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LOCALIZATION IN QUIVER MODULI SPACES

THORSTEN WEIST

Abstract. Torus fixed points of quiver moduli spaces are given by stable rep-
resentations of the universal (abelian) covering quiver. As far as the Kronecker
quiver is concerned they can be described by stable representations of certain
bipartite quivers coming along with a stable colouring. By use of the glueing
method it is possible to construct a huge class of such quivers implying a lower
bound for the Euler characteristic. For certain roots it is even possible to
construct all torus fixed points.

1. Introduction

A common method providing topological information of algebraic varieties is the
consideration of fixed points under a torus action. For instance, the Euler character-
istic is already given by the Euler characteristic of their fixed point components. If
we consider moduli spaces of stable quiver representations, we also often obtain in-
teresting objects as fixed point components like indecomposable tree modules in the
case of the Kronecker quiver; see [29]. In general, torus fixed points of quiver moduli
spaces are given by representations of the universal (abelian) covering quiver.
The main focus of this paper is on torus fixed points of Kronecker moduli spaces,

denoted by Ms
d,e(m), which parametrize isomorphism classes of stable representa-

tions of dimension (d, e) of the generalized Kronecker quiver with m arrows; see
Sections 2 and 4.1 for a more detailed description. It is particularly interesting to
note that by using the localization method we are able to prove parts of a conjec-
ture concerning the Euler characteristic of these moduli spaces. The conjecture is
based on ideas suggested by Michael Douglas [7]. It has its origin in the relationship
between the Euler characteristic of moduli spaces of quiver representations and the
Witten index in superstring theory and the entropy of black holes respectively; see
for instance [6]. Douglas conjectures the existence of a formula expressing the en-
tropy of a black hole as a continuous function of its electric and magnetic charge, in
the limit of charge. In mathematical terms it says that for coprime dimension vec-
tors (d, e) the logarithm of the Euler characteristic Ms

d,e(m) continuously depends
on the fraction e

d . More specifically, this means that there exists a continuous
function f such that for every coprime dimension vector (d, e) there exists another
dimension vector (ds, es) such that

f
( e

d

)
= lim

n→∞

lnχ(Ms
ds+nd,es+ne(m))

ds + nd
.

In particular, the right hand side converges. In [28] a candidate for this function
could be determined and it could be proved that under the assumption of continuity
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the function is already uniquely determined by f(1); see also Section 6.1 for the
exact statements.
Even if continuity is still an open question, by use of the localization method we

are able to calculate the value at the point one. Actually, we are able to determine
a formula for the Euler characteristic of the Kronecker moduli spaces for the dimen-
sion vectors (d, d + 1). Moreover, we show that the Euler characteristic grows at
least exponentially with the dimension vector which is an immediate consequence
of the conjecture.
The paper is organized as follows: In the second section the notion of quivers and

their representations is introduced. Moreover, we recall the definition of stability
and general results concerning the representation spaces which are needed in the
sequel.
In the third section we consider a torus action on quiver moduli spaces. We show

that the fixed points of moduli spaces of quivers without oriented cycles are exactly
the stable representations of the universal abelian covering quiver up to a certain
translation. This means localizing the moduli spaces to torus fixed points induces
new moduli spaces. Thus we can again consider a torus action on the resulting
moduli spaces. It turns out that after localizing to torus fixed points suitably many
times the remaining torus fixed points are representations of the universal covering
quiver.
In the fourth section we apply the localization method to the generalized Kro-

necker quiver. The universal covering quiver is a regular m-tree coming along with
a bipartite orientation. By the results of Section 3 every stable representation of a
bipartite quiver which can be embedded into this m-tree defines a torus fixed point.
Therefore, we investigate stable bipartite quivers in more detail, i.e., quivers with
a fixed dimension vector allowing at least one stable representation. We construct
stable bipartite quivers of dimension type (ds, es) + n(d, e) by glueing certain bi-
partite quivers of dimension types (ds, es) and (d, e). Thereby the dimension vector
(ds, es) is uniquely determined by (d, e). The dimension type of a bipartite quiver
is given by the sum of the dimensions of the sources and sinks respectively. In
this way, for every coprime dimension type we can construct a huge class of such
quivers.
In the fifth section we briefly treat combinatorics of trees. With the stated meth-

ods it is possible to count the number of stable bipartite quivers constructed in the
preceding section.
In the last section several applications of the developed methods are treated.

After investigating Douglas’ conjecture in more detail, we study the function f at
the point one. Since all localization data of dimension type (d, (m − 1)d + 1) are
known, we can determine a formula for the Euler characteristic in this case. By
applying the reflection functor we can also determine f(1).
Afterwards, by use of the methods of the fourth section and combinatorics of

trees we can determine a lower bound for the Euler characteristic for every coprime
dimension vector. In particular, we prove that the Euler characteristic grows at
least exponentially with the dimension vector.
In the fourth subsection the case of the dimension vector (3, 4) is considered as a

detailed example. The fifth subsection deals with the dimension vector (d, d). We
prove that there does not exist any stable representation of the universal covering
quiver if d ≥ 2 because torus fixed points of this dimension type are always cyclic.
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Thus it follows that the Euler characteristic vanishes in this case. In the sixth
subsection we answer a question posed in [8]: When does there exist fixed point
components containing infinitely many fixed points? Actually, there exist only
finitely many torus fixed points for dimension vectors (d, e) such that d = 1, 2 or in
the associated reflected cases.

2. Recollections and Notation

Let k be an algebraically closed field. Let Q = (Q0, Q1) be a quiver with vertices
Q0 and arrows Q1 denoted by α : q → q′. There exist two maps h, t : Q1 → Q0

which associate its tail t(α) and its head h(α) to an arrow α ∈ Q1. A vertex
q ∈ Q0 is called a sink (resp. a source) if t−1(q) = ∅ (resp. h−1(q) = ∅). In the
following we only consider quivers without oriented cycles. A quiver is bipartite if
Q0 = I ∪ J such that every vertex i ∈ I is a source and every vertex j ∈ J is a
sink. A subquiver Q′ ⊆ Q is called full if for all q, q′ ∈ Q′

0 we have α ∈ Q′
1 for all

α ∈ Q1 with h(α) = q′ and t(α) = q (resp. h(α) = q and t(α) = q′).
Consider the free abelian group ZQ0 generated by Q0 and the monoid of dimen-

sion vectors NQ0 ⊂ ZQ0. On ZQ0 we define a (non-symmetric) bilinear form, called
the Euler form, by

〈d, e〉 :=
∑
q∈Q0

dqeq −
∑
α∈Q1

dt(α)eh(α)

for d, e ∈ ZQ0. Moreover, let {d, e} := 〈d, e〉 + 〈e, d〉 be the symmetrized Euler
form.
A finite-dimensional k-representation X of Q is given by finite-dimensional vector

spaces Xq for every q ∈ Q0 and linear maps Xα : Xq → Xq′ for every α : q → q′.
By dimX ∈ NQ0 we denote the dimension vector of X. The support supp(d) of
a dimension vector d ∈ NQ0 is the full subquiver of Q defined by the vertices
supp(d)0 = {q ∈ Q0 | dq �= 0}. In the following, we only consider dimension vectors
which support is finite, i.e., the number of vertices and arrows is finite.
Let d ∈ NQ0 and consider the variety Rd(Q) =

⊕
α∈Q1

Homk(k
dt(α) , kdh(α)) of

k-representations of dimension d. The algebraic group Gd =
∏

q∈Q0
Gldq

(k) acts

on Rd(Q) via simultaneous base change. The orbits are in bijection with the iso-
morphism classes of k-representations of Q with dimension vector d.
In the space of Z-linear functions HomZ(ZQ0,Z) we consider the basis given by

the elements q∗ for q ∈ Q0, i.e., q
∗(q′) = δq,q′ for q

′ ∈ Q0. Define dim :=
∑

q∈Q0
q∗.

After choosing Θ ∈ HomZ(ZQ0,Z), we define the slope function μ := Θ/ dim :
NQ0\{0} → Q.
The slope μ(dimX) of a representation X �= 0 of Q is abbreviated to μ(X). A

representation X of Q is called semistable (resp. stable) if for all proper subrepre-
sentations 0 �= U � X we have

μ(U) ≤ μ(X) (resp. μ(U) < μ(X)).

This definition is equivalent to that of A. King [16]: Let Θ̃ ∈ Hom(ZQ0,Z) be

a linear form. A representation X is Θ̃-semistable (resp. Θ̃-stable) in the sense of

King if Θ̃(dimX) = 0 and

Θ̃(dimU) ≥ 0 (resp. Θ̃(dimU) > 0)
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for all proper subrepresentations 0 �= U � X. Now fixing a representation X define
Θ̃ := μ(X) · dim−Θ. It is easy to check that the representation X is semistable

(resp. stable) in the former sense if and only if it is Θ̃-semistable (resp. Θ̃-stable).
We call a dimension vector Θ-indivisible if μ(d) �= μ(e) for all 0 �= e < d. In this

case semistability and stability coincide.
Denote the set of semistable (resp. stable) points by Rss

d (Q) (resp. Rs
d(Q)). In

this situation we have the following theorem going back to Mumford’s GIT and
which was proved by King; see [21], [16]:

Theorem 2.1. (1) The set of stable points Rs
d(Q) is an open subset of the set of

semistable points Rss
d (Q), which is an open subset of Rd(Q).

(2) There exists a categorical quotient Mss
d (Q) := Rss

d (Q)//Gd. Moreover,
Mss

d (Q) is a projective variety.
(3) There exists a geometric quotient Ms

d (Q) := Rs
d(Q)/Gd, which is a smooth

open subvariety of Mss
d (Q).

Note that the set of semistable (resp. stable) points of Rd(Q) can be empty.
For a detailed description of the theory of quotients see [20]. All statements about
algebraic groups applied in this paper can, for instance, be found in [27] or [14].
Recall that we have Mss

d (Q) = Proj(k[X]Gχ ), i.e., the moduli space is the projec-
tive spectrum of the ring of semi-invariants corresponding to the character χ of Gd

defined by

χ((gq)q∈Q0
) :=

∏
q∈Q0

det(gq)
Θ(d)−dim d·Θq ,

where Θ is the linear form obtained from the previous consideration.

Remark 2.2.

(1) Since Q is acyclic, there exists only one closed orbit and the affine quotient
is just a point. Therefore, we get k[Rd(Q)]G = k. Thus the Proj quotient
has no affine component and is a projective variety.

(2) Since Rd(Q) is an affine space and thus smooth, we get that the open subset
of stable points is smooth. Thus, since the moduli space Ms

d (Q) is an orbit
space associated to the group action restricted to the stable points, it is
smooth as well. If semistability and stability coincide, Mss

d (Q) is a smooth
projective variety. Obviously this is the case when d is Θ-indivisible.

(3) The moduli space Mss
d (Q) does not parametrize the semistable representa-

tions, but the polystable ones. Polystable representations are such repre-
sentations which can be decomposed into a direct sum of stable ones of the
same slope.

(4) For a stable representation X we have that its orbit is of maximal possible
dimension. Since the scalar matrices act trivially on Rd(Q), the isotropy
group is at least one-dimensional. Thus, if the moduli space Ms

d (Q) is
not empty, for the dimension of the moduli space we have dimMs

d (Q) =
1− 〈d, d〉.

Finally, we point out definitions and results which will be very useful at different
points of this paper. For proofs of the next lemma see [12].

Lemma 2.3. For a quiver Q let 0 → M → X → N → 0 be a short exact sequence
of representations.

(1) μ(M) ≤ μ(X) if and only if μ(X) ≤ μ(N) if and only if μ(M) ≤ μ(N).
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(2) The following holds: min(μ(M), μ(N)) ≤ μ(X) ≤ max(μ(M), μ(N)).
(3) If μ(M) = μ(X) = μ(N), then X is semistable if and only if M and N are

semistable.

From the first property we immediately get that stable representations are inde-
composable. For a quiver representation X we define by scss(X) (strongly contra-
dicting semistability) the subrepresentation Y ⊂ X for which the following holds:

(1) μ(Y ) = max{μ(U) | U ⊂ X}.
(2) dim(Y ) = max{dim(U) | U ⊂ X,μ(U) = μ(Y )}.

Thus Y is of maximal dimension among the subrepresentations with maximal slope.
It is straightforward to check that the subrepresentation scss(X) is uniquely deter-
mined; see e.g. [24].
Denote by Eq the simple representation corresponding to the vertex q defined by

(Eq)q = k and (Eq)q′ = 0 for q′ ∈ Q0 with q′ �= q.
Define eq ∈ ZQ0 by (eq)q′ := δq,q′ which is the dimension vector of Eq. For

a quiver Q consider the matrix A = (aq,q′)q,q′∈Q0
defined by aq,q′ = {eq, eq′} for

q, q′ ∈ Q0. Fixing some q ∈ Q0 define rq : ZQ0 → ZQ0 by

rq(eq′) = eq′ − aq,q′ · eq.
Let Qq be the quiver resulting from Q by reversing all arrows with head or tail q.
We have the following theorem; see [1]:

Theorem 2.4. Let Q be a quiver and q ∈ Q0 a fixed vertex. Let q be a sink (resp.
a source). Then there exists a functor R+

q (resp. R−
q ) : mod kQ → mod kQq with

the following properties (if q is a source, replace + by −):

(1) R+
q (U ⊕ U ′) = R+

q (U)⊕R+
q (U

′).
(2) Let U be an indecomposable representation of Q.

(a) If U ∼= Eq, then R+
q (Eq) = 0.

(b) If U � Eq, then R+
q (U) is indecomposable with R−

q R
+
q (U) ∼= U and we

have dimR+
q (U) = rq(dim(U)).

Moreover, we have: EndU ∼= EndR+
q (U).

3. Localization in quiver moduli spaces

Analogously to [24], in this section we introduce the localization in moduli spaces
of stable representations. Some of the ideas are based on localization techniques
in moduli spaces of simple representation provided by [22]. An explicit method to
detect fixed points of these moduli spaces under a torus action is explained. These
fixed points are stable representations of the universal abelian covering quiver. Note
that, in contrast to [24], we do not restrict to the case of Θ-indivisible dimension
vectors.

