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MATHEMATICAL TOOLS FOR KINETIC EQUATIONS

BENOÎT PERTHAME

Abstract. Since the nineteenth century, when Boltzmann formalized the con-
cepts of kinetic equations, their range of application has been considerably
extended. First introduced as a means to unify various perspectives on fluid
mechanics, they are now used in plasma physics, semiconductor technology,
astrophysics, biology.... They all are characterized by a density function that
satisfies a Partial Differential Equation in the phase space.

This paper presents some of the simplest tools that have been devised to
study more elaborate (coupled and nonlinear) problems. These tools are ba-
sic estimates for the linear first order kinetic-transport equation. Dispersive
effects allow us to gain time decay, or space-time Lp integrability, thanks to
Strichartz-type inequalities. Moment lemmas gain better velocity integrabil-
ity, and macroscopic controls transform them into space Lp integrability for
velocity integrals.

These tools have been used to study several nonlinear problems. Among
them we mention for example the Vlasov equations for mean field limits, the
Boltzmann equation for collisional dilute flows, and the scattering equation
with applications to cell motion (chemotaxis).

One of the early successes of kinetic theory has been to recover macroscopic
equations from microscopic descriptions and thus to be able theoretically to
compute transport coefficients. We also present several examples of the hydro-
dynamic limits, the diffusion limits and especially the recent derivation of the
Navier-Stokes system from the Boltzmann equation, and the theory of strong
field limits.
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1. Introduction

Kinetic physics appeared in the second half of the nineteenth century with
Maxwell and Boltzmann, later with Enskog, Vlasov, and Grad. Searching for a
form of matter which could explain Saturn’s rings, Maxwell imagined that they
were made of rocks colliding and gravitating around the planet. The density of
matter is then parametrized by the space position x and the velocity ξ of the rocks,
the so-called phase space. A few years later, Boltzmann completely formalized the
process, giving a general representation of a ‘dilute gas’ as particles undergoing col-
lisions and with free motion between collisions, and he wrote the famous equation
which is now named after him. He also discovered the asymptotic process that
allows one to relate his model to classical fluid dynamics. Vlasov wrote another
kinetic equation for plasmas of charged particles. There, each particle undergoes a
collective Coulombic attraction from others. Nowadays kinetic equations appear in
a variety of sciences and applications such as astrophysics, aerospace engineering,
nuclear engineering, particle-fluid interactions, semi-conductor technology, social
sciences or in biology like chemotaxis and immunology. The common feature of
these models is that the underlying Partial Differential Equation is posed in the
phase space (x, ξ) ∈ Rd+d (or a subset of it). The space dimension d is 3 for
many applications, but dimensions 2 and 1 are also relevant sometimes; for many
mathematical results it is possible to consider every dimension d ∈ N∗.

Very early, mathematicians tried to justify rigorously the validity of the Boltz-
mann equation and of the fluid dynamics limit. Hilbert gave his name to the
so-called Hilbert expansion which aimed to recover compressible flows from dilute
gases. Chapman and Enskog proposed an alternative method to take into account
viscous effects. Grad also tried to derive the Boltzmann equation from a system of
particles like hard spheres when the cross-section (the surface of particles that one
can see in a unit cube) remains finite in a scaling process. Several pieces of these
programs have now been fulfilled, and the last twenty years saw many questions
answered. But more interesting for mathematical science itself is that general meth-
ods and approaches now exist which allow us to address more and more challenging
problems.

Although most of the problems of interest are nonlinear, the common factor
behind models of kinetic physics comes from the (linear) transport of particles. In
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other words, they are based on the kinetic-transport equation

∂

∂t
f(t, x, ξ) + ξ · ∇xf(t, x, ξ) = 0, t ∈ R, x ∈ Rd, ξ ∈ Rd,

f(t = 0, x, ξ) = f0(x, ξ),

or variants of it. The apparent simplicity of this equation and of its explicit repre-
sentation solution is misleading. When considering so-called macroscopic quantities∫

Rd
ψ(ξ) f(t, x, ξ) dξ,

one discovers that the problem undergoes really complex dynamics. The most
noticeable general result is the regularization by averaging on velocities which states
that for f0 ∈ Lp with bounded support in ξ, macroscopic quantities belong to
Sobolev or Besov spaces with positive numbers of derivatives; see §3. But each
variable of the problem, t, x, ξ, and the different roles they play in the dynamics
make various effects arise, especially coming from dispersion for instance.

These regularizing effects on macroscopic quantities by velocity averaging are
useful for studying more elaborate models than simple kinetic-transport. Indeed,
in most of the nonlinearities arising from applications, the nonlinear term is built on
an integral in ξ. It is therefore natural that this tool plays a central role for proving
existence of weak solutions, an area where recent progress is substantial with, for
instance, the global solution of the Boltzmann equation, one the most noticeable
recent achievements of the domain. The justification of asymptotic limits has also
benefited from this compactness method, and a remarkable recent result is the
complete justification of the incompressible hydrodynamic limit of the Boltzmann
equation; see §5.2. But, among the subjects that have emerged recently, one can
also mention the recent development of strong field limits in Vlasov equations, a
new way of deriving macroscopic equations from kinetic equations, the theory of
smooth solutions, or applications to biology.

Indeed, a particular feature that makes kinetic equations so fascinating arises
from the numerous fields of applications; the variety of nonlinear problems is ever-
growing, and new methods have to be found for each of them. But the number of
questions and methods is extremely large, and it is nearly impossible to treat all
of them here. For instance we do not speak here of numerical methods and their
convergence theory, nor of discrete kinetic equations, nor of semigroup and spectral
approaches for linear models, nor of probabilistic approaches, nor of relations with
Schrödinger type equations (Wigner transform), nor of the homogeneous equations,
nor of boundary value problems; and we address an extremely limited range of
applications.

We first present general methods for linear kinetic equations in section 2; this cov-
ers time decay and dispersion effects as Strichartz inequalities, moment lemmas—all
of these improve the obvious integrability derived from conservations laws. Always
in the context of the linear equation it is also possible to gain regularity thanks
to averaging lemmas that are treated in a separate section. We give several state-
ments beginning with the simplest regularizing effect in H1/2. These tools have
been used to treat nonlinear models in the last few years. We present them in
section 4, which includes Vlasov equations of plasma physics, scattering models
(including microscopic chemotaxis modeling) and the Boltzmann equation, but
no physics background is assumed from the reader. The last section deals with
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asymptotic problems and the derivation of macroscopic models, especially through
the diffusion, hyperbolic and high field limits which are also recent discoveries in
the topic.

We have given proofs of the most elementary results presented in the first two
sections, which can be skipped in order to have a faster overview, but they illus-
trate for nonexperts the complex structures of the seemingly simple linear kinetic
equation.

2. Kinetic-transport equation (gain of integrability)

The simplest kinetic equation is the pure kinetic-transport equation. Although
it has little practical interest, we give an exhaustive theory in order to illustrate
several simple ideas that have been (or might be) used in nonlinear equations.
The kinetic-transport equation describes the evolution of the density f(t, x, ξ) of
particles which at time t and position x ∈ Rd moves with velocity ξ. The associated
Eulerian equation is

(1)
∂
∂tf(t, x, ξ) + ξ · ∇xf(t, x, ξ) = 0,

f(t = 0, x, ξ) = f0(x, ξ).

Its solution is given by

(2) f(t, x, ξ) = f0(x− ξt, ξ).
This already shows a first class of a priori bounds in (x, ξ) variables. We have for
all t ∈ R,

(3) ‖f(t)‖Lp(R2d) = ‖f0‖Lp(R2d), 1 ≤ p ≤ ∞.
Although this equation seems very simple because of its representation formula,

there are several properties which cannot be seen directly in (2). Mostly these prop-
erties arise in the so-called macroscopic quantities, i.e. ξ integrals, and especially
moments like the macroscopic density % defined by

(4) %(t, x) =
∫
Rd
f(t, x, ξ) dξ;

or like the momentum q(t, x) ∈ Rd and the macroscopic velocity u(t, x) ∈ Rd,
defined by

(5) q(t, x) = % u(t, x) =
∫
Rd
ξ f(t, x, ξ) dξ;

or like the total energy E, internal energy e(t, x) defined by

(6) E(t, x) =
1
2
% |u(t, x)|2 + % e(t, x) =

∫
Rd

|ξ|2
2
f(t, x, ξ) dξ;

or in other words, using rather temperature T ,

(7) % e(t, x) = d % T =
∫
Rd

|ξ − u(t, x)|2
2

f(t, x, ξ) dξ.

Here and for simplicity, we have forgotten some physical constants.
In this section we give several elementary properties of solutions that express

dispersion effects (by analogy with similar estimates for Schrödinger equations)
and time decay (macroscopic quantities vanish in long time), gain of integrability
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and higher velocity moments. We postpone to the next section the presentation of
the averaging lemma.

