calculations, and 
which gives them universal computational ability. Because circuits 
allow non-local interact ions of variable, circuits can be very compact. 
However, it should be pointed out that the computation requires a lab 
technician to sequence operations on multiple test t ubes; the logic of 
the program being computed is external to the DNA, which is used as 
a memory. Small scale computations could be immediately attempted 
with reasonable chance for success; however due to the weakness of 
single-stranded DNA and other factors , it is not clear how this approach 
will scale. 

20Suggested by Stuart Kauffman, private communication. 
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Other authors have proposed DNA implementations of Thring 
Machines directly (e .g. [2], [16], [15]). The approaches vary from 
using PCR to relying on restriction enzymes. These approaches show 
promise, although the reliability and efficiency of the steps is unclear. 
Furthermore, single-tape, single-head Turing Machines are particularly 
cumbersome logically; circuits will typically compute the same function 
in many fewer steps (and single steps take comparable t ime in both 
systems - on the order of hours!) . In short , although they are of 
theoretical interest, it is unlikely that anyone will actually go into the 
lab and solve problems this way. 

Our hypothetical cellular automaton implementat ion differs in a 
number · of ways: First and foremost, our proposal is a "one-pot" 
reaction. Dump in the rule molecules encoding your problem, and all 
the logic of the computation is carried out autonomously. No lab work 
is involved. Furthermore, in addition to running a massive number 
of computations in parallel, each cellular automaton performs its own 
computation in parallel - thus fully exploiting the parallelism available. 
The major and significant drawback of our proposal is t hat it makes use 
of chemistry which is not yet fully understood, and thus going into the 
lab to do a computation this way would be a real technical challenge. 

The main conclusion of this paper is that annealing and ligation 
alone may be sufficient for universal "one-pot" DNA computation. 
Whether the particular scheme envisioned here can be made to work 
in the lab is a matter for further research. In any case, it is 
clear that better experimental characterization of the chemistry of 
annealing is required, and may open up new possibilities for DNA based 
computation. 
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Figure 1: Curves represent single strands of DNA oligonucleotide. The half 
arrow-head represents the 3' end of the strand. Small lines between strands 
represent hydrogen bonds joining the strands. The helical structure of the 
DNA is not represented visually. Letters signify sequence motifs. A bar 
above a letter signifies the Watson-Crick complement of the motif. 
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Figure 2. Operation of a blocked cellular automaton. 
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Figure 2: The tape of a BGA, divided into cells, is shown at the bottom 
right . Each cell contains one of three symbols: blank, black dot , or white 
dot . The tapes at successive time steps are stacked vertically above t he 
init ial tape. The inset , left , details the form of a rule table entry, which 
governs how new tapes are created. 

Figure 3. Encoding the initial tape in a DNA molecule . 
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Figure 3: The sequence of sticky ends in the init ial molecule encodes the 
init ial tape of the BGA. Thus ' A' denotes a symbol in the BGA diagram, 
whereas in the DNA diagram it denotes the unique sequence of bases 
associated with that symbol. 
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Figure 4. Rule table molecules assemble into the lattice. 

Figure 4: We see free-floating rule table molecules above and the initial 
molecule at the bottom (both correspond to the BCA in Figure 2). A 
rule table molecule, with sticky ends Band C, is about to anneal to the 
initial molecule. At the left, a rule molecule which matches only at A will 
ultimately not stick. Note that the rule molecule with sticky ends A and A 
will also not stick, because the orientation of its strands is wrong; this rule 
molecule will be useful on alternate levels of the lattice. 

Figure 5. The DNA lattice resulting from a finite initial 
. molecule. 

Figure 5: At the chosen annealing temperature, which is above the melting 
temperature for 8 base-pair annealing but below the melting temperature 
for 28 base-pair annealing, no more rule molecules can stably attach to this 
structure. However, if the bottom level (the initial molecule) were extended, 
then a larger triangle could form. 8 is the length of the sticky ends in the 
rule molecules. 

'-', 
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Figure 6. Detail of a small rule molecule. 
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Figure 6: This is the smallest DAE/ even style rule molecule possible. It 
has sticky ends of length 5, and internal region of length 10. Every base 
pair is shown. 
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Figure 7. Alternative Topologies for 2D Lattice. 
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Figure 7: (a) Rule molecules based on cross-linked DNA. (b) DAE rule 
molecules with odd-length spacing. (c) DAE rule molecules with even-length 
spacing. (d) DAO rule molecules with odd-length spacing. (e) DAO rule 
molecules with even-length spacing. 
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Figure 8. A possible 3D lattice of DNA for simulating 2D 
BCA. 

iI (A .B.C,O) 
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Figure 8: Four DNA double helices may be bound together by crossover 
junctions (left ). Sticky ends determine 2D BCA rules as the rule molecules 
assemble in an alternative cubic lattice (right). 