3.1. Torus fixed points. For the remaining part of the paper we fix k = C. Let
G be an algebraic group and χ : G → C∗ be a character of G, i.e. a morphism
of algebraic groups. Denote by Ξ(G) the set of all characters of G with the group
structure given in the obvious way. In the following the composition is written
additively.
Let G ⊂ Gln(C) be a linear algebraic group and V be a representation of G. For

all characters χ ∈ Ξ(G) define the semi-invariants of weight χ by

Vχ = {v ∈ V | g · v = χ(g)v ∀g ∈ G}.
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Note that if ϕ : G → Gln(C) is a rational representation, the definition can be
transferred. If G is a torus, we obtain a decomposition into weight spaces V =⊕

χ∈Ξ(G) Vχ.

Further, let T := (C∗)|Q1| be the |Q1|-dimensional torus. It acts on Rd(Q) via

((tα)α∈Q1
) · ((Xα)α∈Q1

) = (tα ·Xα)α∈Q1
.

Since U is a subrepresentation of a representation X if and only if t · U is a sub-
representation of t · X for every t ∈ T and, moreover, the torus action preserves
dimension vectors, the action also preserves (semi)-stability. Since the torus action
commutes with the Gd-action, it induces a T -action on Ms

d (Q).
Since the scalar matrices act trivially on Rd(Q), the Gd-action factors through

the quotient PGd := Gd/C
∗. Let X ∈ Ms

d (Q) be a fixed point under the torus
action and let Y ∈ Rs

d(Q) be a representative of X. Thus we have t · Y ∼= Y for
every t ∈ T . We consider the algebraic group

G := {((gq)q∈Q0
, t) ∈ PGd × T | t · Y = (gq)q∈Q0

∗ Y }.
Then we get projections p1 : G → PGd and p2 : G → T respectively with the
following property:

Lemma 3.1. Let X ∈ Ms
d (Q) be a torus fixed point, Y ∈ Rs

d(Q) a representative of
X and let G be the corresponding algebraic group constructed above. The following
holds:

(1) The projection p2 : G → T is an isomorphism.
(2) In particular, the projection p1 : G → PGd induces a homomorphism of

algebraic groups ϕ := p1 ◦ p−1
2 : T → PGd such that ϕ(t) ∗ Y = t · Y.

Proof. Since X ∈ Ms
d (Q) is a fixed point, p2 is surjective. Moreover, since Y

is stable, its orbit is of maximal possible dimension. Thus the isotropy group of
Y under the action of PGd is trivial implying the injectivity. The second part
immediately follows from this. �
The following lemma assures that we get a weight space decomposition of the

vector spaces corresponding to some fixed point:

Lemma 3.2. Let T ∼= (C∗)m with m ≥ 1 be a torus. Every homomorphism of
algebraic groups ϕ : T → PGld(C) can be lifted, i.e., there exists a homomorphism
of algebraic groups ψ : T → Gld(C) such that ϕ = π ◦ ψ.
Proof. In general, if G is a reductive algebraic group, the image of a morphism
ϕ : T → G is again a torus and, therefore, contained in a maximal torus T0 ⊂ G.
Since all maximal tori are conjugate, we can assume that T0 = (C∗)n for some
n ∈ N. Thus, in order to prove the statement, it suffices to prove that every
morphism ϕ : C∗ → (C∗)n−1 can be lifted to a morphism ψ : C∗ → (C∗)n where
π : (C∗)n → (C∗)n−1 is the projection induced by the projection π : Gld(C) →
PGld(C). Note that, since π is surjective, every maximal torus is mapped to a
maximal torus. Now if ϕ(t) = (tr2 , . . . , trn) and π(t1, . . . , tn) = ( t2t1 , . . . ,

tn
t1
), then

we may set ψ(t) = (1, tr2 , . . . , trn). �
A lift ψ : T → Gd for ϕ can be decomposed in |Q0| morphisms of algebraic

groups ψq : T → Gldq
. Thus, if X is a stable fixed point, Y a representative and

ϕ : T → PGd the corresponding morphism, we can fix a lift in order to get a
weight space decomposition of each vector space, i.e., Yq =

⊕
χ∈Ξ(T ) Yq,χ. For a
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d-dimensional torus we have Ξ(T ) � Zd. As far as the torus (C∗)|Q1| is concerned
we denote the canonical basis of Ξ(T ) by (eα)α∈Q1

.
If we choose another lift ψ′, one easily verifies that there exists a character χ ∈

Ξ(T ) such that ψ = χψ′. If we have two representatives Y and Y ′ of a fixed point,
i.e., there exists some g ∈ Gd such that Y ′ = g ∗ Y, we can assume that the weight
space decomposition does not change. Indeed, if ϕ is the morphism belonging to
Y , for the morphism ϕ′ belonging to Y ′ we have ϕ′ = π(g) · ϕ · π(g−1) where
π : Gd → PGd is the canonical projection. Thus, if ψ is a lift of ϕ, we have that
ψ′ = g ·ψ ·g−1 is a lift of ϕ′. Thus we obtain that the dimensions of the weight spaces
for both morphism ψ and ψ′ coincide. Indeed, for x ∈ Yq,χ we have χ(t)x = ψ(t)qx
if and only if χ(t)gqx = ψ′(t)qgqx. This also shows that g is compatible with the
weight space decomposition. In abuse of notation, we also denote the lift by X in
what follows.
The next lemma shows that these weight space decompositions are compatible

with the linear maps corresponding to the fixed point:

Lemma 3.3. Let X = (Xα)α∈Q1
∈ Ms

d (Q) be a fixed point under the torus action.
Let ϕ : T → PGd be the corresponding morphism of algebraic groups and fix a lift
ψ : T → Gd. Then we have:

Xα(Xq,χ) ⊆ Xq′,χ+eα for all χ ∈ Ξ(T ), α : q → q′.

Proof. Let t = (tα)α∈Q1
∈ T and x ∈ Xq,χ. Then we have

ψq′(t)Xα(x) = ψq′(t)Xαψq(t)
−1ψq(t)(x) = tαXαχ(t)(x) = (χ+ eα)(t)Xα(x).

�
We want to define a quiver such that the components of the fixed point set

Ms
d (Q)T correspond to moduli spaces of this quiver with compatible dimension

vectors. Therefore, define the quiver Q̂ by the vertex set Q̂0 = Q0 × Ξ(T ) and for
each arrow α : q → q′ and each character χ ∈ Ξ(T ) we have an arrow

(α, χ) : (q, χ) → (q′, χ+ eα)

in Q̂1. This is the universal abelian covering quiver of Q.

Example 3.4.

(1) Let K(m) be the generalized Kronecker quiver having two vertices Q0 =
{q1, q2} and m arrows αi : q1 → q2, i = 1, . . . ,m. Every connected com-
ponent of the universal abelian covering quiver of the Kronecker quiver
K(m) is an infinite bipartite (m − 1)-dimensional honeycomb lattice with
an orientation such that every vertex is either a source or a sink.

Let X be a fixed point of the moduli space with respect to the torus action. Then

define the corresponding dimension vector d̂ ∈ NQ̂0 by d̂q,χ := dimCXq,χ.
The stability condition for representations of this quiver is induced from Θ, i.e.,

we define a linear form Θ̂ : ZQ̂0 → Z such that Θ̂q,χ = Θq for all q ∈ Q0 and all
χ ∈ Ξ(T ). Therefore, by the preceding considerations it follows that stable fixed
points can be identified with stable representations of the just introduced quiver.
Next we show that such a representation corresponding to a fixed point X is

unique in a certain way. By the preceding considerations choosing another lift
ψ just changes the weights of the weight space decomposition by translation by
some character μ. This corresponds to a group action of ZQ1 on Q̂0 defined by
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μ · (q, χ) = (q, χ+ μ). This induces a group action on the set of dimension vectors

NQ̂0. Two dimension vectors contained in the same orbit are said to be equivalent
in the following. In the following, we consider the dimension vectors of Q̂ up to
this equivalence. Thus we have in conclusion:

Theorem 3.5. For all fixed points X ∈ Ms
d (Q)T there exists (up to equivalence) a

unique dimension vector d̂ for Q̂ such that X corresponds to a stable representation

of Q̂ with dimension vector d̂.

3.2. Description of fixed points. Converse to the last section we construct an
embedding of stable representations of the quiver Q̂ into the fixed point set of
the related moduli space. Therefore, fixing a representation of Q̂ we construct a
representation of Q and show that the latter one is a stable fixed point.

Let d̂ be a dimension vector of Q̂. Then we define dq for every q ∈ Q0 by

dq =
∑

χ∈Ξ(T )

d̂q,χ.

We call a dimension vector d̂ satisfying this property compatible with d := (dq)q∈Q0
.

Let X̂ = ((X̂q,χ)q∈Q0,χ∈Ξ(T ), (X̂α,χ)α∈Q1,χ∈Ξ(T )) be a representation of Q̂. Define
a representation X of Q by the vector spaces

Xq :=
⊕

χ∈Ξ(T )

X̂q,χ

and the linear maps

Xα :=
⊕

χ∈Ξ(T )

(
X̂α,χ : X̂q,χ → X̂q′,χ+eα

)

for all α : q → q′. This defines a linear map P : Rd̂(Q̂) → Rd(Q). Moreover, the
decomposition of the vector spaces Xq for q ∈ Q0 induces an embedding of Gd̂ into
Gd. Furthermore, define a morphism of algebraic groups ψ = (ψq)q∈Q0

: T → Gd

such that ψq : T → Gl(Xq) is defined by ψq(t)x = χ(t)x for all t ∈ T and all

x ∈ X̂q,χ. Note that this makes ψ well-defined. Moreover, it follows by an easy
calculation that

ψq′(t)Xαψq(t)
−1x = tαXαx

for all x ∈ Xq which also shows that X is a torus fixed point.
We now prove that (semi-)stable representations are mapped to (semi-)stable rep-

resentations. Therefore, we prove that it is enough to consider subspaces compatible
with the weight space decomposition in order to check (semi-)stability. We say that
a subrepresentation U of X is compatible with the weight space decomposition if
we have Uq =

⊕
χ∈Ξ(T ) Uq,χ for all q ∈ Q0 where Uq,χ ⊂ Xq,χ.

Lemma 3.6. Let X̂ be a representation of Q̂ and let X = P (X̂) such that

Xq =
⊕

χ∈Ξ(T )

X̂q,χ

is the weight space decomposition with respect to ψ as constructed above. If X̂
is semistable (resp. stable), i.e., for all proper subrepresentations U , which are

compatible with the weight space decomposition, we have μ(U) ≤ μ(X) = μ(X̂)
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(resp. μ(U) < μ(X)), then X is a semistable (resp. stable) representation of Q. In

particular, if X̂ is stable, then X defines a stable torus fixed point.

Proof. Let X̂ be a semi-(stable) representation of Q̂. We first show that X is
semistable in both cases. Let U = scss(X) and consider

ψ(t)U := (ψq((tα)α∈Q1
)(Uq))q∈Q0

for each (tα)α∈Q1
∈ T . Hence for each arrow α : q → q′ we obtain

Xαψq(t)Uq =
1

tα
ψq′(t)Xαψq(t)

−1ψq(t)Uq ⊂ ψq′(t)Uq′

because XαUq ⊂ Uq′ . Thus ψ(t)U is a subrepresentation of X. Since ψq(t) is
invertible for every q ∈ Q0, the dimension vectors of U and ψ(t)U coincide. Because
of the uniqueness of scss(X) it follows that ψ(t)U = U for all t ∈ T . This is
equivalent to ψq(t)Uq = Uq for all t ∈ T and all q ∈ Q0. This implies that
U = scss(X) is compatible with the weight space decomposition. Since the slope of
scss(X) is maximal among the set of subrepresentations of X and by assumption
we get U = X. Hence X is semistable.
Thus it remains to show that X is stable if X̂ is stable. Assume that X is

not stable. By the preceding considerations we know that X is semistable. Thus
we may assume that there exists a subrepresentation U of X such that μ(U) =
μ(X). Consider again ψ : T → Gd from above. As above we obtain that {ψ(t)U |
t ∈ T} is a set of subrepresentations of X. Let e := dimU and consider the

quiver Grassmannian Ĝre(X) of subrepresentations of dimension e of X which is
a projective variety because it is a closed subvariety of the product of the usual
Grassmannians Greq (Xq), q ∈ Q0. It is also not empty because U ∈ Ĝre(X). From

the considerations above we obtain a torus action on Ĝre(X) given by (t, U) �→
ψ(t) · U . But since Ĝre(X) is projective it follows by Borel’s Fixed Point Theorem
that the fixed point set is not empty. Thus there exists a subrepresentation U ′ ⊂ X
with μ(U ′) = μ(X) such that ψ(t) · U ′ = U ′. But this again means that U ′ is
compatible with the weight space decomposition which is contradiction. It follows
from the discussion from above that X is a stable torus fixed point in this case. �

Since the linear map P is equivariant under the group action of Gd̂ and sends
semistable points to semistable points by the preceding lemma, it induces a map

P : Mss
d̂
(Q̂) → Mss

d (Q)

by use of the universal property of the quotient.
The action of ZQ1 on the dimension vectors NQ̂0 introduced in the last section

induces an action on the representations of Q̂ by translating the representation. We
say that two representations X and X ′ of Q̂ are equivalent if there exists a μ ∈ ZQ1

such that μ ·X ∼= X ′. We also need the following lemma:

Lemma 3.7. Let X and X ′ be stable representations of Q̂ such that P (X) and
P (X ′) are isomorphic. Then X and X ′ are already equivalent.

Proof. Let Y = P (X) and Y ′ = P (X ′), define d := dim(Y ) and let g = (gq)q∈Q0
∈

Gd be an isomorphism between Y and Y ′. We have Y ′
αgq = gq′Yα for all α : q →

q′ ∈ Q1. We choose the morphism of algebraic groups ψ = (ψq)q∈Q0
corresponding

to Y as above. Since Y ′ is a fixed point isomorphic to Y , by the considerations of
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the last subsection we can choose the lift ψ′ corresponding to Y ′ such that we have
ψ′
q = gqψqg

−1
q for all q ∈ Q0. But as before for these lifts we have

y ∈ Yq,χ, i.e., ψ(t)qy = χ(t)y ⇔ ψ′(t)q(gqy) = χ(t)(gqy).

Thus each gq induces an isomorphism between the weight spaces Yq,χ and Y ′
q,χ.