Before we begin, we notice that formula (2) obviously gives the unique solution
when f0 ∈ C1(R2d), but formula (2) also holds when f0 ∈ Lp(R2d), 1 ≤ p < ∞,
for the unique weak solution (in distributions) f ∈ C(Rt;Lp(R2d). We have stated
our results within this general framework, but they can be considered for smooth
solutions to begin with. We also refer to Glassey [61] and to Dautray and Lions
[36, Ch. 11], for a general introduction based on a different point of view and for
the presentation of many nonlinear problems.

2.1. A dispersion lemma. The first tool we present, a time decay estimate related
to dispersion in the full space, has been used widely after its introduction by Bardos
and Degond [8]. Especially, it was used in nonlinear problems for proving existence
of small, global in time solutions that decay by dispersion in the full space. For
studying small classical solutions it is a basic tool; see [61].

Lemma 2.1. The macroscopic density % defined by (1), (4) satisfies the inequality

|%(t, x)| ≤ 1
td
‖f0‖L1(Rdx;L∞(Rdξ)).

Proof of Lemma 2.1. We have, using the above representation formula

|%(t, x)| ≤
∫
Rd
|f0(x− ξt, ξ)| dξ

≤
∫
Rd

sup
w∈Rd

|f0(x− ξt, w)| dξ

=
1
td

∫
Rd

sup
w∈Rd

|f0(x− ξt, w)| d(ξt)

=
1
td

∫
Rd

sup
w∈Rd

|f0(y, w)| dy.

And the inequality is proved. �

2.2. Strichartz inequality. Strichartz inequality, derived in Castella and Per-
thame [31] (see also the improvement in Keele and Tao [85]) for kinetic equations,
is a more elaborate way to express dispersion in the full space. Its advantage is
to use initial data in classical Lebesgue spaces. Although it has not yet been used
for the nonlinear model, in the context of the nonlinear Schrödinger equation, the
same method has proven to be very fruitful.

Theorem 2.2. The macroscopic density % defined by (4) satisfies the inequality

‖%‖Lq(Rt;Lp(Rdx)) ≤ C(d)‖f0‖La(R2d),

for any real numbers a, p and q such that

1 ≤ p < d

d− 1
,

2
q

= d(1− 1
p

), 1 ≤ a =
2p
p+ 1

<
2d

2d− 1
.

Remark 2.3. Of course the values a = 1, p = 1 and q = ∞ are obvious (see (3)),
and the other limiting values are the interesting ones. They are given by p = d

d−1 ,
i.e. p = d′ and thus q = 2, and also a = 2d

2d−1 .
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Remark 2.4. As we will see in §3, Sobolev regularity can also be proved on macro-
copic quantities and better integrability follows by Sobolev injections [54]. The
main difference is that this method only applies for bounded velocities and does
not provide information for large times.

Proof of Theorem 2.2. The proof essentially expresses that this inequality is the
dual of the previous dispersion inequality in Lemma 2.1. It is divided into three
steps.
First step, duality method. We argue by duality,∫

R

∫
Rd
%(t, x) Φ(t, x) dx dt =

∫
R

∫
R2d

f0(x− ξt, ξ) Φ(t, x) dx dξ dt

=
∫
R2d

f0(x, ξ)
(∫
R

Φ(t, x+ ξt) dt
)
dx dξ

≤ ‖f0‖La(R2d)‖
∫
R

Φ(t, x+ ξt) dt‖La′ (R2d),

and one has

a′ = 2p′ =
2p
p− 1

.

Second step, apply dispersion lemma. Therefore, we may next compute

‖
∫
R

Φ(t, x+ ξt) dt‖2
La′(R2d)

= ‖
∫
R

Φ(t, x+ ξt)2 dt‖Lp′(R2d)

= ‖
∫
R

∫
R

Φ(t, x+ ξt) Φ(t, x+ ξs) ds dt‖Lp′(R2d)

= ‖
∫
R

∫
R

Φ(t, x+ ξ(t− s)) Φ(t, x) ds dt‖Lp′(R2d)

≤
∫
R

∫
R
‖Φ(t, x+ ξ(t− s)) Φ(t, x)‖Lp′(R2d) ds dt

=
∫
R

∫
R

(∫
R2d

Φ(t, x+ ξ(t− s))p′ Φ(t, x)p
′
dx dξ

)1/p′

ds dt

=
∫
R

∫
R

(∫
R2d

Φ(t, y)p
′
Φ(t, x)p

′ dx dy

|t− s|d
)1/p′

ds dt

=
∫
R

∫
R
‖Φ(t)‖Lp′(Rd)‖Φ(s)‖Lp′(Rd)

dt ds

|t− s|d/p′

≤ ‖Φ(t)‖2
Lq′ (R;Lp′(Rd))

(see explanations in the remark below).
Third step, conclusion. Putting together the first two steps, we obtain∫

R

∫
Rd
%(t, x) Φ(t, x) dx dt ≤ ‖f0‖La(R2d)‖Φ(t)‖

Lq′
(
R;Lp′(Rd)

),
for all functions Φ(t, x). By duality we have proved Theorem 2.2. �

Remark 2.5. The above proof follows closely that given by Ginibre and Velo for
Schrödinger equation [60]. It uses the Riesz-Sobolev-Young inequality (in one space
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dimension) which states (see Evans [54]) that the operator φ → 1
|x|α ? φ maps Lr

into Lσ with

1
σ

=
1
r

+
α

d
− 1, 0 < α < d, 1 < σ <∞, 1 < r <∞.

2.3. Strichartz inequality (steady case). The same type of duality method as
for the evolution Strichartz inequalities allows us to prove Lp estimates for the
steady transport equation

(8) f + ξ · ∇xf = g(x, ξ).

This equation defines a unique distributional solution f ∈ Lp(R2d) for g ∈ Lp(R2d),
1 ≤ p ≤ ∞, thanks to the representation formula

(9) f(x, ξ) =
∫ ∞

0

g(x− ξs, ξ) e−s ds.

Theorem 2.6. The macroscopic density %(x) defined by (4) satisfies the inequality

‖%‖Lq(Rd) ≤ C(d, p) ‖g‖Lp(R2d), 1 ≤ p < 2d
2d− 1

, q =
p

2− p <
d

d− 1
.

Theorem 2.7. The macroscopic density on the sphere

%S(x) =
∫
|ξ|=1

f(x, ξ) dξ

satisfies the inequality

‖%S‖Lq(Rd) ≤ C(d, p) ‖g‖Lp(Rd×Sd−1), 1 ≤ p ≤ 2, q =
dp

d+ 1− p ≤
d− 1

2d
.

Remark 2.8. As we will see in section 3, some Lp regularity on %S can be derived
from Averaging Lemmas thanks to Sobolev injections. It turns out that the result
of Theorem 2.7 gives a better exponent q (except for p = 1 or 2 where they are
equivalent).

Proof of Theorem 2.6. First step (duality). We have, for any test function Φ(x),∫
Rd
%(x)Φ(x) dx =

∫
R2d

f(x, ξ) Φ(x) dx dξ

=
∫
R2d

∫ ∞
0

g(x− ξs, ξ) Φ(x) dx dξ e−s ds

=
∫
R2d

g(x, ξ)
(∫ ∞

0

Φ(x+ ξs) e−s ds
)
dx dξ

≤ ‖g‖Lp(R2d) ‖
∫ ∞

0

Φ(x+ ξs) e−s ds‖Lp′(R2d).
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Second step (estimate of the dual operator). Again, we denote p′ = 2r, for some
r ≥ 1, and we can compute, as long as we have d < r, i.e. d < p′/2, i.e. p < (2d)′,

‖
∫ ∞

0

Φ(x+ ξs) e−s ds‖2
Lp′(R2d)

= ‖
(∫ ∞

0

Φ(x+ ξs) e−s ds
)2

‖Lr(R2d)

= ‖
∫ ∞

0

∫ ∞
0

Φ(x+ ξs) e−sΦ(x+ ξt) e−t ds dt‖Lr(R2d)

≤
∫ ∞

0

∫ ∞
0

‖Φ(x+ ξs) Φ(x+ ξt)‖Lr(R2d) e
−s e−t ds dt

=
∫ ∞

0

∫ ∞
0

‖Φ(x) Φ(y)‖Lr(R2d)

e−(s+t)

|s− t|d/r ds dt

≤ C(d, r)‖Φ(x) Φ(y)‖Lr(R2d).

Third step (conclusion). Putting together the first two steps, we obtain∫
Rd
%(x) Φ(x) dx ≤ ‖g‖Lp(R2d) ‖Φ‖Lr(Rd).

This means that

‖%‖Lr′(Rd) ≤ ‖g‖Lp(R2d)

which concludes the proof with q = r′ = (p′/2)′. �

Proof of Theorem 2.7. We follow the same steps and use the same notations as in
the proof of Theorem 2.6 .
First step (duality). We have, for any test function Φ(x),∫

Rd
%(x) Φ(x) dx =

∫
Rd×Sd−1

f(x, ξ) Φ(x) dx dξ

=
∫
Rd×Sd−1

∫ ∞
0

g(x− ξs, ξ) Φ(x) dx dξ e−s ds

=
∫
Rd×Sd−1

g(x, ξ)
(∫ ∞

0

Φ(x+ ξs) e−s ds
)
dx dξ

≤ ‖g‖Lp(Rd×Sd−1) ‖
∫ ∞

0

Φ(x+ ξs) e−s ds‖Lp′(Rd×Sd−1).