Hence we may understand g as an isomorphism between X and X ′ because g is
compatible with the weight space decomposition. �

Every fixed point arises from such an embedding. Moreover, the images of these
embeddings are pairwise disjoint so that we obtain the following concluding theo-
rem:

Theorem 3.8. The set of fixed points Ms
d (Q)T is isomorphic to the disjoint union

of moduli spaces ⋃
d̂

Ms
d̂
(Q̂),

where d̂ ranges over all equivalence classes of dimension vectors being compatible
with d.

3.3. Euler characteristic of moduli spaces. In this section we point out some
basic properties of the Euler characteristic. For basics of algebraic topology see, for
instance, [17].
Let X be a variety over the complex numbers of dimension n and let Hi

c(X),
i ∈ N0, be the i-th cohomology group considering cohomology with compact support
with coefficients in C which are C-vector spaces satisfying Hi

c(X) = 0 if i > 2n as
is known. Define hi

c(X) = dimC Hi
c(X). The Euler characteristic χc of X is defined

by

χc(X) =
2n∑
k=0

(−1)khk
c (X).

If the varietyX is a smooth quasi-projective complex variety, say of dimension n, we
have H2n−q(X;C) ∼= Hq

c (X;C) where Hq(X;C) denotes singular homology. Thus
we have dimHomC(H

q
c (X,C),C) = dimH2n−q(X;C). Thus, in particular, we have

χ(X) = χc(X) for the Euler characteristic. For more details see [18, Chapter IX.3-
5]. Note that singular cohomology and cohomology with compact support clearly
coincide if X is projective and thus compact.
By the following theorem, which is a consequence of [4, Chapter 2.5] (see also

[2] for a treatment of etale cohomology with compact support), it follows that the
localization method is suitable to calculate the Euler characteristic of varieties.

Theorem 3.9. Let X be a complex variety with a torus T acting on it. Let XT be
the fixed point set of X under this action. Then we have

χc(X) = χc(X
T ).

Since we are mostly interested in moduli spaces of stable representations which are
smooth quasi-projective varieties by Theorem 2.1, we will not distinguish between
χc and χ in this case and denote it just by χ.
By Theorem 3.8 and because of the additivity of the Euler characteristic we obtain

the following important result:
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Theorem 3.10. Let Q be a quiver with dimension vector d. Then for the Euler
characteristic of the moduli space Ms

d (Q) we have

χ(Ms
d (Q)) =

∑
d̂

χ(Ms
d̂
(Q̂)),

where Q̂ is the universal abelian covering quiver and d̂ ranges over all equivalence
classes being compatible with d.

Let Q be a quiver and d be a Θ-indivisible dimension vector. Consider the
moduli space of stable representations Ms

d (Q). From the formula for the Poincaré
polynomials stated in [23] we obtain that the coefficients corresponding to the
monomials in odd degree vanish so that the odd cohomology vanishes. Moreover,
from the Hard Lefschetz Theorem (see for instance [11, Chapter 0.7]), we can
conclude that

hk(Ms
d (Q)) ≤ hk+2(Ms

d (Q))

for k < n and

hk(Ms
d (Q)) ≥ hk+2(Ms

d (Q))

for k > n where n is the dimension of Ms
d (Q). Since we also have

h0(Ms
d(Q)) = h2n(Ms

d (Q)) = 1,

we get the following result:

Corollary 3.11. For moduli spaces of stable representations of a quiver Q with
Θ-indivisible dimension vector d we have:

χ(Ms
d (Q)) ≥ dimMs

d (Q) + 1.

3.4. Maps between universal quivers. In this subsection we introduce the uni-
versal covering quiver of a connected quiver Q. Moreover, we construct maps from
this quiver to the universal abelian covering quivers which are obtained by applying
the localization technique recursively. Since these maps become injective on finite
subquivers after finitely many steps, the remaining torus fixed points do not have
a cyclic support. The study of universal covering quivers in Representation Theory
goes back into the 80’s; see for instance [3, 5, 10].
Let Q1 = {α, α−1 | α ∈ Q1} where α−1 is the formal inverse of α. We will write

α−1 : q′ → q for α : q → q′ ∈ Q1. A path p is a sequence (q1 | α1α2 . . . αn | qn+1)
such that αi : qi → qi+1 ∈ Q1. Thereby, we have the equivalence generated by

(q | αα−1 | q) ∼ (q || q).
In what follows, we always consider paths up to this equivalence. The set of words
in Q is generated by the arrows and their formal inverses, i.e., for a word w we have
w = α1 . . . αn where αi ∈ Q1. Denote the set of words of Q by W (Q). Note the
difference between paths and words, i.e., a word may consist of any concatenation
of arrows and their formal inverse whence two paths can only be concatenated if
the head of one of the paths coincides with the tail of the other one. The universal
covering quiver Q̃ of Q is given by the vertex set

Q̃0 = {(q, w) | q ∈ Q0, w ∈ W (Q)}
and the arrow set

Q̃1 = {α(q,w) : (q, w) → (q′, wα) | α : q → q′ ∈ Q1}.
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Note that the definition is slightly different from the usual definition for instance
given in [10]. There a base point q ∈ Q0 is fixed. The quiver, which is obtained,
is the connected component which contains (q, 1) in our definition. But due to the
shape of the universal abelian covering quiver, which has infinitely many compo-
nents and naturally appears by localization, we modified the definition. With this
definition it is possible to obtain a surjective map between the two quivers.
For an α ∈ Q1 define

o(α) =

{
1 if α ∈ Q1,
−1 if α−1 ∈ Q1 .

The universal abelian covering quiver Q̂ (see Section 3.1), is given by the vertex set

Q̂0 = Q0 × ZQ1 = {(q, z1) | q ∈ Q0, z1 ∈ ZQ1}
and the arrow set

Q̂1 = {(α, z1) : (q, z1) → (q′, z1 + eα) | α : q → q′ ∈ Q1, z1 ∈ ZQ1}.
The k-th universal abelian covering quiver is recursively defined by the vertex set

Q̂k
0 = Q̂k−1

0 × ZQ̂k−1
1 = {(q, z1, . . . , zk) | q ∈ Q0, zl ∈ ZQ̂l−1

1 }
and the arrow set

Q̂k
1 = {(α, z1, . . . , zk) : (q, z1, . . . , zk) → (q′, z1 + eα, . . . , zk + e(α,z1,...,zk−1))

| α : q → q′ ∈ Q1, zl ∈ ZQ̂l−1
1 for l = 1, . . . , k}.

where we define Q̂0 = Q. Note that Q̂k
1 = Q̂k−1

1 × ZQ̂k−1
1 .

Fixing a vertex q ∈ Q0 we consider those connected components of Q̃ and Q̂k

such that the vertices (q, 1) and (q, 0, . . . , 0) are contained in these components. By

abuse of notation, we again denote these subquivers by Q̃ and Q̂k. Fix some vertex
(q′, w) ∈ Q̃0 in this connected component. This means that w = (q | α1 · · ·αn | q′)
is a path in Q1 and we may assume that αi �= α−1

i+1 for all i = 1, . . . , n− 1. We call
such a path reduced in what follows. By l(w) = n we denote the length of the path
w and, moreover, we define

h(i) :=
2i− 1− o(αi)

2

and for 0 ≤ l ≤ l(w) we define

cl1(w) :=

l∑
i=1

o(αi)eαi
∈ ZQ1,

where c01(w) = 0. Furthermore, we recursively define

clk(w) :=

l∑
i=1

o(αi)e(αi,c
h(i)
1 (w),...,...,c

h(i)
k−1(w))

∈ ZQ̂k−1
1 ,

where again c0k(w) = 0. Roughly speaking, clk(w) is the k-th coordinate of the
vertex that we reach after l steps in some universal abelian covering quiver, when
walking along the path w. We have the following lemma:

Lemma 3.12. (1) In every connected component of the universal abelian cov-

ering quiver Q̂ of Q every vertex (q, z) ∈ Q̂1 is already uniquely determined
by z ∈ ZQ1.
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(2) Let ((q, t1)|(α1, z1)
o(α1) . . . (αn, zn)

o(αn)|(q′, t2)) be a path such that
n∑

i=1

o(αi)eαi
= 0.

Then we have (q, t1) = (q′, t2).

Proof. We may assume that z = 0. Assume that there exist two vertices (q, 0) and
(q′, 0) in one connected component. Thus there exists a reduced path

((q, 0)|(α1, z1)
o(α1) . . . (αn, zn)

o(αn)|(q′, 0)),
where zi ∈ ZQ1. We have

n∑
i=1

o(αi)eαi
= 0.

Thus for every 1 ≤ i ≤ n there exists an i′ �= i such that αi = α−1
i′ . But this means

that we walk along each arrow αi in both directions and, therefore, we have q = q′.
In the second case, we obtain q = q′ as before. Moreover, we have t2 = t1 +∑n
i=1 o(αi)eαi

. �

Now we can define a map fk : Q̃ → Q̂k (between connected components) by

fk((q, w)) = (q, c
l(w)
1 (w), . . . , c

l(w)
k (w))

and for every arrow α(q,w) : (q, w) → (q′, wα) we define

fk(α) = (α, (c
l(w)
i (w))i=1,...,k) : (q, (c

l(w)
i (w))i=1,...,k) → (q′, (c

l(wα)
i (wα))i=1,...,k).

Roughly speaking a path w in Q̃ starting in (q, 1) is mapped to the same path in

Q̂k. We get the image of such a path just by walking along “the same arrows” in
Q̂k. But since the second quiver has cycles, different vertices and arrows can be
mapped to the same vertices and arrows. But different paths are sent to different
paths even if they have the same starting and terminating point. Recall that every
arrow in both quivers corresponds to an arrow of the original quiver Q.
Note that we have

c
l(wα)
k (wα) = c

l(w)
k (w) + e

(α,c
l(w)
1 (w),...,c

l(w)
k−1(w))

for an arrow α ∈ Q1 and

c
l(wα)
k (wα) = c

l(w)
k (w)− e

(α,c
l(w)+1
1 (wα),...,c

l(w)+1
k−1 (wα))

for an arrow α−1 ∈ Q1.

Proposition 3.13. (1) The maps fk are surjective for all k ∈ N.

(2) For every finite connected subquiver Q ⊆ Q̃ there exists an k ∈ N such that
fk′ |Q is injective for all k′ ≥ k.

Proof. We first show that fk is surjective. As already mentioned we consider the
connected components such that (q, 1) ∈ Q̃0 and (q, 0, . . . , 0) ∈ Q̂k. Thus let

(q′, z1, . . . , zk) ∈ Q̂k
0 such that there exists a reduced path

((q, 0, . . . , 0) | α1 . . . αn | (q′, z1, . . . , zk))
in Q̂k which corresponds to a reduced path w = (q | α1 . . . αn | q′) in Q.

We have zt = c
l(w)
t (w) and thus fk(q

′, w) = (q′, z1, . . . , zk).
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Let q ∈ Q0 and w = α1 . . . αnk
�= 1 be a reduced path such that w starts and

terminates at q. Moreover, assume that w and q are chosen such that nk is minimal
satisfying

fk((q, 1)) = fk((q, w)) = (q, 0, . . . , 0).

Then we claim that fk+1((q, w)) �= fk+1(q, 1) = (q, 0, . . . , 0). Assume that this is
not the case. Then we have

fk+1((q, w)) = (q, c
l(w)
1 (w), . . . , c

l(w)
k+1(w)) = (q, 0, . . . , 0)

and, therefore,

c
l(w)
t (w) =

l(w)∑
i=1

o(αi)e(αi,c
h(i)
1 (w),...,c

h(i)
t−1 (w))

= 0

for all t = 1, . . . , k + 1. Thus there exist i, i′ ∈ {1, . . . , nk} with i < i′ such that

αi = αi′ and c
h(i)
t (w) = c

h(i′)
t (w) for all t = 1, . . . , k. Since the path is reduced, we

also have i′ �= i+ 1 and, therefore, h(i′) > h(i). But since

c
h(i′)
t (w)− c

h(i)
t (w) =

h(i′)∑
j=h(i)+1

o(αj)e(αj ,c
h(j)
1 (w),...,c

h(j)
t−1 (w))

= 0,

applying Lemma 3.12, for the two vertices (q′, w1) and (q′, w1w2) we have fk((q
′, w1))

= fk((q
′, w1w2)) with l(w2) < nk. But this contradicts the minimality of nk. This

already proves the statement. �

Remark 3.14.

(1) We should note that the support of an indecomposable representation is
clearly connected so that this proposition suffices for our purposes. But it
is straightforward to check that the maps fk extend to surjective maps on
the whole quivers. In order to do so we can define h(i) and clk for words
w ∈ W (Q) similar to the definition for paths. This gives us a map fk
defined on the whole quiver.

Let Tk := (C∗)|Q̂
k−1
1 |. Define

Ms
d (Q)T,n := (. . . (Ms

d (Q)T1) . . .)Tn .

Note that for Q̃ we also consider the stability condition induced by the one on Q.
We obtain an equivalence relation of dimension vectors on Q̃ analogously to the
one on Q̂. Using Theorem 3.8 we get the following:

Theorem 3.15. For all dimension vectors d there exists an n ∈ N0 such that we
have

Ms
d (Q)T,n′ ∼=

⋃
d̃

Ms
d̃
(Q̃)

for all n′ ≥ n where d̃ ranges over all equivalence classes that are compatible with
d.

Concerning the Euler characteristic of quiver moduli spaces we get the following
corollary:
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Corollary 3.16. Let Q be a quiver with dimension vector d. Then for the Euler
characteristic of the moduli space Ms

d (Q) we have

χ(Ms
d (Q)) =

∑
d̃

χ(Ms
d̃
(Q̃)),

where d̃ ranges over all equivalence classes being compatible with d.

Thus, if we are interested in the Euler characteristic, we may always assume
that torus fixed points are given as representations of the universal covering quiver
which has no cycles. For this quiver its representation theory often simplifies in
comparison to the one of the universal abelian covering quiver.

Example 3.17.

(1) Every connected component of the universal covering quiver of the Kro-
necker quiver K(m) is an infinite bipartite regular m-tree. Note that in
comparison to Example 3.4 all cycles split up.

We end this section with the following definition:

Definition 3.18. Let Q be a quiver and Θ ∈ Hom(ZQ0,Z) a linear form. A tuple

consisting of a finite subquiver Q of Q̂ (resp. Q̃) and a dimension vector d ∈ NQ0

such that Ms
d (Q) �= ∅, where we consider the stability induced by Θ, is called

localization data.

There exists an equivalence relation on the set of localization data obtained by
translating the vertices by χ ∈ ZQ1. In the following, we will always consider
localization data up to this equivalence.
A localization data always comes along with an embedding into some covering

quiver. This induces a colouring of the arrows c : Q1 → Q1. If we forget about this
colouring we call such a data uncoloured localization data. Fixing an uncoloured
localization data there can exist many colourings that induce different localization
data.

4. Localization in Kronecker moduli spaces

Since the main focus of the paper is on the generalized Kronecker quiver, in this
section we specialize the introduced machinery to this case. We first recall some
properties of Kronecker moduli spaces. Then we investigate stable bipartite quivers
whose representations are torus fixed points of these moduli spaces when colouring
the arrows appropriately. In particular, we construct a class of localization data
which grows exponentially with the dimension vector.

4.1. Kronecker moduli spaces. Let K(m) be the generalized Kronecker quiver
having two vertices Q0 = {q1, q2} and m arrows αi : q1 → q2, i = 1, . . . ,m.. A
representation of this quiver with dimension vector (d, e) is given by two C-vector
spaces V and W of dimensions d and e and an m-tuple of linear maps

(X1, . . . , Xm) ∈
m⊕
i=1

Hom(V,W ) = Rd,e(K(m)).

The group (Gl(V ) × Gl(W )) acts on Rd,e(K(m)) via simultaneous base change.
Since the scalar matrices act trivially, the group action factors through the quotient
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(Gl(V ) × Gl(W ))/C∗. For Θ = (1, 0) the slope function μ : N2\{0} → Q is given
by

μ(d, e) :=
d

d+ e
.

Thus we obtain the following criterion for the (semi-)stability of Kronecker repre-
sentations:

Lemma 4.1. A point (X1, . . . , Xm) ∈ Rd,e(K(m)) is semistable (resp. stable) if
and only if for all proper subspaces 0 �= U � V the following holds:

dim
m∑

k=1

Xk(U) ≥ e

d
· dimU (resp. dim

m∑
k=1

Xk(U) >
e

d
· dimU).

Thus a dimension vector is Θ-indivisible if and only if d and e are coprime. Note
that the chosen stability is equivalent to the stability given by the linear form
Θ̃(d,e)((d

′, e′)) := 〈(d′, e′), (d, e)〉 − 〈(d, e), (d′, e′)〉 for (d, e), (d′, e′) ∈ NK(m)0 in
King’s sense. Actually the consideration of this stability goes back to Schofield’s
theorem [25, Theorem 6.1] because it follows that the moduli spaces for Schur
roots are non-empty. In the following, we call the geometric quotient Ms

d,e(m) :=

Ms
d,e(K(m)) Kronecker moduli space. If (d, e) is a coprime root, by use of Theorem

2.1 we obtain that Ms
d,e(m) is a non-empty smooth projective variety parametrizing

the isomorphism classes of stable representations. In this case, Ms
d,e(m) is thus a

smooth complex manifold when considering the standard topology.

Remark 4.2.

(1) Note that for m = 1 there exist only indecomposable (resp. stable) rep-
resentations of dimensions (1, 0), (0, 1) and (1, 1) and for m = 2 the only
cases of interest are the dimension vectors (d, d), (d, d + 1) and (d + 1, d)
for d ∈ N. The roots (d, d) for d ≥ 2 are no Schur roots which means that
the moduli spaces Ms

d,d(2) are empty.

Furthermore, (d, d+1) is a real Schur root which means that the moduli
space is a point. Thus we will assume that m ≥ 3 if we do not explicitly
say anything else.

We state some helpful properties of Kronecker moduli spaces:

Proposition 4.3. (1) There exist isomorphisms of moduli spaces Ms
d,e(m) �

Ms
e,d(m) and Ms

d,e(m) � Ms
me−d,e(m).

(2) If Ms
d,e(m) �= ∅, we have dim Ms

d,e(m) = 1− d2 − e2 + dem.

(3) We have Ms
d,e(m) �= {pt} if and only if

m−
√
m2 − 4

2
<

e

d
<

m+
√
m2 − 4

2

holds.

Proof. We obtain the first isomorphism by considering the map

(X1, ..., Xm) → (XT
1 , ..., X

T
m)

using that subrepresentations become factor representations under this map. The
second one is obtained via the reflection functor mapping representations of dimen-
sion (d, e) to representations of dimension (e,me− d); see Theorem 2.4. Since we,
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moreover, have that
e

d
>

e′

d′
⇔ e

me− d
>

e′

me′ − d′
,

the statement follows.
The second part is a special case of the fourth part of Remark 2.2.
If Ms

d,e(m) �= {pt} holds, then

m−
√
m2 − 4

2
≤ e

d
≤ m+

√
m2 − 4

2

follows from the second part of the proposition. But K(2) with dimension vector
(d, d) is the only case such that equality holds.
If the inequalities are satisfied properly, (d, e) is an imaginary Schur root; see [15].

In particular, we have 〈(d, e), (d, e)〉 = d2+e2−dem ≤ 0. Following [25] there exists
an open subset of Rd,e(K(m)) which contains those representations which are stable

in the sense of King with Θ̃(d,e)((d
′, e′)) = 〈(d′, e′), (d, e)〉 − 〈(d, e), (d′, e′)〉. �

4.2. Localization data of the Kronecker quiver. In this subsection we investi-
gate the support of the dimension vectors which arise from the localization method
in detail. Moreover, we investigate stable bipartite quivers and the possibilities of
colouring their arrows so that stable representations of such quivers become torus
fixed points.
Let (d, e) ∈ N2 be a dimension vector of the Kronecker quiver and let

X = ((V,W ), (X1, . . . , Xm)) ∈ Ms
d,e(m)T

be a fixed point. From the considerations of the third section we get a morphism
of algebraic groups ϕ : T → (Gl(V ) × Gl(W ))/C∗, for which we can choose a lift
ψ : T → Gl(V )×Gl(W ). It can be decomposed into two morphisms ψ1 : T → Gl(V )
and ψ2 : T → Gl(W ). Let

V =
⊕

χ∈Ξ(T )

Vχ and W =
⊕

χ∈Ξ(T )

Wχ

be the weight space decompositions with respect to ψ1 and ψ2 respectively. They
satisfy

Xk(Vχ) ⊆ Wχ+ek

for all χ ∈ Ξ(T ) ∼= Zm and k = 1, . . . ,m.

The universal abelian covering quiver K̂(m) has vertices (1, χ) and (2, χ), where
χ runs through all characters of Ξ(T ), and arrows

(1, χ) → (2, χ+ ek)

for every k ∈ {1, . . . ,m} and every χ ∈ Zm.

For every fixed point we obtain a dimension vector d̂ defined by

d̂1,χ = dimVχ and d̂2,χ = dimWχ

for (1, χ), (2, χ) ∈ K̂(m)0.

The other way around consider K̂(m) and a dimension vector d̂ ∈ NK̂(m)0. A
stable representation of this quiver corresponds to a torus fixed point with dimen-
sion vector (d, e) where

d =
∑

χ∈Ξ(T )

d̂1,χ and e =
∑

χ∈Ξ(T )

d̂2,χ.
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In what follows, we call (d, e) dimension type of the representation.

Definition 4.4. Let Q be a quiver with a fixed linear form Θ ∈ Hom(ZQ0,Z). A
tuple consisting of the quiver Q and a dimension vector d ∈ NQ0 is called stable if
Ms

d (Q) �= ∅ where we consider the stability induced by Θ.

If it is clear which dimension vector we consider, we will simply call such a tuple
stable quiver.

Remark 4.5.

(1) The stability condition for representations of K̂(m) is induced by the orig-
inal linear form Θ = (1, 0). It is given by

μ(d̂) =

∑
χ∈Ξ(T ) d̂1,χ∑

χ∈Ξ(T ) d̂1,χ + d̂2,χ
.

If we consider a general bipartite quiver with vertices I ∪ J , in what
follows, we always fix this stability condition, i.e., the one induced by the
linear form Θi = 1 for all sources i ∈ I and Θj = 0 for all sinks j ∈ J .

Let (Q, d) with Q = (I ∪ J,R) be a localization data. It comes along with an

embedding of Q into a connected component K̂(m)c of K̂(m). Moreover, it defines
a colouring c : R → {1, . . . ,m}. We can assume that Q defines a full subquiver of

K̂(m)c. Then we have that R and the colouring c are already uniquely determined
by the vertex set I ∪ J . Nevertheless, R and c play an important role because they
will describe different localization data for a fixed uncoloured localization data or
a fixed stable bipartite quiver.

This also means that a fixed point X determines a tuple (I, J, d̂) which is unique
up to translation by a vector μ ∈ ZQ1

∼= Zm. In what follows we always consider
such tuples up to translation.
For a bipartite quiver Q with vertex set I ∪J and fixed dimension vector d define

Ai := {j ∈ J | ∃α : i → j ∈ Q1, dj ≥ 1} and Aj := {i ∈ I | ∃α : i → j ∈ Q1, di ≥ 1}.
Furthermore, define AI =

⋃
i∈I Ai and Ri = |Ai| and Rj = |Aj |.

Definition 4.6. A bipartite quiver is called m-bipartite if we have for all sources
i ∈ I and all sinks j ∈ J that Ri, Rj ≤ m. A tree quiver is a quiver whose
underlying graph is a tree such that there exists at most one arrow between every
two vertices.

Remark 4.7.

(1) Consider a stable bipartite tree quiver (Q, d̂) of dimension type (d, e) with
Q = (I ∪ J,R). Choose a colouring of the arrows c : R → {1, . . . ,m}.
Then we get a localization data of K(m) if Q and c satisfy the following
conditions:
(a) The quiver Q is m-bipartite.
(b) For all (i, j), (i, j′) ∈ R such that j �= j′ we have c(i, j′) �= c(i, j).
(c) Analogously, for (i, j), (i′, j) ∈ R such that i �= i′ we have c(i, j) �=

c(i′, j).
We call a colouring satisfying these conditions stable. Fixing a vertex
q ∈ Q0 and setting c(q) = (q, 1) every colouring of the arrows induces
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a colouring of the vertices c : Q0 → K̃(m)0 and, thus, we get an embedding

of Q into K̃(m).

As far as K̂(m) is concerned we can also fix q ∈ Q0 and set c(q) =

(q, 0) ∈ K̂(m). This also induces a colouring of all vertices, but it does

not give an embedding of Q into K̂(m) in general. But it induces a map
by identifying vertices of the same colour. Thus it also identifies Q with a
subquiver of K̂(m) .

In both cases, every stable representations of Q defines a stable repre-
sentation of K̃(m) and K̂(m) respectively.

(2) It is also easy to check that if i ∈ I is a source such that d̂i = 1, then we
have m ≥ Ri >

e
d .

Remark 4.8.

(1) In order to test an m-bipartite quiver with a fixed dimension vector for
stability, we do not need to consider an explicit representation. We can
rather restrict to representations X of this dimension satisfying for all j ∈ J
and all subsets A′

j ⊆ Aj with R′
j := |A′

j | the following property:

dim
⋂
i∈A′

j

Xα(Xi) = max{0,
∑
i∈A′

j

dimXα(Xi)− (R′
j − 1) dimXj}.

Roughly speaking, subrepresentations of such representations have the
smallest possible slope. The existence of such representations (for general
bipartite quivers) is already obtained when considering bipartite quivers of
the form

n1

α1 ���
��

��
n2

α2

����
��
��

n
...

nt,

αt

��������

where (n, n1, . . . , nt) denotes the dimension vector. If ni ≤ n for all 1 ≤
i ≤ t, there always exists a representation X of this quiver such that for
all tuples of linear maps Xαi1

, . . . , Xαik
with 1 ≤ k ≤ t and 1 ≤ i1 <

i2 < . . . < ik ≤ t the intersections of the images is of smallest possible
dimension. One verifies the existence and the above dimension formula by
induction on the number of arrows.

Remark 4.9.

(1) Fixing a stable m-bipartite tree quiver it may happen that different colour-
ings of the arrows lead to different types of localization data. For instance,
if we consider a colouring c such that this colouring induces a vertex with
the colour χ ∈ Zm and one with χ− ek, we have an arrow α : χ− ek → χ
and also a linear map

Xα:χ−ek→χ : Vχ−ek → Vχ.

We call such an arrow induced. Obviously, the dimension of the corre-
sponding moduli space of the universal abelian cover increases at least by
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one in comparison to the dimension of the moduli space corresponding to
the bipartite quiver; see Proposition 4.3.

Moreover, it can happen that two different vertices are identified when
choosing a colouring. Thus a colouring of the arrows and vertices respec-
tively can induce two types of cycles; see also Section 6.4 for a detailed ex-
ample. Recall that we can apply Theorem 3.15 to quivers with unoriented
cycles, and after suitably many localization steps the remaining torus fixed
points are representations of the universal covering quiver which has no
cycles.

Lemma 4.10. Let (Q, d) be a stable m-bipartite tree quiver and c, c′ stable colour-
ings of the arrows. Then we have:

(1) By colouring the arrows with c we obtain a localization data.
(2) Fix c and c′ such that c induces no cycles and c′ induces at least one cy-

cle. Moreover, let dim(MQ, c) and dim(MQ, c
′) be the dimensions of the

resulting moduli spaces. We have

dim(MQ, c) ≤ dim(MQ, c
′).

Proof. Fixing a stable m-bipartite quiver and a stable colouring of the arrows we
obtain a localization data. Every stable representation of Q induces a stable rep-
resentation of K̂(m), no matter if the colouring leads to cycles or not. Induced
arrows let the dimension of the moduli space increase. Thus it remains to prove
that the dimension of the moduli space increases if a colouring induces a cycle which
does not come from an induced cycle. Let (Q, c) and (Q, c′) be the two resulting

subquivers of K̂(m) and d(c) and d(c′) be the resulting dimension vectors respec-
tively. Assume c′(j1) = c′(j2) and let j1,2 be the corresponding vertex of (Q, c′),
i.e., d(c′)j1,2 = dj1 + dj2 . We have Rj1 , Rj2 ≥ 1 in Q. Define dimAj =

∑
i∈Aj

di.