Second step (estimate of the dual operator). Again, we denote that p′ = 2r, for
some r ≥ 1, and we can compute

‖
∫ ∞

0

Φ(x+ ξs) e−s ds‖2
Lp′(Rd×Sd−1)

= ‖
(∫ ∞

0

Φ(x+ ξs) e−s ds
)2

‖Lr(Rd×Sd−1)

= ‖
∫ ∞

0

∫ ∞
0

Φ(x+ ξs) e−sΦ(x+ ξt) e−t ds dt‖Lr(R2d)

≤
∫ ∞

0

∫ ∞
0

‖Φ(x+ ξs) Φ(x+ ξt)‖Lr(Rd×Sd−1) e
−(s+t) ds dt

≤ C(r) ‖Φ(x + ξs) Φ(x+ ξt) e−(s+t)/r‖Lr(Rd×Sd−1×(0,∞)2)

= C(r) ‖Φ(x) Φ(x + ξ(s− t)) e−(s+t)/r‖Lr(Rd×Sd−1×(0,∞)2).
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Here we argue differently:∫
Rd×Sd−1×(0,∞)2))

Φ(x)r Φ(x+ ξ(s− t))r e−(s+t) dx dξ ds dt

=
∫
Rd×Sd−1

∫
s>t>0

Φ(x)r Φ(x + ξ(s− t))r e−(s+t) dx dξ ds dt+
∫
Rd×Sd−1

∫
t>s>0

[. . .].

These two terms can be treated in the same way; they are equal to (changing
variables u = s− t)

=
∫
Rd×Sd−1

∫
u>0, t>0

Φ(x)r Φ(x+ ξu)r e−(u+2t) dx dξ du dt

=
∫
R2d

∫
t>0

Φ(x)r Φ(x+ y)r
e−|y|

|y|d−1
e−2t dx dy dt

= C

∫
R2d

Φ(x)r Φ(x+ y)r
e−|y|

|y|d−1
e−2t dx dy

≤ C‖Φr‖2Lγ(Rd)

with γ = 2d
d+1 , using the Riesz-Sobolev-Young inequality.

Third step (conclusion). Putting together the first two steps, we obtain∫
Rd
%(x) Φ(x) dx ≤ ‖g‖Lp(Rd×Sd−1) ‖Φ‖Lrγ(Rd).

This means that
‖%‖L(rγ)′(Rd) ≤ ‖g‖Lp(Rd×Sd−1)

which concludes the proof with q = (p′γ/2)′, i.e. 1
q = 1− 2(p−1)

γp = 1− (d+1)(p−1)
dp . �

2.4. Macroscopic controls and time decay. It is also possible to prove control
of macroscopic moments by a direct computation in terms of the Lp norms of the
microscopic density f and of the energy.

These controls, very elementary and robust, are widely used in the analysis of
kinetic equations. We give here a presentation which is based on the preliminary
question: which macroscopic quantities do we control in terms of the Lpξ norms of
f only? Then we apply these controls to additional t and x dependency and prove
a time decay result.

Proposition 2.9. For any measurable function f(ξ) defined on Rd, we have, using
notations (4), (5), (6) for macroscopic quantities:
(i) % T−d/2 ≤ C∞(d)‖f‖L∞(Rd);
(ii) for θ = 1/p, 1 ≤ p ≤ ∞, we have more generally

%θ (
%

T d/2
)1−θ ≤ Cp(d)‖f‖Lp(Rd).

We do not prove this result which follows from classical methods. We just
mention that the best constants are attained by specific ‘equilibrium densities’.
For instance, in (i) the equality holds for the family labeled by u ∈ Rd,

f∞(ξ) =
{
α %
Td/2 for |ξ − u|2 ≤ βT,
0, otherwise,
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where α and β are the only two parameters compatible with the macroscopic defi-
nitions of % and T in (4)–(7).

Lemma 2.10. For any measurable function f(x, ξ) defined on R2d, we have, for
all a(x) ∈ Rd,

‖%‖L(d+2)/d(Rd) ≤ C(d) ‖f‖2/(d+2)

L∞(Rd)

(∫
R2d
|ξ − a(x)|2 |f(x, ξ)| dx dξ

)d/(d+2)

,(10)

‖9‖L(d+2)/(d+1)(Rd) ≤ C(d) ‖f‖1/(d+2)

L∞(Rd)

(∫
R2d
|ξ|2 |f(x, ξ)| dx dξ

)(d+1)/(d+2)

.(11)

Proof of Lemma 2.10. We deduce the first inequality by some kind of diagonal in-
terpolation with moments and integrability in the same time. From point (i) of
Proposition 2.9 we may write

%(d+2)/d =
( %

T d/2

)2/d (
% T
)
≤ C(d) ‖f‖2/d

L∞(Rd)

(
% T
)
.

The result follows after integration in x, noticing that, for all a ∈ Rd, we have

% T ≤
∫
Rd
|ξ − a|2 |f(x, ξ)| dξ.

Next we prove inequality (11) following the same lines:

|9|2(d+2) ≤
(
%

∫
Rd
|ξ|2 |f(x, ξ)| dξ

)(d+2)

≤
( %

T d/2

)2 (∫
Rd
|ξ|2 |f(x, ξ)| dξ

)(d+2)(
% T
)d
.

Therefore

|9|(d+2)/(d+1) ≤ C(d)‖f‖1/(d+1)

L∞(Rd)

(∫
Rd
|ξ|2 |f(x, ξ)| dξ

)
.

The result follows again after integration in x. �

As a direct consequence of these inequalities, we mention the decay in Lp spaces
for the macroscopic density. We have for instance

Proposition 2.11. Weak solutions to the kinetic-transport equation (1) satisfy

(12) ‖%(t)‖L(d+2)/d(Rd) ≤
C(d)

t2d/(d+2)
‖f0‖2/(d+2)

L∞(Rd)

(∫
R2d
|x|2 |f0(x, ξ)| dx dξ

)d/(d+2)

.

This inequality follows from (10) with the choice a = x/t and noticing that,
thanks to the exact formula (2), we have∫

R2d
|x− ξt|2 |f(t, x, ξ)| dx dξ =

∫
R2d
|x|2 |f0(x, ξ)| dx dξ

and
‖f(t)‖L∞(Rd) = ‖f0‖L∞(Rd).

Of course, the propagation of Lp bounds (3) indicates that there is no chance for
decay of f itself.

This kind of method can be used in nonlinear contexts to estimate time decay
of macroscopic moments in the Boltzmann or repulsive Vlasov-Poisson system [78],
[101].
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2.5. Velocity moments lemma. We can illustrate another classical method for
PDEs on the kinetic transport equation, namely the method of multipliers. We
present here a sharp version of a result of Lions and Perthame [91], who improved
the following ideas from [104].

Proposition 2.12. Let f0 ∈ L1(Rd). Then we have
1
R

∫ ∞
−∞

∫
B(R)

∫
Rd
|ξ| |f(t, x, ξ)| dt dx dξ ≤ 2 ‖f0‖L1(R2d) ∀R > 0,

lim
R→∞

1
R

∫ ∞
−∞

∫
B(R)

∫
Rd
|ξ| |f(t, x, ξ)| dt dx dξ = 2 ‖f0‖L1(R2d).

Proof of Proposition 2.12. A possible proof of this lemma is an illustration of the
method of multipliers. We choose the multiplier ξ

|ξ| ·ΨR(x), where the vector valued
function ΨR is given by

ΨR(x) =
{ x

R for |x| ≤ R,
x
|x| for |x| ≥ R.

Consider first the case where f0 ∈ S(R2d). After integrating the transport equation
on [−T, T ]× R2d, we set x̂ = x/|x| and obtain∫

R2d
[|f(T, x, ξ)| − |f(−T, x, ξ)|] ξ|ξ| ·ΨR(x) dx dξ

=
∫ T

−T

∫
R2d
|f(t, x, ξ)| ξ · ∇x

( ξ
|ξ| ·ΨR(x)

)
dx dξ dt

=
∫ T

−T

∫
R2d
|f(t, x, ξ)| ξ|ξ| ·DΨR(x) · ξ dx dξ dt

=
1
R

∫ T

−T

∫
B(R)

∫
Rd
|f(t, x, ξ)| |ξ| dx dξ dt

+
∫ T

−T

∫
|x|≥R

∫
Rd
|f(t, x, ξ)| |ξ − x̂ ξ · x̂|

2

|ξ| dx dξ dt.