Then we have for the colouring c′ producing this cycle

dim(MQ, c
′) = dim(MQ, c) + d2j1 + d2j2 − (dj1 + dj2)

2 − dimAj1dj1

− dimAj2dj2 + (dimAj1 + dimAj2)(dj1 + dj2)

= dim(MQ, c)− 2dj1dj2 + dimAj1dj2 + dimAj2dj1 ≥ dim(MQ, c).

Indeed, we have dimAjk ≥ djk for k = 1, 2 because of the stability of Q. The case
c′(i1) = c′(i2) is proved in the same way. �

Definition 4.11. A localization data (Q, d̂) is called localization data of type one

if d̂q ∈ {0, 1} for all q ∈ Q0.

4.3. Stability of bipartite quivers. In this section we study how to construct
new stable bipartite quivers by glueing certain bipartite quivers of smaller dimension
types. In fact these smaller quivers are often obtained by modifying (semi)-stable
quivers at the vertex at which the two quivers are glued. Since each stable colouring
gives rise to some localization data, this gives a huge class of localization data for
every fixed dimension type. Note that this glueing method is also used to construct
stable tree modules of the Kronecker quiver; see [29].
Let Q = (I ∪J,Q1) and Q′ = (I ′ ∪J ′, Q′

1) be two bipartite quivers and let j ∈ J ,
j′ ∈ J ′. Define the bipartite quiver

Qj,j′(Q,Q′) = (I ∪ I ′ ∪ J\{j} ∪ J ′\{j′} ∪ {j′′}, Q′′
1)
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such that α : i → j1 ∈ Q′′
1 if and only if α : i → j1 ∈ Q1 or α : i → j1 ∈ Q′

1 with
j1 �= j, j′ and α : i → j′′ ∈ Q′′

1 if and only if α : i → j ∈ Q1 or α : i → j′ ∈ Q′
1.

Thus the new quiver is generated by the former ones by identifying two vertices
of the set of sinks of these quivers.

Definition 4.12. The quiver Qj,j′(Q,Q′) is called the glueing quiver of Q and Q′

and the vertices j, j′ = j′′ the glueing vertices.

Definition 4.13. Let (Q, d) be a tuple consisting of a bipartite quiver with sources
I and d ∈ NQ0 a dimension vector. A subquiver of Q with sources I ′ is called
boundary quiver if there exists exactly one i0 ∈ I ′ such that |Ai0 ∩ AI\I′ | = 1 and
|Ai ∩ AI\I′ | = 0 for all i ∈ I ′ with i �= i0. A boundary quiver is called proper
boundary quiver if it does not contain any other boundary quiver.

Note that if dq ≥ 1 for all q ∈ Q0, this means that boundary quivers are such
subquivers which only have one common sink j with the remainder of the quiver
and, moreover, such that this sink is a neighbour of exactly one source of that
subquiver.
Fixing a representation X of Q, we abbreviate the dimension of the image of a

subspace U =
⊕

i∈I Ui with Ui ⊂ Xi to dU . Explicitly, we define

dU := dim
∑
i∈I

α∈{β|t(β)=i}

Xα(Ui).

Fixing a coprime dimension vector (d, e) with d ≥ 1 we now determine a dimension
vector (ds, es) such that we are able to construct new stable bipartite quivers of
dimension type (ds + (k + l)d, es + (k + l)e) by glueing quivers of the types (ds +
kd, es + ke) and l(d, e).
Fixing some coprime dimension vector (d, e), we first show that there exists a

coprime dimension vector (ds, es) such that ds ≤ d and es ≤ e satisfy the conditions:

(1) e+es
d+ds

d > e if d �= 1.

(2) es−1
ds

< e
d if d �= 1 and (es − 1)d = eds if d = 1.

(3) e+es
d+ds

d′ < � e
dd

′� ∀ 1 ≤ d′ < d.

(4) gcd(d+ ds, e+ es) = 1.

These are conditions which should intuitively be satisfied in order to be able to
glue stable quivers of dimension types (ds, es) and (d, e) to get one of dimension
type (ds + d, es + e). Indeed, the second and third condition make sure that the
former representation of dimension (d, e) and its subrepresentations do not contra-
dict the stability condition; see also the inequality below implied by the second
condition. Moreover, the first inequality makes sure that the slope of such a rep-
resentation is not too small so that the representation of dimension (ds, es) and its
subrepresentations does not contradict the stability condition. The last condition
has clearly to be satisfied in order to avoid proper semistable representation. We
refer to these conditions as glueing conditions. We will see that these conditions
are also sufficient. If the second condition is satisfied, it is straightforward that we
also have

(1)
es − 1

ds
<

e+ 1

d
⇔ e+ es

d+ ds
d < e+ 1.

Moreover, the first condition is equivalent to es
ds

> e
d .
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Lemma 4.14. Let (d, e) ∈ N2 such that d ≤ e and d, e are coprime. There exists
a coprime dimension vector (ds, es) satisfying the glueing conditions. It is uniquely
determined if we also assume that 0 ≤ ds < d and 1 ≤ es < e.

Proof. We first consider the special case d = 1. It is easy to see that (0, 1) satisfies
these properties for (d, e) = (1, n) with n ∈ N.
If d ≥ 2, we already have e ≥ 3. Moreover, from the first two conditions it

already follows that ds, es �= 0 has to be satisfied. Choose ds ∈ N minimal such
that d | 1 + eds. This is possible because gcd(d, e) = 1 and, therefore, there exist
λ, μ ∈ Z such that λd = 1− μe. Define

es =
1 + dse

d
.

Because of the choice of ds, we have es ∈ N.
Moreover, we get

−e(d+ ds) + d(e+ es) = −ed− eds + de+ dse+ 1 = 1.

It follows that gcd(d+ ds, e+ es) = 1.
Now we get

es
ds

=
1 + dse

dds
>

e

d

and also
es − 1

ds
=

dse− d+ 1

dds
<

e

d
.

Thus it remains to prove the third property. By an easy calculation we get

e+ es
d+ ds

=
e

d

(
ed+ eds + 1

ed+ eds

)
=

e

d

(
1 +

1

ed+ eds

)
.

Moreover, since

� e
d
d′� − e

d
d′ ≥ 1

d

and
d′

d(d+ ds)
<

1

d+ ds

for each d′ < d, the existence of such a vector follows.
If (d′s, e

′
s) is another dimension vector satisfying the desired properties, it is

straightforward that the glueing conditions imply

d′ses −
d′s
d

− 1 < dse
′
s − 1 < d′ses.

But since
d′
s

d < 1 it follows that d′ses = dse
′
s. But since (ds, es) and (d′s, e

′
s) are

both coprime we already have (ds, es) = (d′s, e
′
s). �

In what follows, we call a vector (ds, es) satisfying these properties starting vector
for (d, e). In the remainder of the section we assume that (d, e) is coprime and
(ds, es) is the corresponding starting vector as constructed in Lemma 4.14. Note
that in this case (ds + kd, es + kd) also satisfies the glueing conditions for every
k ∈ N.
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Remark 4.15.

(1) If we want to decompose a coprime dimension vector (d, e) into (d, e) =
(ds, es)+k(d′, e′) such that (d′, e′) and (ds, es) satisfy the glueing conditions,
we can proceed as follows: Let e′ ∈ N minimal such that

e | 1 + de′ and d′ =
1 + e′d

e
.

Now we compute ds and es from (d′, e′) as before. Checking that

e− es
e′

=
d− ds
d′

,

it follows that e′ | e−es and d′ | d−ds because gcd(d
′, e′) = 1 and, trivially,

e− es, d− ds ∈ N hold. Now define k = d−ds

d′ .

We need other properties of these natural numbers. By use of esd− eds = 1 we get

(ke+ es)(k
′d+ ds) + k − k′ = (kd+ ds)(k

′e+ es),

where k, k′ ∈ N. For a fixed k ∈ N and d1 = k′d+ d′ ∈ N with 0 ≤ d′ < d, k′ ∈ N

and 0 < d1 ≤ kd+ ds define a map f : N ∩ (0, kd+ ds] → N by

f(d1) = min{n ∈ N | (ke+ es)d1 + n

kd+ ds
∈ N}.

Note that f is injective because gcd(kd+ds, ke+es) = 1. Then we get the following
lemma:

Lemma 4.16. Let ds, es, d, e fulfill the glueing conditions. Then we have

(ke+ es)(k
′d+ ds) + k − k′ = 0 mod (kd+ ds)

for all k′ ≤ k.
Let d1 = k′d + d′ with 0 ≤ d′ < d. Then we have f(d1) = k − k′ if d′ = ds and

thus f(d1) ≥ k + 1 if d′ �= ds.

Now we show how to get a stable bipartite quiver of dimension type (ds + (k +
l)d, es + (k + l)e) by glueing a stable bipartite quiver of type (ds + kd, es + ke)
and certain quivers of type (ld, le + 1). We again point out Remark 4.8. Thus we
do not always consider specific representations, but those satisfying the properties
mentioned in the remark.
In the following, if we fix a bipartite quiver Q, we always additionally fix a

dimension vector d̂ ∈ NQ0. In abuse of notation we do not always mention it and,
moreover, if we glue two bipartite quivers the dimension vector of the glueing quiver

is denoted by d̂ again. We just additionally specify the dimension corresponding to
the glueing vertex. The remaining vertices keep the dimension.
Let Sm

ld,le+1(k) be the set of tuples consisting of a connected m-bipartite quiver

Q of dimension type (ld, le + 1) and a sink j with d̂j ≥ 1 satisfying the following
properties:

(1) There exists a representation T (with the corresponding dimension vector)
of the quiver such that for every d′-dimensional subspace U with d′ < ld
which is concentrated on sources we have

dU >
(k + l)e+ es
(k + l)d+ ds

d′.
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(2) After decreasing the dimension of the sink j by one, the resulting quiver
is connected and there exists a factor representation T/Ej of T which is
semistable, i.e., the tuple consisting of the induced quiver and dimension
vector is semistable.

Let T m
d,e be the set of all stable m-bipartite quivers of dimension type (d, e).

Theorem 4.17. Let d and e be coprime, d, ds, e, es fulfill the glueing conditions
and let k, l ∈ N where l ≥ 1. Let T 0 ∈ T m

ds+kd,es+ke and (T 1, j1) ∈ Sm
ld,le+1(k).

Moreover, let j0 be a sink of T 0 of dimension d̂j0 ≥ 1 such that Rj0 + Rj1 ≤ m.

Then Qj0,j1(T
0, T 1) with glueing vertex j2 where d̂j2 := d̂j0 + d̂j1 − 1 is an element

of T m
ds+(k+l)d,es+(k+l)e.

Proof. Given a stable representation S of T 0 and a representation T of T 1 satisfying
the conditions from above, we consider the following representation ofQj0,j1(T

0, T 1):
the corresponding semistable factor representation of T induces a one-dimensional
subspace of Tj1 which we identify with an arbitrary one-dimensional subspace of
Sj0 .
For some subspace U which is concentrated on sources of one of the two subquivers

we denote by dU the dimension of its image corresponding to its original quiver and
by d′U the dimension of its image corresponding to the glueing quiver.
First let U be a d′-dimensional subspace corresponding to T such that d′ < ld.

Then by definition we have

(k + l)e+ es
(k + l)d+ ds

d′ < dU = d′U .

If d′ = ld, the same inequality follows from dU = le+1 and the glueing conditions.
Since we also have

(2)
es + ke

ds + kd
>

es + (k + l)e

ds + (k + l)d

(see the properties of the dimension vectors), the same follows for subspaces of S.
It remains to prove that subspaces composed of subspaces of both subquivers

fulfil the stability condition. Thus let U ′ and U ′′ be two subspaces of dimensions
1 ≤ d′ ≤ ld and 1 ≤ d′′ ≤ kd+ds, respectively, such that we have proper inequality
at least once. Here U ′ corresponds to T and U ′′ to S. We assume that the image of
U ′ contains the one-dimensional subspace which is factored out because otherwise
the considerations from above apply.
Thus it suffices to prove that

d′U ′⊕U ′′ ≥ dU ′ + dU ′′ − 1 ≥ le

ld
d′ + dU ′′ >

(k + l)e+ es
(k + l)d+ ds

(d′ + d′′),

where the first inequality follows by construction and the second inequality follows
from the semistability of the quiver obtained from T 1 after decreasing the dimension
of the vertex j1 by one. The last inequality is equivalent to

dU ′′ >
(k + l)e+ es
(k + l)d+ ds

d′′ +
d′

d((k + l)d+ ds)

using esd− dse = 1.
By the preceding lemma together with the assumption we have

dU ′′ ≥ (ke+ es)d
′′ + f(d′′)

kd+ ds
.
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First, let d′′ < kd+ds. Assuming, without loss of generality, that d′ = ld, it remains
to prove that

ld′′ + ((k + l)d+ ds)f(d
′′) > l(kd+ ds).

But this is easily verified.
Finally, let d′′ = kd+ ds and d′ = l′d+ d1 < ld with 0 ≤ d1 < d. We have

(k + l)e+ es
(k + l)d+ ds

(kd+ ds) = ke+ es −
l

(k + l)d+ ds

again using esd− eds = 1. Thus it remains to prove⌈ e
d
(l′d+ d1)

⌉
= l′e+

⌈
ed1
d

⌉
>

(k + l)e+ es
(k + l)d+ ds

(l′d+ d1)−
l

(k + l)d+ ds

which follows from the third glueing condition and inequality (2) together with
l > l′. �

If T 0 and T 1 satisfy the condition of the theorem we call T 0 the starting quiver for
T 1. Now we apply the result to specific quivers. Therefore, let T ∈ T m

d,e. Starting

with this quiver, we construct new quivers T̂ of dimension type (d, e+ 1) in one of
the following ways:

(1) Choose an i ∈ I such that Ri < m and define the new quiver by the vertex

set T̂0 = T0 ∪ {j} and the arrow set T̂1 = T1 ∪ {α : i → j}. Finally, let

d̂j = 1.
(2) Choose a vertex j ∈ J with 1 < Rj < m and increase the dimension of the

vertex by one.

(3) Choose a vertex j ∈ J such that d̂j <
∑

i∈Aj
d̂i and increase the dimension

of the vertex j by one.

Denote the set of the resulting quivers by T̂ m
d,e and refer to j as modified vertex.

Given a representation X of T ∈ T m
d,e we can modify it under consideration of

Remark 4.8 in order to get a representation of T̂ . Thus we modify the linear maps
corresponding to the arrows with sink j in such a way that the condition of Remark
4.8 is satisfied for the sink j.

Corollary 4.18. Let d, ds, e, es be as before and k ∈ N. Moreover, let T 0 ∈
T m
ds+kd,es+ke and T 1 ∈ T̂ m

d,e with modified vertex j1. Furthermore, let j0 with d̂j0 ≥ 1

be a sink of T 0
0 such that Rj0 + Rj1 ≤ m. Then Qj0,j1(T

0, T 1) with glueing vertex

j, where d̂j := d̂j0 + d̂j1 − 1, is an element of Tds+(k+1)d,es+(k+1)e.

Proof. We just have to check the two conditions stated before the preceding the-
orem. Thus let U be a d′-dimensional subspace of a modified representation X̂ of
T 1. Since T 1 results from a stable quiver we have dU > e

dd
′.

Moreover, by the third glueing condition it follows that

(k + 1)e+ es
(k + 1)d+ ds

d′ <
⌈ e
d
d′

⌉
≤ dU .

If d′ = d, the same inequality follows from inequality (1) together with d̂j1 ≤∑
i∈Aj1

d̂i and

dU = e+ 1 >
(k + 1)e+ es
(k + 1)d+ ds

d. �
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Fixing a coprime dimension vector (d, e) we now deal with the question how to
construct a certain set of stable m-bipartite quivers which is countable. Therefore,
we assign a set of stable m-bipartite quivers to tuple of natural numbers which is
uniquely determined by the dimension vector; see also Example 4.20. These num-
bers correspond to the number of possible glueing vertices and possible colourings
of the constructed quivers.
Fix a dimension vector (d, e) and the corresponding starting vector (ds, es). De-

note by T (d,e)
n1 the set of stable bipartite quivers of dimension type (ds, es)+n1(d, e)

with n1 ≥ 1. As before let T̂ (d,e)
n1 be the set which results by modifying a vertex

j1. Now we continue recursively: Let S ∈ T (d,e)
nk−1,...,n1

and T ∈ T̂ (d,e)
nk,...,n1 . Now let

T (d,e)
1,nk,...,n1

be the set consisting of all quivers Qj0,j1(S, T ) such that Rj0 +Rj1 ≤ m.

Moreover, let the dimension of the glueing vertex j be given by d̂j = d̂j0 + d̂j1 − 1.

In general let T (d,e)
nk+1,...,n1 be the set of glueing quivers resulting from glueing a quiver

S ∈ T (d,e)
nk+1−1,nk,...,n1

and a quiver T ∈ T̂ (d,e)
nk,...,n1 as described.

Corollary 4.19. The sets T (d,e)
nk,...,n1 only contain stable quivers.

Proof. It suffices to prove that these quivers satisfy the conditions of Corollary 4.18.

We assume that T (d,e)
nk,...,n1 only contains stable quivers. We have to prove that

T (d,e)
nk+1,...,n1 just consists of stable quivers for all nk+1 ≥ 1. Therefore we show that

the quivers in T (d,e)
nk−1,...,n1

are starting quivers for all quivers in T̂ (d,e)
nk,...,n1 .

Let (dk, ek) be the dimension type corresponding to T̂ (d,e)
nk,...,n1 and (dks , e

k
s ) the one

belonging to T (d,e)
nk−1,...,n1

. It suffices to prove that

(dk+1
s , ek+1

s ) = (dks , e
k
s ) + (nk − 1)(dk, ek)

is the starting vector for

(dk+1, ek+1) = (dks , e
k
s) + nk(d

k, ek).

Indeed, the quivers in T̂ (d,e)
nk,...,n1 are obtained by the modification described in Corol-

lary 4.18. But this is equivalent to

ek+1
s =

1 + dk+1
s ek+1

dk+1

with the additional condition dk+1
s ≤ dk+1; see Lemma 4.14. The second property

follows immediately, the first one is equivalent to

eks =
1 + dkse

k

dk
,

which follows by a direct calculation. Therefore, the claim follows by the induction
hypothesis. �

Example 4.20. Let (ds, es) = (0, 1) and (d, e) = (1, n − 1). Then we always
obtain a corresponding tuple of natural numbers (nk, . . . , n1) to a fixed coprime
dimension vector by proceeding as mentioned in Remark 4.15. More detailed we
have (dk, ek) = (dk−1

s , ek−1
s ) +nk(d

k−1, ek−1) and in this way we recursively obtain
the whole tuple. The recursion terminates if (ds, es) = (0, 1).
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For instance, consider (d′, e′) = (5, 8). The tuple of numbers is given by (n2, n1) =
(2, 2) with n = 2. In more detail we get

(d′, e′) = (1, 2) + 2(2, 3) = (0, 1) + (1, 1) + 2((0, 1) + 2(1, 1)).

Initially, consider the localization data of the dimension types (1, 2) and (2, 3), i.e.,

1 1 1

1

�������
�����

�� 1

�������
�����

�� 2

������� ��
�����

�� 1

1 1 1

1

�������
�����

��

1

where the numbers at the vertices indicate the dimension vector. By use of Corollary
4.18 we obtain the following localization data of dimension type (3, 5) by glueing:

1 1 1

1

�������
�����

�� 1

�������
�����

�� 1

�������
�����

��

1 2 2 1��

		1

�������
�����

�� �� 1 2 ��
�������
�����

�� 1 1

�������
�����

��

1 1 1 1

1

�������
�����

��

1

Next, for instance, we obtain the following localization data of type (5, 8) by glueing:

1 1

1

�������
�����

�� 2

������� ��
�����

�� 1

2 3 1

		

��

2

�������
�����

�� �� 1 2

������� ��
�����

�� 1

2 1

		

�� 1 1

1

�������
�����

��

1 1

5. Asymptotics and combinatorics of trees

The purpose of this section is to treat some aspects of combinatorics of trees. Fixing
certain properties we count the number of trees satisfying these properties. This
machinery will be used to count torus fixed points and fixed point components,
respectively. This gives rise to a lower bound for the number of fixed points and
thus for the Euler characteristic of moduli spaces of the Kronecker quiver.
Let a(x) =

∑
n≥0 anx

n be a power series. In the following denote by [xn]a(x) :=
an where n ≥ 0 its n-th coefficient.

Definition 5.1. A tree is a connected acyclic graph. A rooted tree is a tree where
a point is specified to be the root. A graph without cycles is called a forest, in
particular, the components are trees.

When restricting to trees the points (resp. vertices) are often called knots. For
further details according to trees and their combinatorics see, for example, [13] or
[26].
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5.1. Simply generated trees. We discuss simply generated trees, which we relate
to localization data as constructed in the last section. Simply generated trees were
introduced by Meir and Moon (see [19]), and are constructed as follows: Fix a
formal power series

φ(x) =
∑
n≥0

φnx
n

such that φn ≥ 0 for all n ≥ 0, φ0 > 0 and φj > 0 for at least one j ≥ 2. Let T be
the family of finite rooted trees. Define the weight ωφ(T ) of a tree T ∈ T by

ωφ(T ) =
∏
j≥0

φ
Dj(T )
j ,

where Dj(T ) is the number of knots with j successors. Denote by |T | the number
of knots of a tree T and set

yn =
∑

|T |=n

ωφ(T ).

Now the generating function y(x) =
∑

n≥1 ynx
n satisfies the functional equation

y(x) = xφ(y(x)). Define Tφ := {T ∈ T | ωφ(T ) �= 0}. We call a tree T ∈ Tφ
simply-generated by φ.
For instance, if we define φ(x) = 1+2x+x2, we obtain the family of binary trees.

Indeed, y(x) satisfying y(x) = xφ(y(x)) is its generating function, i.e., yn is the
number of binary trees with n knots. Here we take into account that we distinguish
between left and right successors.

5.2. Lagrange inversion theorem asymptotic behaviour. In this section we
briefly discuss the Lagrange inversion theorem, which will become an important
tool later.

Theorem 5.2. Let φ(x) =
∑

n≥0 φnx
n be a power series such that φ(0) �= 0 and let

y(x) be a power series satisfying the functional equation y(x) = xφ(y(x)). Let g(x)
be another power series. Then y(x) is invertible and for the coefficients of g(y(x))
we have

[xn]g(y(x)) =
1

n
[un−1]g′(u)φ(u)n

for all n ≥ 1. Moreover, we have

[xn](y(x))m =
m

n
[un−m]φ(u)n.

Note that this theorem is equivalent to the formulation of the Lagrange inversion
theorem as usually stated in literature. For proofs and further details see, for
instance, [26] or [9].
By an easy calculation using Theorem 5.2 we obtain the following special case

which is important when counting localization data:

Corollary 5.3. Let φ(x) = 1 + axb and y such that y(x) = xφ(y(x)). Then we
have

[xn]y(x) =
1

n

(
n

n−1
b

)
a

n−1
b

if b|n− 1 and [xn]y(x) = 0 otherwise.



410 THORSTEN WEIST

Corollary 5.4. Let φ(x) = 1 + axb and y such that y(x) = xφ(y(x)). Then we
have

lim
n→∞

1

n
ln([xnb+1]y(x)) = b ln b− (b− 1) ln(b− 1) + ln a.

Proof. Recall the Stirling formula, i.e., for every n ∈ N we have

(3)
√
2πn

(n

e

)n

≤ n! ≤
√
2πn

(n

e

)n

e
1

12n .

Using

lim
n→∞

ln

(
an+ b

cn+ d

)
= ln(a)− ln(c),

where a, c ∈ R+ and b, d ∈ R and

lim
n→∞

lnnt

n
= 0

for all fixed t ∈ Q+, we obtain

lim
n→∞

1

n
ln(

1

nb+ 1

(
nb+ 1

n

)
an) = lim

n→∞

1

n
ln(

(
(nb+ 1)nb+1

nn(n(b− 1) + 1)n(b−1)+1

)
an)

= lim
n→∞

1

n
ln(

(
nb+ 1

n

)n(
nb+ 1

n(b− 1) + 1

)n(b−1)+1

an)

= ln b+ (b− 1) ln
b

b− 1
+ ln a

= b ln b− (b− 1) ln(b− 1) + ln a. �

Corollary 5.5. Let y and φ as in Corollary 5.3 and let m ≥ 1. We have

[xn]y(x)m =
m

n

(
n

n−m
b

)
a

n−m
b

if b|n−m and n ≥ m and [xn]y(x)m = 0 otherwise.

Let a, b,m, n ∈ N+. Define

Aa,b,m,n := [xn]y(x)m

if y(x) satisfies the functional equation y(x) = xφ(y(x)) where φ(x) = 1+axb. Also
define Aa,b,n := Aa,b,1,n

6. Applications

In this section we discuss several consequences of the last sections and state several
applications. First we discuss the asymptotic behaviour of the Euler characteristic
of Kronecker moduli spaces. Then we consider some cases for which it is possible
to calculate the Euler characteristic exactly.

6.1. Conjecture concerning the asymptotic behaviour of the Euler char-
acteristic. In this subsection we discuss a conjecture, which is based on ideas of
Michael Douglas, concerning the Euler characteristic of Kronecker moduli spaces.
Several consequences are also discussed. Originally, in [7] Douglas suggested to fix
r ∈ R+ and to consider (d, e) ∈ N2

+ with gcd(d, e) = 1 and e
d ≈ r to obtain the

following:
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(1) There exists a Cr ∈ R such that for e, d � 0 we have

ln(χ(Ms
d,e(m)))

d
≈ Cr.

(2) The function r �→ Cr is continuous.

This means that Douglas supposed that
ln(χ(Ms

d,e(m)))

d and therefore the Euler char-
acteristic is asymptotically already determined by the fraction e

d . Moreover, the
Euler characteristic depends continuously on it. Let

m1 :=
m−

√
m2 − 4

2
and m2 :=

m+
√
m2 − 4

2
.

Based on this, in [28] the following precise formulation was developed:

Conjecture 6.1. There exists a continuous function f : [m1,m2] ⊂ R → R such
that the following holds: for all r ∈ [m1,m2] and all ε > 0 there exists an δ > 0
and an n ∈ N such that for all (d, e) ∈ N2 with gcd(d, e) = 1, |r − e/d| < δ and
|d+ e| > n we have

|f(r)−
ln(χ(Ms

d,e(m)))

d
| < ε.

Remark 6.2.

(1) We may also rephrase the conjecture as follows: there exists a continuous
function f such that for every coprime dimension vector (d, e) there exists
a dimension vector (ds, es) such that

f(
e

d
) = lim

n→∞

lnχ(Ms
ds+nd,es+ne(m))

ds + nd
.

In particular, the right hand side converges.

We discuss some consequences of the conjecture which are proved in [28]. For the
remainder of this subsection we assume that the conjecture is true. Define

K := (m− 1)2 ln((m− 1)2)− (m2 − 2m) ln(m2 − 2m).

Theorem 6.3. If Conjecture 6.1 holds, the function f is given by

f(r) =
K√
m− 2

·
√
r(m− r)− 1.

In particular, the constant K is its value at the point r = 1. Moreover, we have
that the Euler characteristic asymptotically only depends on the dimension of the
moduli space:

Corollary 6.4. If Conjecture 6.1 holds, we have that the logarithm of the Euler
characteristic ln(χ(Ms

d,e(m))) is asymptotically proportional to√
dem− d2 − e2 =

√
dimMs

d,e(m)− 1.

In this paper we prove that f(1) = K and that the Euler characteristic grows
at least exponentially. Note that, if a continuous function as conjectured exists, it
follows from Theorem 6.3 that it is already uniquely determined by f(1).
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6.2. The case of the dimension vector (d-1,d). In this section we investigate
the value at 1 of the function treated in Section 6.1. This means investigating the
dimension vector (d − 1, d). The Euler characteristic of the corresponding moduli
space is, by applying the reflection functor, the same as the one corresponding to the
dimension vector (d, (m − 1)d + 1). The latter one is considered in the following.
In particular, we show that the value at the point one is the one conjectured in
Section 6.1.
By Theorem 3.15 it is enough to consider the universal covering quiver of the

Kronecker quiver K(m). As a consequence, for the remainder of this subsection we
only consider localization data such that the corresponding quiver is a subquiver
of the universal covering quiver. Under this assumption, we will see that each
localization data (Q, d̃) is of type one, i.e., d̃q ∈ {0, 1} for all q ∈ Q0. This already
implies that every localization data consists of subdata of dimension type (1,m).