(13)

On the other hand we can compute∫
R2d
|f(T, x, ξ)| ξ|ξ| ·ΨR(x) dx dξ =

∫
R2d
|f0(x − ξT, ξ)| ξ|ξ| ·ΨR(x) dx dξ

=
∫
R2d
|f0(y, ξ)| ξ|ξ| ·ΨR(y + ξT ) dy dξ

→ ±
∫
R2d
|f0(y, ξ)| |ξ| dy dξ

as T → ±∞. This limit together with the identity (13) concludes the proof of the
first inequality for f0 ∈ S(R2d). A classical approximation argument leads to the
same inequality for f0 ∈ L1(R2d).

In order to prove the second statement it is again enough to do it for f0 ∈ S(R2d),
since the quantity in the left hand side converges if the initial data converges in L1.
Then, proving this equality is equivalent to proving that the quantity∫ ∞

−∞

∫
|x|≥R

∫
Rd
|f(t, x, ξ)| |ξ − x̂ ξ · x̂|

2

|ξ| dx dξ dt
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vanishes as R→ 0, which is readily checked by dominated convergence. �

2.6. Stationary equation in Rd. We conclude this section with an application of
this velocity moments lemma to steady states of kinetic equations in the full space
without absorption. This kind of problem arises naturally in kinetic physics (for
instance flows around an obstacle share the same mathematical aspects) and in the
high frequency limit of dispersive equations; see [100], [59], [17] and the references
therein. We consider equation

(14) ξ · ∇xf = g(x, ξ), x ∈ Rd, ξ ∈ Rd.
The difficulties here are twofold. Firstly, there are no direct a priori bounds by
lack of absorption, i.e. zeroth order term that could provide a priori bounds (by
opposition to (15) below). Secondly, uniqueness does not hold and the ‘right so-
lution’ has to be selected. Indeed, particles could come in from infinity, and thus
only the so-called outgoing solution is intuitively unique. As a counterexample to
uniqueness consider for instance any two smooth functions F and G; then a family
of solutions to (14) with g = 0 is given by

f(x, ξ) = F (x − x · ξ ξ

|ξ|2 )G(ξ).

We notice for future reference that f satisfies a bound of weighted L1 type, namely
1
R

∫
|x|≤R

∫
Rd

(1 + |ξ|2)f(x, ξ)dxdξ ≤ ‖F‖L1(Rd) ‖(1 + |ξ|2)G‖L1(Rd).

This norm is closely related to the quantities introduced in Proposition 2.12.
Of course this lack of uniqueness disappears when considering the problem with

an absorption coefficient α > 0,

(15) αfα + ξ · ∇xfα = g(x, ξ), x ∈ Rd, ξ ∈ Rd.
Indeed for g ∈ L1(R2d) there is a unique solution fα in the distribution sense such
that fα ∈ L1(R2d), and it is given by fα(x, ξ) =

∫∞
0 g(x − ξt, ξ)e−αtdt. Therefore,

one has

α

∫
R2d

fα(x, ξ)dx dξ =
∫
R2d

g(x, ξ)dx dξ,

α

∫
R2d
|fα(x, ξ)|dx dξ ≤

∫
R2d
|g(x, ξ)|dx dξ.

See (20) below for this last point.

Theorem 2.13. Assume that the source g belongs to L1(R2d). Then, the a priori
bounds hold, for all x0 ∈ Rd,

1
R

∫
|x−x0|≤R

∫
Rd
|ξ| |fα(x, ξ)|dxdξ ≤ 2‖g‖L1(R2d),(16) ∫

R2d

1
|ξ| |ξ −

(x− x0) · ξ
|x− x0|2

(x− x0)|2 |fα(x, ξ)|dxdξ ≤ 2‖g‖L1(R2d).(17)

Also, we have the Sommerfeld type of conditions at infinity: as R → ∞ and uni-
formly in α,

(18)
1
R

∫
{|x|≤R}

∫
Rd
|ξ| | ξ|ξ| −

x

|x| |
2|fα(x, ξ)|dxdξ → 0,
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and also, as α→ 0,

(19) α

∫
R2d
| ξ|ξ| −

x

|x| |
2 |fα(x, ξ)|dxdξ → 0.

This theorem gives two types of information. The two inequalities are a pri-
ori bounds which show that the solution is locally integrable. It is easy to find
counterexamples showing that these estimates are optimal and one cannot hope for
better integrability. On the other hand, the two limits are conditions of Sommerfeld
type; they are known (at least for wave equations) to provide the boundary con-
ditions at infinity expressing that energy as outgoing at infinity. We do not prove
here that these conditions imply uniqueness; we refer to Perthame and Vega [105],
where the case of Liouville equations with an homogeneous potential is treated.

Proof of Theorem 2.13. In order to prove (16) and (17), we first notice that

(20) α|fα|+ ξ · ∇x|fα| ≤ |g(x, ξ)|, x ∈ Rd, ξ ∈ Rd.

Then, we just argue as before and use the multiplier ξ
|ξ| ·∇ΨR(x−x0); for motivation

recall the proof of Proposition 2.12. It remains to notice that

α

∫
R2d

ξ

|ξ| · ∇ΨR(x− x0)|fα| dxdξ ≤ α
∫
R2d
|fα| dxdξ

≤
∫
R2d
|g| dxdξ,

and this leads to the first two estimates. We skip the details of the computation
because they closely follow those of Section 2.5.

Next, we prove (18). To do that, we define

ρR(x) = inf(1,
|x|
R

), (or also ∇ΨR =
x

|x| ρR),

and, following the method in the proof of Proposition 2.12, we use the combination
of multipliers:

−2
ξ

|ξ| ·
x

|x|ρR + 2ρR = ρR|
ξ

|ξ| −
x

|x| |
2.

Using it in (20), we obtain, with ξt = ξ − ξ · x
|x|2x,

α

∫
R2d

ρR(x)| ξ|ξ| −
x

|x| |
2|fα(x, ξ)|dxdξ

+
∫
R2d

[ |ξ|
R
| ξ|ξ| −

x

|x| |
2 1{|x|≤R} + 2

|ξt|2
|ξ| |x| 1{|x|≥R}

]
|fα(x, ξ)|dxdξ

≤
∫
R2d

ρR |
ξ

|ξ| −
x

|x| |
2 |g(x, ξ)|dxdξ.

(21)

Therefore, we have obtained

1
R

∫
{|x|≤R}

∫
Rd
|ξ| | ξ|ξ| −

x

|x| |
2|fα(x, ξ)|dxdξ ≤ 2

∫
{|x|≤R}

∫
Rd
|g(x, ξ)|dxdξ.

From this (18) follows directly.
Finally, we prove (19) following [105] again. Here we assume that g ≥ 0 and thus

fα ≥ 0 which does not affect the generality of the proof. Since fα is an increasing
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sequence it converges to a function f that satisfies the same equation with α = 0
and the already proved bounds. We first derive the identity

(22)
∫
R2d

|ξt|2
|ξ| |x|f(x, ξ)dxdξ =

1
2

∫
R2d
| ξ|ξ| −

x

|x| |
2 |g(x, ξ)|dxdξ.

This requires us to use a truncation function

(23) ϕR(x) = ϕ(
|x|
R

), ϕ(r) =

 1 for 0 ≤ r ≤ 1,
2− r for 1 ≤ r ≤ 2,
0 for r ≥ 2.

Then we have, using the multiplier ξ
|ξ| ·

x
|x|ϕR,

−
∫
R2d

[
|ξt|2
|ξ| |x|ϕR −

|ξ|
R

1{R≤|x|≤2R}(
ξ

|ξ| ·
x

|x| )
2]f(x, ξ) dxdξ

→
∫
R2d

ξ

|ξ| ·
x

|x|g dxdξ,

as R→∞. On the other hand, using (18),∫
R2d

|ξ|
R

1{R≤|x|≤2R}(
ξ

|ξ| ·
x

|x| )
2f(x, ξ) dxdξ

=
∫
R2d

|ξ|
R

1{R≤|x|≤2R}
ξ

|ξ| ·
x

|x|f(x, ξ) dxdξ + o(R)

= −
∫
R2d

ξ · ∇ϕRf(x, ξ) dxdξ + o(R)→ −
∫
R2d

g dxdξ.

These two limits combined give (22).
Next, we use again the equation with α > 0 and just compute

α

∫
R2d
| ξ|ξ| −

x

|x| |
2 fα(x, ξ)dxdξ + 2

∫
R2d

|ξt|2
|ξ| |x| fα(x, ξ)dxdξ

=
∫
R2d
| ξ|ξ| −

x

|x| |
2 g(x, ξ)dxdξ.