Lemma 6.5. Every localization data (Q, d̃) of dimension type (d, (m− 1)d+ 1) is
of type one. In particular, we have χ(Ms

d̃
(Q)) = 1.

Proof. Let (Q, d̃) be a localization data of dimension type (d, (m− 1)d+1) and let
X be a stable representation of this data. Consider a subrepresentation

Xj1

Xj2

Xi

X1



�������
X2

��������

Xm
����

���
...

Xjm

The stability condition implies

dXi
>

(m− 1)d+ 1

d
dimXi > (m− 1) dimXi.

In particular, this holds if dimXi = dimXjk = 1 for k = 1, . . . ,m. Moreover,
we have dimXjk ≥ dimXi for all k. Indeed, if we had dimXjk = l such that
l < dimXi, we could consider the (at least) (dimXi − l)-subspace ker(Xk) which
would (at most) have a (dimXi − l)(m − 1)-dimensional image. This contradicts
the stability condition.
Therefore, the subrepresentation is of dimension type (dimXi, e

′) with e′ ≥
m dimXi. Furthermore, because of the stability every k-dimensional subspace at
least has an ((m− 1)k + 1)-dimensional image.
If we fix a proper boundary quiver, which exists because the original quiver has

no cycles, this subquiver just has one common vertex with the remainder of the
quiver and the corresponding subdata is of dimension type (d1,md1). But for the
dimension type (d− d1, b) of the remainder of the data we have

b ≥ (m− 1)(d− d1) + 1.

Let h ≥ 1 be the dimension of the intersection of (the vector spaces corresponding
to the common vertex of) the two subrepresentations of X corresponding to the
two subdata. Then we get

(m−1)d+1 = b+d1m−h ≥ (m−1)(d−d1)+1+d1m−h = (m−1)d+d1−h+1.

Therefore, we have h ≥ d1 and thus h = d1.
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We now prove that after removing the subdata of dimension type (d1, (m−1)d1),
i.e., the subdata of dimension type (d1,md1) except the common vertex, we get a
localization data of dimension type (d−d1, (m−1)(d−d1)+1). It suffices to prove
stability because the original subdata has a d1-dimensional intersection with the
remainder.
For an arbitrary subspace U ⊂

⊕
i∈I Xi with dimU < d− d1 we have

dU >
(m− 1)d+ 1

d
dimU.

Since dimU < d− d1, we also have

dU >
(m− 1)(d− d1) + 1

(d− d1)
dimU

proving the claim in-between. Indeed, in this case we have⌈
(m− 1)d+ 1

d
dimU

⌉
=

⌈
(m− 1)(d− d1) + 1

(d− d1)
dimU

⌉
.

Thus we can proceed by induction on the number of sources in order to show that
all localization data are of type one.
Consider some data such that corresponding quiver has one source. Obviously, it

is a stable quiver of type 1.
Assume that the quiver has n + 1 sources. We may remove a proper boundary

quiver so that we again get a localization data, which is of the requested type by
induction hypothesis. But since the original quiver has no cycles, there exist at least
two proper boundary quivers. Thus the assertion follows by applying the induction
hypothesis to the respective subquivers after removing a proper boundary quiver.
The second statement, for instance, follows when considering the dimension formula
mentioned in Remark 2.2. �

Theorem 6.6. We have

χ(Ms
d,d+1(m)) =

m

(d+ 1)((m− 1)d+m)

(
(m− 1)2d+ (m− 1)m

d

)
.

Moreover, we also have

f(1) = lim
d→∞

ln(χ(Ms
d,d+1(m))

d
= (m− 1)2 ln(m− 1)2 − (m2 − 2m) ln(m2 − 2m)

for f defined in Section 6.1.

Proof. As shown previously, we may assume that all subdata of a localization data
with one source have vertex set

I ∪ J = {i, j1, . . . , jm}
and arrow set

R = {(i, j1), . . . , (i, jm)}
with d̃i = d̃jk = 1. In particular, the moduli spaces of the considered localization
data are zero-dimensional yielding that the Euler characteristic is one.
Under consideration of Remark 4.7 there exists exactly one possibility to choose

a stable colouring c taking into account the symmetries of the symmetric group
Sm. Again by Remark 4.7 and by Corollary 4.18 we can glue k subquivers on each
vertex jl, 1 ≤ l ≤ m, with 0 ≤ k ≤ (m− 1) in order to get a localization data. But
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we have to take into account the symmetries of Sk. Assuming that there is only
one starting knot let y(x) the generating function of such quivers and consider

φ(x) = 1 +
(m− 1)

|S1|
xm−1 +

(m− 1)(m− 2)

|S2|
x2(m−1) . . .

+

∏m−1
i=1 (m− i)

|Sm−1|
x(m−1)(m−1)

=

m−1∑
i=0

xi(m−1)

(
m− 1

i

)
= (1 + xm−1)m−1.

By Section 5.1 we have that the generating function satisfies the functional equation
y(x) = x(φ(y(x))). Now the generating function for all localization data is obtained
as follows: We start with the unique localization data of dimension type (1,m)
having m knots. The resulting generating function is y(x)m and by applying the
Lagrange inversion theorem and Corollary 5.5, respectively, we obtain that

[xn]y(x)m =
m

n
[un−m]φ(u)n =

m

n

(
n(m− 1)

n−m
m−1

)
.

If we assign the weight 0 to the sink of the starting quiver, every such quiver
that has (m − 1)d + 1 knots corresponds to a localization data of dimension type
(d, (m − 1)d + 1). The other way around, we may assume that every localization
data has some sink i with weight 0 what gives us d choices. This means for every
localization data we exactly get d trees. Hence we get

χ(Ms
d,(m−1)d+1(m)) =

m

d((m− 1)d+ 1)

(
(m− 1)2d+ (m− 1)

d− 1

)

=
m

d((m− 1)(d− 1) +m)

(
(m− 1)2(d− 1) + (m− 1)m

d− 1

)
.

Since χ(Ms
d−1,d(m)) = χ(Ms

d,(m−1)d+1(m)), the assertion is proved.

The second statement is obtained when applying the same arguments as used in
the proof of Corollary 5.4; then we get

f(1) = lim
d→∞

1

d

(
(m− 1)2d+ (m− 1)

d− 1

)d−1 (
(m− 1)2d+ (m− 1)

(m2 − 2m)d+m

)(m2−2m)d+m

= (m− 1)2 ln(m− 1)2 − (m2 − 2m) ln(m2 − 2m). �

6.3. A lower bound. The aim of this section is to determine a lower bound for
the Euler characteristic of Kronecker moduli spaces for coprime dimension vectors
which also proves that the Euler characteristic grows at least exponentially as con-
jectured by Douglas. Therefore, we consider such coprime dimension vectors (d, e)
of K(m) satisfying e > (m − 1)d. The remaining cases are obtained by the iso-
morphisms of the moduli spaces stated in Proposition 4.3. In the considered cases
the moduli spaces are zero-dimensional. Moreover, we will see that the recursive
construction of the localization data simplifies.
As a consequence of Theorem 3.15 we again assume that all torus fixed points

are representations of the universal covering quiver.
Initially, consider the dimension vectors (1, n− 1) and (1, n) with 2 ≤ n ≤ m− 1

which correspond to the dimension vectors (n−1,m(n−1)−1) and (n,mn−1) by
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the mentioned isomorphisms. For the dimension type (1, n − 1) there exists only
one localization data

j1

i1



						 ��

��












j2
...

jn−1

where d̃jk = d̃i1 = 1 for all 1 ≤ k ≤ n − 1. Analogously, we obtain the unique
localization data of dimension type (1, n).
Consider the following localization data of dimension type (n− 1,m(n− 1)− 1),

where d̃j = n− 2 and d̃jk,l
= d̃ik = 1 otherwise:

j

i1



������� ��

���
��

��
��

� j1,1 . . . in−1

��














����������������� �� jn−1,1

...
...

j1,m−1 jn−1,m−1

Again we analogously obtain the data of type (n,mn− 1).

Remark 6.7.

(1) For the dimension vector (n,mn−1), 1 ≤ n ≤ m, this is also the only local-
ization data because obviously each one-dimensional subspace is forced to
have an m-dimensional image. Moreover, because of the stability condition,
we have for each subspace U of dimension d′ < n which corresponds to a
stable representation of this data that

dU >
nm− 1

n
d′.

Therefore, we have dU ≥ md′ for all d′ < n. But, for any other data of this
dimension type this condition is not satisfied.

(2) We also get this localization data by applying the reflection functor; see
Theorem 2.4.

By use of the procedure introduced in Section 4.3 we can glue these quivers. Fix
m ∈ N and define Ql by

j1

i1



������� ��

���
��

��
��

� j1,1 . . . il

���
��

��
��

�

���������������� �� jl,1
...

...

j1,m−1 jl,m−1

Let I ∪ J be the set of vertices and define J ′
1 := J\{j1}. Let d̃j1 = l − 1 and let

d̃q = 1 for the remaining vertices. Define the glueing quiver Ql1,l2 := Qj,j2(Q
l1 , Ql2)

with j ∈ J ′
1. For the resulting data define d̃j2 = l2 whereby the dimensions of the
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other vertices remain constant. For instance, we obtain:

j1

i11



							 ��

���
��

��
��

��
j11,1 . . . i1l1

���
��

��
��

�

���������������� �� j1l1,1
...

...

j2 j1l1,m−1

i21

��������� ��

���
��

��
��

� j21,1 . . . i2l2

���
��

��
��

�

���������������� �� j2l2,1
...

...

j21,m−1 j2l2,m−1

We again consider the construction of Corollary 4.19. Let (d, e) = (n1(n − 1) +
1, n1(m(n− 1)− 1) +m) = (1,m) + n1(n− 1,m(n− 1)− 1) with n1 ∈ N. Then we
obtain the cases

(4)
m(n− 1)− 1

n− 1
d ≤ e ≤ mn− 1

n
d.

Note that for n = 2 we obtain (d, e) = (ds, es) + n1(d
′, e′) with (ds, es) = (1,m)

and (d′, e′) = (1,m − 1) and thus ds ≥ d′, es > e′. But, nevertheless, the glueing
conditions are satisfied because we have (1,m) = (0, 1)+(1,m−1) and (0, 1) is the
starting vector for (1,m− 1) as constructed in Lemma 4.14.
Now the quivers are glued as explained in Section 4.3. Fixing n1 ≥ 1 we denote

the resulting data by Qn
n1
. They obviously result if one successively glues n1-times

some data of dimension type (n−1,m(n−1)−1) to some data of type (1,m). Call
the glueing vertex corresponding to the first glueing initial glueing vertex. If j1 is
the initial glueing vertex, denote by Q̂n

n1
the set of quivers obtained by increasing

the dimension of j1 by one.
We now recursively define

Qn
nk+1,...,n1

= {Qj,j1(S, T ) | S ∈ Qn
nk+1−1,nk,...,n1

, T ∈ Q̂n
nk,...,n1

},

where j ∈ S0 such that Rj = 1 and where j1 is the initial glueing vertex of T ∈
Q̂n

nk,...,n1
. Furthermore, let Qn

0,nk,...,n1
= Qn

nk−1,...,n1
. By Corollary 4.19 we know

that every data S ∈ Qn
nk+1−1,...,n1

is a localization data and that each of them

satisfies the properties of the starting quiver for each T ∈ Q̂n
nk,...,n1

. Thus it follows
that every data which is obtained in such a way is a localization data.

Remark 6.8.

(1) Let (d, e) be given such that (4) holds. Then we can determine the corre-
sponding tuple (nk, . . . , n1) as described in Remark 4.15. Note that there
is an easier method to get this tuple by simply solving linear equations; see
[29].

Next we determine the cardinality of these sets in order to obtain a lower bound
for the Euler characteristic. The moduli spaces of the considered localization data
are zero-dimensional, i.e., a point. Furthermore, by Proposition 4.3 we can assume
that n ≥ m+1

2 . This is another advantage simplifying combinatorics. Indeed,
because of this assumption it is just possible to glue one quiver on each vertex of
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dimension one. Otherwise, there is no suitable colouring to obtain a localization
data from the produced quiver because it is no subquiver of the regular m-tree.
Initially, consider the set Q1 consisting of the localization data of dimension type

(n,mn − 1). After modifying a sink, considering the properties of Remark 4.7
and taking into account all symmetries and the fact that all quivers are glued as
mentioned above, there exist (

m− 1

n

)
possibilities

to choose a colouring c : R �→ {1, . . . ,m} where R is the set of arrows. Note that
this is the case n1 = 1.
Each of the quivers has n(m − 1) knots, i.e., vertices j ∈ J such that Rj = 1.

Denote by ann1
the cardinality of Q̂n

n1
in consideration of the different colourings.

Furthermore, let Kn
n1

be the number of knots of these quivers which coincide for
all quivers in this set.
Using the notation of Section 5 we have

ann1
=

(
m− 1

n

)
A(m−1

n−1),(n−1)(m−1),n(m−1),n(m−1)+(n1−1)(n−1)(m−1).

Moreover, we have

Kn
n1

= n(m− 1) + (n1 − 1)(n− 1)(m− 1)− (n1 − 1).

Considering the construction we get the following lemma by an easy observation.

Lemma 6.9. Let (nk+1, . . . , n1) ∈ Nk+1.

(1) The number of knots of the quivers in Q̂n
nk+1,...,n1

is given by

Kn
nk+1,...,n1

= Kn
nk−1,...,n1

+ nk+1K
n
nk,...,n1

− nk+1.

(2) Moreover, we have

annk+1,...,n1
= annk−1,...,n1

· Aan
nk,...,n1

,Kn
nk,...,n1

,Kn
nk−1,...,n1

,Kn
nk−1,...,n1

+nk+1Kn
nk,...,n1

.

Fixing a dimension vector, it suffices to determine the corresponding tuple of
natural numbers in order to get a lower bound for the Euler characteristic. Given
a tuple as above define Km

d,e := Kn
nk+1,...,n1

and amd,e := annk+1,...,n1
and consider the

function

φd,e,m(x) = 1 + amd,ex
Km

d,e .

Then the generating function yd,e,m(x) satisfies the functional equation yd,e,m(x) =
xφ(yd,e,m(x)). Since we are interested in some asymptotic value, which is inde-
pendent of the number of starting knots, we can assume that there exists just one
starting knot. Even the starting quiver only gives us a constant, which we may
ignore.
For every coloured tree constructed like this we obtain some localization data by

assigning the weight 0 to the source of the starting quiver. Thus it may happen
that different trees define the same localization data. But, if (d, e) is the considered
dimension vector, the number of possible starting quivers is bounded by d.

Theorem 6.10. Let e > (m− 1)d. We have

lim
n→∞

ln(χ(Ms
ds+nd,es+nd(m)))

ds + nd
≥ 1

d
(ln amd,e +Km

d,e lnK
m
d,e − (Km

d,e − 1) ln(Km
d,e − 1)).
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Proof. Using the arguments of this section, we have

χ(Ms
ds+nd,es+nd(m)) ≥ [xnKm

d,e+1]yd,e,m(x)

ds + nd
.

Thus by Corollary 5.4 we get

lim
n→∞

ln(χ(Ms
ds+nd,es+nd(m)))

ds + nd
≥ lim

n→∞

1

ds + nd
ln

(
[xnKm

d,e+1]yd,e,m(x)

ds + nd

)

=
1

d
(ln amd,e +Km

d,e lnK
m
d,e − (Km

d,e − 1) ln(Km
d,e − 1))

=: Lm
d,e

which proves the theorem. �

By use of the isomorphisms of the moduli spaces we also get a lower bound for
arbitrary d and e.

Example 6.11. This example applies the introduced methods to the case (d, e) =
(5, 8) and m = 3. For the starting dimension vector we get (ds, es) = (3, 5), for the
localization data of this type see Example 4.20.
The reflected dimension vector is

(8, 19) = (2, 5) + 2(3, 7) = (2, 5) + 2((1, 3) + 2(1, 2))

and we get n = n1 = n2 = 2. We have K3
2,5 = 4, K3

3,7 = 5, a32,5 = 1 and a33,7 = 8.

From this we obtain K3
8,19 = K3

5,8 = 12 and a38,19 = a35,8 = 1664. Thus in conclusion
we have

L3
5,8 =

1

5
ln

(
1664 · 12

12

1111

)
.

In order to get the discussed data of dimension (8, 19) we glue quivers of dimension
(3, 7) twice to a quiver of dimension (2, 5):

1 1

1

����������� ��

���
��

� 1 1 1

�������������

����
��

1

����������� ��

���
��

� 1 1 1

�������������

����
��

1 1 1 1

1 1��

������

����
��

1

Note that the vertices which are glued are one of the sinks of the data on the left
hand side having one neighbour and one of the sinks of the data on the right hand
side having two neighbours. Note that one of those two vertices of the quiver on
the right hand side is the initial glueing vertex which was defined for simplifying
the calculation of the lower bound. Moreover, the glueing vertex of the resulting
data has dimension two.
The resulting data can be glued successively to localization data of dimension

(5, 12) in order obtain localization data of dimension (5, 12) + k(8, 19) for every
k ∈ N.
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6.4. The case of the dimension vector (3,4). In this section we consider the
case d = 3 and e = 4 with m ≥ 3 in detail. Consider the stable bipartite quiver
given by

1

i1����
��
� i2

���
��
��

1

i3����
��
� i4

���
��
��

1

i5����
��
� i6

���
��
��

1 1 1 1

Therefore, by colouring the arrows in the colours {1, . . . ,m} satisfying the condi-
tions of Remark 4.7 we obtain a localization data. In this case, the conditions are
c(il) �= c(il+1) for 1 ≤ l ≤ 5. Each colouring is unique up to the symmetry of the
symmetric group S2.
The colourings (i, j, k, i, j, k) and (i, j, k, i, j, i), such that i, j, k ∈ {1, . . . ,m} are

pairwise different, give rise to two cases, which we now consider in greater detail.
In the first case we obtain

2

1
i �������
j
�����

��

1 1

j�����
��
�

k

��������

1
k �������
i
�����

��

1

There is no new symmetry arising from this colouring. Furthermore, the moduli
space is a point for this dimension vector. Note that the cycle breaks down after a
second localization so that we get back the former quiver.
The second special case is

1

i����
��
� j

���
��
��

1

k����
��
�

i

���
��
��

1
k

��� � � � � � � � � �

j����
��
�

i

���
��
��

1 1 1 1

The colouring induces an extra arrow and therefore another symmetry. In partic-
ular, the localization data is already determined by the choice of the colour of the
free arrow, i.e., the one that does not appear in the cycle. But because of the extra
arrow the moduli space is P1 so that the Euler characteristic is two.
Note that χ(P1) = 2 follows also from a second localization. Indeed, by con-

sidering the quiver without its colouring the fixed points are those representations
satisfying Xi5 = 0 or Xi7 = 0 where i7 is the extra arrow. Thus we again get back
the original localization data by a second localization. In conclusion we obtain that

there are m(m−1)5

|S2| possibilities to choose a colouring.

Further localization data are given by colourings of the following stable bipartite
quiver:

1

1

i1 �������
i2

�����
��

1 1
i3�� i4 �� 1

1

i5 �������
i6

�����
��

1

with the conditions c(i1) �= c(i2), c(i3) �= c(i4), c(i5) �= c(i6) and c(i2), c(i3), c(i5)

pairwise different. In consideration of the symmetries of S3 we obtain
m(m−1)4(m−2)

|S3|



420 THORSTEN WEIST

possibilities. We also get

1
i1

����
��
��

i2 ���
��

��
� 2

i3

����
��
��

i4		
i5

���
��

��
�

1 1 1 1

with the conditions c(i3), c(i4), c(i5) pairwise different and c(i1) �= c(i2) �= c(i3).

Thus we get m(m−1)3(m−2)
|S2| possibilities.

If m ≥ 4, we finally get the localization data coming from

3
i1

�����
���

���
���

i2����
��
��

i3 ���
��

��
�

i4

����
���

���
���

�

1 1 1 1

with the condition that the colours of all arrows are pairwise different, hence
(
m
4

)
possibilities.
Since all fixed point components may be understood as points, for the Euler

characteristic we have

χ(Ms
3,4(m)) =

(
m

4

)
+

m(m− 1)3(m− 2)

2
+

m(m− 1)4(m− 2)

6
+

m(m− 1)5

2
.

One easily verifies that this is the same result one obtains by the algorithm from
[23], i.e.,

χ(Ms
3,4(m)) =

1

24
m(m− 1)(4m2 − 7m+ 2)(4m2 − 7m+ 1).

6.5. The case of the dimension vector (d, d). The next application is to con-
sider the Euler characteristic of Kronecker moduli spaces corresponding to the di-
mension vectors (d, d), d ∈ N. We will see that the Euler characteristic vanishes if
d ≥ 2. In this section we consider the Kronecker quiver K(m) with m ≥ 1.

Lemma 6.12. We have that every stable torus fixed point

X = ((V,W ), (X1, . . . , Xm)) ∈ Ms
d,(m−1)d(m)

has a cycle. Thus there exists a subspace U⊂W and maps f1, . . . , f2k∈{X1, . . . , Xm}
with fi �= fi+1 for 1 ≤ i ≤ 2l − 1 such that

f1 ◦ f−1
2 . . . ◦ f2k−1 ◦ f−1

2k (U) = U.

Remark 6.13.

(1) From the proof we even get the stronger result that the quiver of some
localization data with this dimension is forced to be cyclic. In particular,
there exists no subquiver having just one common vertex with the remainder
of the quiver.
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Proof. Let (Q, d̂) be a localization data and let X be a stable representation of this
data. Consider a subdata of the form

Xj1

Xj2

Xi

X1



�������
X2

�������

Xm
����

���
...

Xjm

Because of the stability we have

dXi
>

(m− 1)d

d
dimXi = (m− 1) dimXi.

We also have dimXjk ≥ dimXi for all k. Indeed, if we had dimXjk = l such that
l < dimXi, we could consider the (dimXi − l)-subspace ker(Xk). It would have a
(dimXi − l)(m − 1)-dimensional image, which obviously contradicts the stability
condition.
Therefore, the subdata is of dimension type (dimXi, e

′) with e′ ≥ m dimXi.
Moreover, the stability implies that each k-dimensional subspace corresponding to
X has at least an ((m− 1)k + 1)-dimensional image.
Assume that the localization data would not have a cycle. Thus, in particular, it

would have some proper boundary quiver which apparently would be of dimension
type (d1,md1). If we denote by b the sum of the dimensions corresponding to the
sinks of the remainder of the data, we get

b ≥ (m− 1)(d− d1) + 1.

Define h := (m− 1)(d− d1)+ b− (m− 1)d which is the minimal possible dimension
of the intersection of the two corresponding subrepresentations (at the common
vertex) of a stable representation of the considered data. It follows that

(m− 1)d = b+ d1m− h ≥ (m− 1)(d− d1) + 1+ d1m− h = (m− 1)d+ d1 − h+ 1.

It follows h ≥ d1 + 1 and thus d1 = 0. �

Corollary 6.14. The Euler characteristic of the Kronecker moduli spaces with
dimension vector (d, d) vanishes if d ≥ 2.

Proof. By the previous lemma we know that each representation of a localization
data of dimension type (d, (m − 1)d) has a cycle. But because of Theorem 3.15
we can assume that fixed points of each Kronecker moduli space do not have cy-
cles. Hence there are no stable representations of the universal covering quiver of
dimension type (d, (m− 1)d).
Because of the isomorphism between Ms

d,(m−1)d(m) and Ms
d,d(m), in conclusion

we get

χ(Ms
d,(m−1)d(m)) = χ(Ms

d,d(m)) = 0. �

Note that the vanishing of the Euler characteristic does not imply that the moduli
spaces are empty. There can even exist torus fixed point components after more
than one localization step. But after suitably many localization steps there do not
exist any torus fixed points.
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6.6. Finiteness of the fixed point set. In this section we investigate and answer
a question posed in [8]. Namely, for which coprime dimension vectors is the set of
fixed points finite and for which dimension vectors exists at least one n-dimensional
fixed point component with n ≥ 1.

Theorem 6.15. Let d ≥ 3, e ≥ 4 and m ≥ 3 . Then there exist infinitely many
torus fixed points.

Proof. Since the torus action is compatible with the isomorphisms, we may assume

d ≤ e ≤ m

2
d.

Furthermore, let m′ ≤ m
2 ∈ N such that (m′−1)d < e < m′d. By [29] there exists a

stable bipartite quiver smd,e of type one which consists of subdata of dimension type

(1,m′) and (1,m′ +1) respectively. Since d ≥ 3, there exists a subdata of the form

i1

����
��
��
��

���
��

��
��

��
� i2

����
��
��
��
��

���
��

��
��

��
� i3

����
��
��
��
��

���
��

��
��

�

j1,1 · · · j1,s1 = j2,1 · · · j2,s2 = j3,1 · · · j3,s3

with s1, s2, s3 ∈ {m′,m′ + 1}. Fix an arbitrary colouring c of the arrows which
satisfies

c(i1, j1,1)=c(i2, j2,s2)=c(i3, j3,s3)=1, c(i1, j1,s1)=c(i3, j3,1)=2 and c(i2, j2,1)=3

and c(i3, j3,k) �= 3 for every k = 1, . . . , s3. This is possible because s3 < m.
This colouring induces an extra arrow (i3, j1,1) such that c(i3, j1,1) = 3. Hence
the associated moduli space is at least one-dimensional implying that there are
infinitely many torus fixed points. �

6.7. Open questions. A fundamental question is how to determine all localization
data and if it is perhaps enough to know all localization data of type one. Also, one
could ask if it is possible to put all localization data down to the case of localization
data of type one. For instance, when considering the localization data

1

i����
��
� j

���
��
��

1

k����
��
�

l

���
��
��

1 1 1

we always assumed c(j) �= c(k). But the localization data

1

2

i
  �������

l

!!  
   

  
j,k �� 1

1

may, in a sense, be understood to correspond to “the missing case” c(j) = c(k).
But this raises another problem: we get additional conditions for c(i) and c(l)
and moreover different symmetries. For instance, in the first case we have the
symmetries of S2. But in the second one we have the symmetries of S3.
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Another question is how to count or get all localization data (at least all of type
one). Unfortunately, by use of the glueing method we do not get all localization
data of type one. If it were possible to get all data of this type and if it could
be shown that the other data come in a way from quivers of type one, one could
probably prove the continuity. This would suffice to prove the existence of the
conjectured function.
Finally, we give an example for a quiver of type one, which cannot be constructed

by use of the glueing method. Let (d, e) = (7, 10) = (2, 3)+ (5, 7) = (2, 3)+ (2, 3)+
(3, 4). Then we have (ds, es) = (2, 3). Consider

•

""!!
!!
!!

##"
""
""
" •

""!!
!!
!!

##"
""
""
"

s2,3 =

• • •

and

•

""##
##
##
#

##$
$$
$$
$$

•

""##
##
##
#

		 ##$
$$
$$
$$

ŝ2,3 =

• • • •

where the dots represent vertices of dimension one. We get the data of dimension
type (3, 4) in the same way. But we do not get the following localization data of
dimension type (9, 13) = (2, 3) + (7, 10) by sticking together the ones above:

•

•
$$���

���
��

• • •
		

�� •

•
$$��� ��

���
��
• •��

%%

•

• •��

$$���

���
��

•
$$��� ��

���
��
• •

• •��

		
•
%%

�� •

•
$$���

���
��

•

•

Acknowledgements

The author would like to thank Markus Reineke for his support and for very
helpful discussions.



424 THORSTEN WEIST

References

[1] I. N. Bernstein, I. M. Gel′fand, V. A. Ponomarev: Coxeter functors and Gabriel’s theorem.
Russian Math. Surveys 28, 17-32 (1973). MR393065 (52#13876)

[2] A. Bia�lynicki-Birula, On fixed point schemes of actions of multiplicative and additive groups,
Topology 12 (1973), 99–103. MR0313261 (47 #1816)

[3] K. Bongartz and P. Gabriel, Covering spaces in representation-theory, Invent. Math. 65
(1981/82), no. 3, 331–378, DOI 10.1007/BF01396624. MR643558 (84i:16030)

[4] Neil Chriss and Victor Ginzburg, Representation theory and complex geometry, Birkhäuser
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