But we can identify the limit as α → 0 in the second term thanks to the a priori
bound (17), and inserting (22) in the above equality we obtain (19). �

3. Kinetic-transport equation (velocity averaging lemma)

Because kinetic-transport equations are first order hyperbolic, regularity (and
compactness) of the solutions does not follow from a priori bounds, unlike parabolic
equations. It is wrong that the solution operator f0 → f(t) is compact in Lp spaces.
However, compactness can be proved for macroscopic quantities as

(24) %ψ(t, x) :=
∫
Rd
ψ(ξ)f(t, x, ξ) dξ,

with ψ a smooth test function. This is the theory of averaging lemmas for kinetic
equations. It began with the papers [66], [65] in order to solve compactness prob-
lems (see also [1]). Then, several extensions with a right hand side which can be
derivatives of L2 functions were given in [47], and this was extended to a general Lp

framework in [50]. This step allowed one to use averaging lemmas for Vlasov type
equations and for kinetic formulations. There have been several variants, exten-
sions and generalizations that can be found in Gérard [57], Gérard and Golse [58],
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Perthame and Souganidis [103], Bouchut [23], Bouchut and Desvillettes [24], De-
vore and Petrova [45], Jabin and Perthame [81], Lions [88], Westdickenberg [118];
and other improvements can be found in the references therein. The method of
proof of averaging lemmas is always based on Fourier arguments in L2, and singu-
lar integrals in Lp. Notice, however, that a recent approach which only uses duality
arguments is given in Jabin and Vega [82].

3.1. A simple case of averaging. In order to explain in a simple example the
interest of averaging lemmas, we begin with a very simple case in L2 for kinetic-
transport. It uses the Hilbert space H1/2 defined by the norm ‖%‖Ḣ1/2 + ‖%‖L2,
and the homogeneous seminorm ‖ · ‖Ḣ1/2 is defined in the proof below.

Theorem 3.1. Let ψ ∈ L∞(Rd), suppψ ⊂ B(R) (ball of radius R centered at
origin) in (24) and let f, g ∈ L2(R1+2d) satisfy

(25)
∂

∂t
f + ξ · ∇xf = g.

Then, we have

(26) ‖%ψ‖Ḣ1/2(Rd+1) ≤ C(d,R, ‖ψ‖L∞) ‖f‖1/2
L2(R2d+1)

‖ g‖1/2
L2(R2d+1)

.

Remark 3.2. As it is, this statement does not apply to the Cauchy problem (1),
but after time truncation by a function ψ(t) with compact support, we find

∂

∂t
(fψ) + ξ · ∇x(fψ) = g := fψ′(t),

and thus we recover the situation (26) with L2 solution and right hand side.

Proof of Theorem 3.1. The proof is based on Fourier Transform in space and time.
We define

f̂(τ, k, ξ) =
∫
Rd
f(t, x, ξ)ei(tτ+x·ξ)dx dt,

and similarly ĝ, %̂ψ. We use below the property that

%̂ψ(τ, k) =
∫
Rd
ψ(ξ)f̂dξ.

Equation (25) becomes very simple after Fourier Transform and reads

i(τ + k · ξ)f̂ = ĝ, (τ, k, ξ) ∈ R2d+1.

This allows us to invert the symbol, and in order to avoid the singular hyperplane
τ + ξ · k = 0, we add βf̂ on each side of the equality, with β a positive real number
to be chosen later. We obtain

f̂(τ, k) =
ĝ + βf̂

β + i(τ + ξ · k)
.

After using Cauchy-Schwarz inequality, we deduce

|%̂|2 ≤ 2
∫
Rd

(
|ĝ|2 + β2|f̂ |2

)
dξ

∫
Rd

ψ2

β2 + |τ + ξ · k|2 dξ.

After using Lemma 3.3 below we deduce

|%̂|2 ≤
∫
Rd

(
|ĝ|2 + β2|f̂ |2

)
dξ

C

β(|τ | + |k|) ,
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and after integrating in τ , ξ,

‖(|τ |+ |k|)%̂‖2L2(Rd+1) ≤ C
‖ĝ‖2L2(Rd+1) + β2‖f̂‖2L2(Rd+1)

β
.

After choosing β = ‖ĝ‖L2(Rd+1)/‖f̂‖L2(Rd+1), we obtain

‖(|τ |+ |k|)%̂‖2L2(Rd+1) ≤ C‖ĝ‖L2(Rd+1) ‖f̂‖L2(Rd+1).

This is exactly the definition of the homogeneous Ḣ1/2(Rd+1) seminorm

‖%‖Ḣ1/2(Rd+1) = ‖(|τ |+ |k|)%̂‖2L2(Rd+1),

and thus Theorem 3.1 is proved. �

Lemma 3.3. With the above notations, we have for all β > 0,∫
Rd

ψ2

β2 + |τ + ξ · k|2 dξ ≤
C(ψ)

β(|τ | + |k|+ β)
,

with (we recall that suppψ ⊂ B(R)),

C(ψ) = C R sup
ω∈Sd−1

∫
ω·ξ=0

ψ(ξ)2dξ′, dξ′ the Lebesgue measure on {ω · ξ = 0}.

We leave this lemma without proof.
Among possible extensions, one can consider more general integrals than (24).

For instance velocities on the sphere arise in several applications, and a remarkable
phenomena occurs then. To explain it, we define

%S(t, x) =
∫
ξ∈Sd−1

f(t, x, ξ)dξ.

In dimension d ≥ 3, one can prove that Theorem 3.1 still holds and a half derivative
is gained on averages. However, in two dimensions, due to scaling properties which
are particular, the averages on the sphere %S are smoother than f only by 1/4
derivatives. More precisely

(27)
∥∥∥(1 + |τ | + |ξ|)1/4%̂S(τ, ξ)

∥∥∥
L2(R1+2)

≤ C
(
‖f‖L2(R1+2×S1) + ‖g‖L2(R1+2×S1)

)
.

However, a more careful analysis will show that away from the light cone {|τ | = |ξ|}
the average %S does have 1/2 derivatives in L2. More precisely, the inequality holds:∥∥∥(1 + |(|τ | − |ξ|)|)1/4 (1 + |τ |+ |ξ|)1/4%̂S(τ, ξ)

∥∥∥
L2(R1+2)

≤ C
(
‖f‖L2(R1+2×S1) + ‖g‖L2(R1+2×S1)

)
.

Weighted Sobolev spaces of this type are classical for wave equations. We refer to
Bournaveas and Perthame [27] for this result and references on these spaces. An
interesting question is to know whether a similar gain of extra regularity is possible
in other situations.
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3.2. General case of compactness by averaging. We now consider the most
unfavorable case of a transport equation with a singular right hand side where
we allow a full space-time derivative and as many ξ derivatives as we wish. Let
f(t, x, ξ), t ∈ R, x ∈ Rd, ξ ∈ Rd be a given global solution to a transport equation
where we allow a singular source

(28)
∂

∂t
f + ξ · ∇xf =

∂|k|

∂ξk

[
∂

∂t
g0 +

d∑
i=1

∂

∂xi
gi

]
.

Here, we have used the notations k = (k1, · · · , kp), |k| = k1 + · · · + kp, ki ∈
N. This structure appears in numerous nonlinear problems: Vlasov equations in
§4.1 (Vlasov-Maxwell system was the motivation in [47] for the first study of this
kind of structure), scalar conservation laws in §4.4 for instance, and Fokker-Planck
operators.

In such a situation, generic regularity on the averages, in the spirit of The-
orem 3.1, is not true. Nevertheless compactness can still be proved. The new
difficulty is that given the right hand side with gi ∈ Lp, the above equation cannot
be solved; more precisely one cannot define an operator gi → f in Lebesgue spaces
in order to use interpolation.

The version we give below is that of [103] with the limiting exponent proved by
Bouchut in [26].

Theorem 3.4. Let f , gi belong to Lp(R1+2d) for some 1 < p < ∞ and satisfy
equation (28), and let ψ ∈ D(Rd) in (24). Then, we have

(29) ‖%ψ‖Lp(Rd+1) ≤ C(d, p, ψ) ‖f‖1−α
Lp(R2d+1)

‖ g‖αLp(R2d+1),

for all α satisfying

0 ≤ α ≤ 1
|k|+ 1

min(
1
p
,

1
p′

),
1
p

+
1
p′

= 1.

Remark 3.5. Notice that since the Hölder inequality also gives

‖%ψ‖Lp(Rd+1) ≤ ‖f‖Lp(R2d+1) ‖ψ‖Lp′(Rd),

the boundedness of %ψ in Lp(Rd+1) is obvious without the help of equation (28).
Interest comes from the control of the average in terms of g rather than f , and of
course the most interesting case is α = 1

|k|+1 min( 1
p ,

1
p′ ).

We now state a direct consequence which explains why compactness is contained
in the above theorem.

Corollary 3.6. Consider two sequences {fn}, {gi,n} of solutions to the transport
equation (28) and let ψ belong to Lp

′
(Rd). Assume that for some 1 < p < ∞ the

sequence {fn} is bounded in Lp(R1+2d) and the sequence {gi,n} is relatively compact
in Lp(R1+2d). Then the averages %ψ,n are relatively compact in Lp(R1+d).

In situations where less than a full space derivative occurs in the right hand side
of the transport equation (28), not only compactness is gained. Regularity in the
scales of Sobolev or Besov spaces can be proved, extending the result of Theorem
3.1; we refer to [50], and the chapter by Bouchut in [26]. The precise gain in
regularity, and not only compactness, can be useful for regularity questions. This
appears for instance in the topic of nondegenerate hyperbolic scalar balance law,
where the kinetic formulation provides a method for proving regularizing effects [92],
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[81] and the corresponding Sobolev spaces are deduced from those at the kinetic
level.

3.3. Proof of the general compactness result. We only prove the case of L2

spaces here. The main idea to obtain other values of p is to use interpolation, but
this is not possible directly on equation (28), which does not define an operator (re-
member it does not have a L2 solution for all g). For that reason, interpolation has
to be performed on the different operators that arise after inverting the main sym-
bol. It turns out that one can prove that these operators are of Calderón-Zygmund
type and thus treat also the Hardy spaces (which serve as L1 for interpolation pur-
poses). But there is an additional difficulty, which is that the proof requires us to
estimate a precise Hardy norm, and this is again not possible directly due to the
special form of the Fourier multiplier. A possibility consists in using Lp spaces,
p > 1 instead, but then the limiting exponent α = 1

|k|+1 min( 1
p ,

1
p′ ) is lost (see

[103]). The idea to use the so-called Hardy-product spaces was introduced in this
context by [21] and formalized for the pure compactness case by Bouchut in [26].
It allows us to complete the proof of Theorem 3.4.

First of all and in order to simplify notations, we do not consider the term ∂
∂tg0.

Then, we divide this proof of the L2 case into three steps. First, we present the
method together with technical lemmas. Then, we prove these lemmas in steps 2
and 3.
First step. Method of proof. Denoting f̂(τ, k, ξ) the Fourier transform of f in the
(t, x) variables, equation (28) yields

(τ + k · ξ)f̂ =
d∑
j=1

kj
∂|k|

∂ξk
ĝj ,

which can be rewritten for β > 0 as

f̂ [(τ + ξ · k)2 + β2|k|2] = β2|k|2f̂ +
d∑
j=1

kj(τ + ξ · k)
∂|k|

∂ξk
ĝj .

In other words

(30) f = f0 +
d∑
j=1

fj

with

(31) f̂0 =
β2|k|2

(τ + ξ · k)2 + β2|k|2 ĝ0, where g0 = f,

and, for 1 ≤ j ≤ d,

(32) f̂j =
kj(τ + ξ · k)

(τ + ξ · k)2 + β2|k|2
∂|k|

∂ξk
ĝj .

We study separately the operators (Tj)0≤j≤d which are defined by

%j(t, x) =
∫
ψ(ξ)fj(t, x, ξ)dξ := Tjgj(x, t).

We need the following two lemmas, which we state below and then prove in steps
2 and 3 below.
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Lemma 3.7. Let β > 0. Then

‖%0‖L2(Rd+1) ≤ C(d,R, ‖ψ‖∞)β1/2‖f‖L2(QR).

Lemma 3.8. Let 0 < β ≤ 1. Then, for all 1 ≤ j ≤ d,

‖%j‖L2(Rd+1) ≤ C(d,R, ‖ψ‖k,∞)β−|k|−
1
2 ‖gj‖L2(QR).

We now continue with the proof of Theorem 3.4. It is obtained by combining
these two lemmas. The average in (24) is exactly

% =
∑
j=0

%j ,

and it is upper bounded by

(33) ‖%‖L2(Rd+1) ≤ C(d,R, ‖ψ‖k,∞)
[
β1/2‖g0‖L2(QR) +

β1/2

β|k|+1
‖g‖L2(QR)

]
.

Next, we recall that g0 = f and we choose β as

(34) β|k|+1 = ‖g‖L2/‖f‖L2.

We obtain the value α = 1
2(|k|+1) in Theorem 3.4 for p = 2 when ‖g‖L2/‖f‖L2 ≤ 1,

i.e. β ≤ 1, a limitation needed to apply Lemma 3.8. If β ≥ 1, we just use
Remark 3.5. This completes the proof.

Second step. The Proof of Lemma 3.7. Using the averaging technique from (31)
and defining λ = τ

β|k| and ξ1 = ξ·k
|k| , we obtain

|%̂0(k, τ)|2 ≤
∫
|ĝ0|2dξ

∫
ψ2(ξ)

β4|k|4
[(τ + ξ · k)2 + β2|k|2]2

dξ

≤ C(d)‖ψ‖2∞Rd−1

∫
dξ1

[(λ + ξ1
β )2 + 1]2

∫
|ĝ0|2dξ.

Since the above integral in ξ1 is proportional to β, we obtain

(35) ‖T0g0‖L2(Rd+1) ≤ C(R)β1/2‖g0‖L2(QR),

and Lemma 3.7 is proved. �

Third step. The Proof of Lemma 3.8. We begin with the proof of the case k = 0.
It follows that of Lemma 3.7. We change variables and obtain, with the same
notations as in step 2,

F̂j(k, σ) =
1
β

kjσ

|k|2 + σ2
Ĝj(k, σ).

We have

%̂j(τ, k) =
∫
ψ

kjk1

(τ + ξ · k)2 + β2|k|2 ĝjdξ,

and thus

|%̂j(τ, k)|2 ≤ C(R)
β2

∫
|ĝj|2dξ

∫ |λ+ ξ1/β|2
[|λ+ ξ1/β|2 + 1]2

dξ1,

and Lemma 3.8 is proved in the case k = 0.
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Next, we pass to the case |k| = 1; for instance k = (1, 0, . . .). We need a
preliminary step. Using Green’s formula, we have

%̂j(τ, k) = −
∫

∂ψ

∂ξ1

kj(τ + ξ · k)
(τ + ξ · k)2 + β2|k|2 ĝjdξ

−
∫
ψ

kjk1

(τ + ξ · k)2 + β2|k|2 ĝjdξ + 2
∫
ψ

kj(τ + ξ · k)2k1

[(τ + ξ · k)2 + β2|k|2]2
ĝjdξ.

This defines three operators, S1, S2, S3, for which we may apply the same proof as
before, but with different powers of β. The only scaling factors in β play a role to
estimate the different operators Sk. We obtain as above that S1, like Tj for k = 0,
has L2-norm of order C(R)β−1/2 (this gives the dominant term for β > 1), while
the L2-norms of S2 and S3 are of order C(R)β−3/2 and give the dominant terms for
β < 1. Again, this generalizes to other values of k as indicated above, thus proving
Lemma 3.8. �

4. Nonlinear kinetic equations

In this section we review the theory and applications of three large classes of
nonlinear kinetic equations: Vlasov equations, scattering equations and the Boltz-
mann equation. We also present the kinetic formulation as a method to reduce
general nonlinear parabolic equations to a singular kinetic equation.

4.1. Vlasov equations. A first extension of free transport consists in the La-
grangian dynamics for particles undergoing a force F (x, ξ)

(36)

{
d
dtX(t) = ζ(t), X(t = 0) = x,
d
dtζ(t) = F (X(t), ζ(t)), ζ(t = 0) = ξ.

The general Liouville equation describing the evolution of the density is then written

∂

∂t
f(t, x, ξ) + ξ · ∇xf + divξ[F (x, ξ) f ] = 0, t ≥ 0, x, ξ ∈ Rd.

This equation is still linear when F is given, but usually nonlinearities arise because
the force field is created by the particles themselves. Then, the equations are called
Vlasov equations or ‘mean field’ equations and express that forces act with a long
range by opposition to Boltzmann type equations; see §4.3. A classical case of
Vlasov equations is as follows:

∂

∂t
f(t, x, ξ) + ξ · ∇xf + divξ[E(t, x) f ] = 0,(37) {

E(t, x) = −∇xU(t, x), U = V (|x|) ? %(t, x),
%(t, x) =

∫
Rd f(t, x, ξ) dξ.(38)

System (37)–(38) has several properties, and the conservation laws play an essential
role. Notice that in the phase plane (x, ξ) the field (ξ, E(t, x)) is divergence free.
Therefore one readily checks that for strong solutions one has the equalities∫

R2d f(t, x, ξ) dxdξ =
∫
R2d f

0(x, ξ) dxdξ, (mass conservation),

‖f(t)‖Lp(Rd) = ‖f0‖Lp(Rd), (Liouville principle),

Ec(t) + Ep(t) = Ec(t = 0) + Ep(t = 0), (energy conservation),
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with the kinetic energy Ec and the potential energy Ep defined by{
Ec(t) =

∫
R2d

|ξ|2
2 f(t, x, ξ) dxdξ

Ep(t) =
∫
R2d

1
2V (x − y)%(t, x)%(t, y)dxdy.

It is called a Vlasov-Poisson equation when used with the particular and singular
potential

(39) V (r) = α
1

rd−2
, α = ±1 (−α ln(r) for d = 2).

The idea here is that particles attract (α = −1, Newtonian force) or repulse each
other (α = +1, Coulombic forces) along with a potential. It arises in astrophysics;
then V is Coulomb potential (see Batt and Rein [13]). It also arises in plasma
physics and semiconductor modelling (Markowich, Ringhofer and Schmeiser [94],
Degond [38], Arnold, Carrillo, Gamba and Shu [6], Ben Abdallah et al. [16]).

Existence of weak solutions to Vlasov-Poisson, for both Newtonian (in dimen-
sions less than 3) and Coulombic potentials in any dimension, goes back to Horst
and Hunze [76] under the assumption that the initial data satisfying f0(t = 0) ∈
L1 ∩ L∞(R2d) has finite energy (the difficulties are to control the kinetic and po-
tential energy separately in the Newtonian case, and to pass to the weak limit in
the nonlinear term in both cases). An extension to more general initial data (in
terms of Lp spaces) has been carried out by DiPerna and Lions [46]. As for classi-
cal solutions, in one or two dimensions the situation has been settled since the 80’s
(see Horst [75] and the references therein). Three dimensional classical solutions
are obtained by a method of characteristics in a series of papers by Pfaffelmoser
[107], by Schaeffer [110] and by Batt and Rein [12] in the periodic case (see also
the references therein). A method based on PDE arguments which allows one to
propagate in time any given initial velocity moments (and existence of unique clas-
sical solutions follows) was obtained in three dimensions by Lions and Perthame
[90] (for moments larger than 3) and by Gasser, Jabin and Perthame [56] for any
moment (this uses a combination of Lemma 2.1 and Proposition 2.12). A subject of
current interest is the case of infinite mass (initial data does not decay at infinity);
see Caprino, Marchioro and Pulvirenti [30].

More recently models of Vlasov type have been considered in fluid mechanics
to describe sprays, bubbles or solid particles interacting through a fluid [74], [108],
[69], [15]. It is then natural to restrict to dimension d = 3. For instance the
Vlasov-Stokes system reads [80], [56]:

∂

∂t
f + ξ · ∇xf + divξ[(U − ξ)f ] = 0, t ≥ 0, x, ξ ∈ Rd,(40)

U(x, t) = A(x) ? j(t, x), j(t, x) =
∫
Rd
ξf(t, x, ξ)dξ.(41)

Here, the matrix A ∈
(
C∞(Rd\0)

)d×d
is typically the fundamental solution of the

Stokes equation, 
d∑
j=1

∂

∂xj
Aij(x) = 0,

∆Aij(x) + ∂
∂xj

pi(x) = δ(x = 0)ei,
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for all 1 ≤ i ≤ d and where ei denotes the i−th basis vector and pi the pressure. The
matrix A is assumed to satisfy two properties. The first property gives a limitation
on the possible singularity at the origin; the second expresses the dissipation of the
kinetic energy of the system (a natural condition since it is realized for the particle
system)

|A(x)| ≤ C

|x|β , 0 < β < 2,(42) ∫
Rd
j(x) ·A(x) ? j(x)dx ≤ 0, ∀j ∈ D(R).(43)

As for other related equations, let us quote the case of the Vlasov-Poisson-Fokker-
Planck model

∂

∂t
f + ξ · ∇xf + divξ(E f) = ∆ξf + σdivξ(ξ f).

Additionally to the potential forces as in the Vlasov-Poisson case, this equation
expresses the diffusion in ξ (collisions with external gas molecules for instance) and
friction with coefficient σ. It is fully treated in Bouchut [23], and the regularizing
effect makes solutions that are smooth; the long time asymptotics is treated in
Dolbeault [51], Bouchut and Dolbeault [25]. As for other coupling let us quote
Desvillettes and Dolbeault [42] and Mischler [95] for the coupled Vlasov-Boltzmann
system.

The linear case is not so simple; see Desvillettes and Villani [43], Glassey and
Strauss [64]. The subject of long time asymptotics has attracted much interest,
also for the pure repulsive Vlasov case, where it is expected that the combination
of transport dispersion and repulsion create a faster time decay than pure trans-
port (see §2.4 and equation (12)), but this is not the case; see Illner and Rein [78],
Perthame [101]. Existence of weak solutions to the Vlasov Maxwell system are
obtained in DiPerna and Lions [47], and this was the first example, after Radiative
Transfer equations (§4.2), where the existence proof requires compactness that can
only be obtained through averaging lemmas. Also the notion of renormalized so-
lution is essential here to get the most general initial data [48]. Strong solutions
with small initial data have also undergone considerable progress by Glassey and
Schaeffer [62], Glassey and Strauss [64], [63], and Guo and Strauss [73], [72].

4.2. Scattering and chemotaxis. One of the most classical kinetic models arises
in the description of transport of particles (neutrons for instance, energy waves
more generally) that only deviate from kinetic-transport by collisions with a fixed
media (say random scatterers). This raises the following scattering equation, which
is posed for t ≥ 0, x ∈ Rd, ξ ∈ V ⊂ Rd:

(44)
∂

∂t
f(t, x, ξ) + ξ · ∇xf +

∫
Rd

[K(ξ, ξ′)f(t, x, ξ)−K(ξ′, ξ)f(t, x, ξ′)]dξ′ = 0.

The set V denotes the possible allowed velocities: it can be Rd itself, the unit ball
B, or naturally the unit sphere Sd−1 if one thinks of photons for instance. The
function K(ξ, ξ′) ≥ 0 is called the scattering kernel and may also depend on (t, x)
through quantities related to the density f itself (we give two examples below). It
has been widely studied, and classical references are Bardos, Santos, Sentis [11],
and Dautray and Lions [36]. Homogenization of such equations is important for
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nuclear engineering: Bensoussan, Lions and Papanicolaou [20], Allaire et al. [3],
Goudon and Poupaud [70].

In terms of mathematical theory, this linear model also exhibits the maximum
principle (if f(t = 0) ≥ 0, then f(t) ≥ 0), and mass conservation∫

Rd×V
f(t, x, ξ)dx dξ =

∫
Rd×V

f(0, x, ξ)dx dξ.

As a consequence, it generates an L1 semigroup of solutions, and therefore when
K is a given bounded function we have a unique distributional solution f ∈
C(R+;L1(Rd × V ). When K is symmetric, i.e. K(ξ′, ξ) = K(ξ, ξ′), we have addi-
tionally

‖f(t)‖Lp(Rd×V ≤ ‖f(t = 0)‖Lp(Rd×V ) ∀p, 1 ≤ p ≤ ∞,
but these last a priori bounds are lost in the nonsymmetric case (except for p = 1,
mass conservation).

A nonlinear model of the same type arises in radiative transfer. Here f denotes
the density of photons which are scattered by a media itself heated by the photons.
In the simplest modeling case we arrive at{

K(t, x; ξ, ξ′) = k(〈f(t, x)〉), V = Sd−1,
〈f(t, x)〉 =

∫
Sd−1 f(t, x, ξ)dξ,

with k(·) > 0 a smooth function. See Bardos et al. [10], and Dubroca and Feugeas
[52]. When the nonlinearity k(·) is nonincreasing, the solution operator is a strong
contraction in L1 and existence of a solution follows from BV bounds. In more
general cases the existence theory relies on compactness derived from averaging
lemmas; see [10] for details.

An interesting nonlinearity also arises in models from biology and describes the
chemotactic motion of bacteria or more general cells. It was introduced in Oth-
mer, Dunbar and Alt [99] as a microscopic version of the Keller-Segel model. The
interpretation of K is now the probability that bacteria turn from a direction of
motion ξ′ to a direction ξ (the set of velocities is choosen as V = B the unit ball
of Rd). This usually occurs with a uniform law K = Cst say. But in the case
of chemotactic motion, an external (say chemical) signal S can produce a small
deviation from this law. An example of the scattering kernel produced is then

(45) K(t, x; ξ, ξ′) = α+k(S(x+ εξ, t)) + α−k(S(x− εξ′, t)),

for some given positive and increasing function k : R→ R and nonnegative param-
eters α± and ε. This creates a nonsymmetric kernel which allows some drift in the
mean motion. When the signal is emitted by the bacteria themselves a coupling
arises; for instance, recalling the definition of % in (4),

(46) −∆S = %(t, x).

This is again a nonlinear mean field equation since the interaction is long range.
Existence of strong solutions has been proved, and the difficulty lies in the lack of
strong a priori bounds since K is not symmetric. Also these global strong solutions
show a fundamental difference with the macroscopic model drift-diffusion model
(the Keller-Segel equation). The latter exhibits ‘chemotactic collapse’ (concentra-
tion as a pointwise Dirac mass) in 2 dimensions at least and more generally blow-up
(some Lp norm is unbounded) in finite time. This global existence result and the
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asymptotic limit towards the Keller-Segel model can be found in Chalub et al. [34];
see also §5.2.

4.3. The Boltzmann equation. On the other hand, for short range potentials,
collisional models are used and the upmost classical equation is the Boltzmann
equation. It reads

(47)
∂

∂t
f + ξ · ∇f = Q(f), t ≥ 0, x ∈ Rd, ξ ∈ Rd,

where Q denotes Boltzmann’s quadratic collision operator
(48)

Q(f) =
∫
Rd

∫
Sd−1

(f ′f ′∗ − ff∗)B(|n.(ξ − ξ∗)|, |ξ − ξ∗|)dξ∗dn = Q+(f)−Q−(f),

where we have used the notation f ′ = f(t, x, ξ′), f∗ = f(t, x, ξ∗). . . . For elastic
collisions, the postcollisional velocities are defined for n ∈ Sd−1 by

(49)
{
ξ′ = ξ − n[(ξ − ξ∗) · n],
ξ′∗ = ξ∗ + n[(ξ − ξ∗) · n].

These rules are dictated by the conservation laws for momentum and energy

(50)
{
ξ + ξ∗ = ξ′ + ξ′∗,
|ξ|2 + |ξ∗|2 = |ξ′|2 + |ξ′∗|2.

The linear micro-collision operator defined for n ∈ Sd−1 by

Tn : (ξ, ξ∗) 7→ (ξ′, ξ′∗)

is an involution of R2d,

Tn ◦ Tn = I2d×2d;

in other words (ξ′)′ = ξ, (ξ′∗)′ = ξ∗. This property and direct computations show
the following identities, which are fundamental for the study of the properties of
the collision operator:

dξ dξ∗ = dξ′ dξ′∗,
n · (ξ − ξ∗) = −n · (ξ′ − ξ′∗),
|ξ − ξ∗| = |ξ′ − ξ′∗|.

The function B which arises in (48) contains the physics of the collisions. Hard
sphere collisions (billard balls) lead to

BHS(|n · V |, |V |) = |n · V |,

and this type of kernel (with internal energy though) is used for neutral molecules in
aerospace engineering or for condensation-evaporation problems. Charged particles
lead to interactions with longer range

BCP (|n · V |, |V |) = ϕ(|V |)β(
|n · V |
|V | ),

and β is strongly unbounded close to |n·V ||V | ≈ 1, but it is usual to make the so-called
Grad cut-off assumption to regularize β.
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Based on these assumptions, one derives the following property for all test func-
tions ϕ:

∫
Rd
Q(f)ϕ(ξ)dξ = −1

2

∫
Rd×Rd×Sd−1

ff∗[ϕ+ ϕ∗ − ϕ′ − ϕ′∗]B(. . .)dξdξ∗dn

=
1
4

∫
Rd×Rd×Sd−1

[f ′f ′∗ − ff∗][ϕ+ ϕ∗ − ϕ′ − ϕ′∗]B(. . .)dξdξ∗dn.

(51)

From this we derive the conservation laws (and one can prove there are no other
choices)

(52)

∫
Rd Q(f)dξ = 0 , (ϕ = 1, mass conservation),∫
Rd ξQ(f)dξ = 0 , (ϕ = ξ, momentum conservation),∫

Rd |ξ|
2Q(f)dξ = 0 , (ϕ = |ξ|2, energy conservation).

As a consequence, strong solutions also satisfy several conservation laws:

(53)

{ ∫
R2d f(t)dxdξ =

∫
R2d f

0dxdξ,
∫
R2d ξf(t)dxdξ =

∫
R2d ξf

0dxdξ,∫
R2d |ξ|2f(t)dxdξ =

∫
R2d |ξ|2f0dxdξ.

The last important property which follows from (51) with ϕ = ln(f) is called
Boltzmann’s H-theorem, which states that

−
∫
Rd
Q(f) ln(f)dξ

=
1
4

∫
Rd×Rd×Sd−1

[ff∗ − f ′f ′∗][ln(ff∗)− ln(f ′f ′∗)]B(. . .)dξdξ∗dn := D(f) ≥ 0.

(54)

It has the consequence that, again for strong solutions,∫
Rd
f ln(f)dξ +

∫ ∞
0

∫
Rd
D(f(t, x, ·))dx dt ≤

∫
Rd
f0 ln(f0)dξ.

This inequality is important because, combined with (53), one deduces weak L1

compactness for families of solutions with initial data that satisfy uniformly the
condition

(55)
∫
Rd
f0[1 + |ξ|2 + |x|α + | ln(f0)|]dξ <∞, α > 0.

The entropy dissipation also contains much hidden information in terms of trend
to equilibrium and related controls; see Villani [117].

Another important consequence of Boltzmann’s H-theorem is to identify the
kernel of Q. Consider a function f(ξ) such that (1 + |ξ|2)f(ξ) ∈ L1(Rd) and
D(f) <∞. If Q(f) = 0, we deduce from (54) (which can be established rigorously
then) that

ff∗ = f ′f ′∗ ∀ξ∗ ∈ Rd, ∀n ∈ Sd−1.

From this relation we can deduce that f takes the form of a so-called Maxwellian
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distribution: for some real parameters %, u, T (the notations are compatible with
(4)–(7))

(56) Q(f) = 0 ⇔ f(ξ) =
%

(2πT )d/2
e−
|ξ−u|2

2T .

Proof of (56). See [37]. It uses the C2
0 Fourier transform g(k) of f . The relation

ff∗ = f ′f ′∗ is transformed into

g(k)g(k∗) =
∫
Rd
f(ξ′)f(ξ′∗)e

i(k·ξ+k∗·ξ∗)dξdξ∗

=
∫
Rd
f(ξ)f(ξ∗)ei(k·ξ

′+k∗·ξ′∗)dξdξ∗

=
∫
Rd
f(ξ)f(ξ∗)ei(k·ξ+k∗·ξ∗) − i(k−k∗)·n (ξ−ξ∗)·ndξdξ∗ .

We now fix k and k∗ and choose a unit vector no orthogonal to k−k∗. With n = no
the above formula just yields the trivial identity gg∗ = gg∗. We thus consider a unit
vector n = no + η with η small and thus not orthogonal to k − k∗. Then, the first
term in the Taylor expansion of the above formula gives

(57) no · (∇kgg∗ − ∇k∗gg∗) = 0.

At this stage, we may assume that g(0) = 1 and ∇kg(0) = 0. This is equivalent to
normalizing f by

∫
Rd f(ξ) dξ = 1 and

∫
Rd ξf(ξ) dξ = 0. Then, taking first k∗ = 0

in (57), we find
no · ∇kg = 0

for all unit vectors no orthogonal to k. This means that ∇kg is proportional to k,
which also means that the function g is radially symmetric, i.e., g = ḡ(|k|2). Finally,
we set r = |k|2 and insert this information in (57). We obtain that, as long as ḡḡ∗
does not vanish,

k
ḡ′(r)
ḡ(r)

− k∗
ḡ′(r∗)
ḡ(r∗)

is proportional to k − k∗. But this means that ln(ḡ(r))′ is independent of r. In
other words ḡ(r) = e−βr as long as it does not vanish, and by continuity this holds
everywhere thus proving that g(k) = e−β|k|

2
. This is exactly like saying that f is a

Maxwellian. �

The Boltzmann equation has been widely studied. For physical motivations and
mathematical properties one can consult Truesdell and Muncaster [113], Cercignani
[32], and Sone [111]. An overview book is Cercignani, Illner and Pulvirenti [33],
which contains in particular a derivation of the Boltzmann equation from particle
systems, the so-called Boltzmann-Grad limit; see also Ukai [114]. Several variants
of the Boltzmann equation arise in physics. For instance recent interest has been
to understand inelastic collisions, because such models arise in some regimes of
granular flows; see Bobylev, Carillo and Gamba [22], Toscani [112], and Benedetto
et al. [18], [19]. Related is the Enskog equation for dense gases; see Arkeryd
and Cercignani [4], and Chapter 2 in [37], where several references from physics
and astrophysics are given. Quantum models, with Pauli exclusion principles, and
relativistic models lead to different kernels, and one can consult Escobedo and
Mischler [53]. Tumor growth and the modeling of immune response lead also to
nonlinear transport equations of integral type; see Bellomo and Presiozi [14]. Traffic
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flows also lead to Boltzmann type equations; see for instance Illner et al. [77] and
the references therein.

A survey of recent progress can be found in Villani [116] and we therefore restrict
ourselves to very fundamental aspects. Historical progress in the mathematical
theory of the Boltzmann equation has been the theory of DiPerna and Lions [49] (see
also [87]) which proves global existence of weak solutions (so-called renormalized
solutions) in the physical space, i.e. using only a priori estimates like (55). This
theory provided tools which allowed one to handle numerous new questions; as an
example let us note the regularizing effect of the operator Q+ [87]. Especially the
case without cut-off has been treated, with the so-called grazing collisions leading
to the Landau operator; see Degond and Lucquin [41], Alexandre et al. [2] and the
references in [116]. Stationary Boltzmann equations are also important; see Arkeryd
and Nouri [5] for weak solutions in a slab, Ukai and Asano [115] for strong solutions
in an exterior domain with given Maxwellian at infinity and nearly compatible
boundary conditions, or Liu and Yu [93] and the references therein for shock profiles.
Bounded domains for the evolution problem are treated in Mischler [95]. For large
time behavior, we refer to [87] (part I), Desvillettes and Villani [44] for bounded
domains, and to [101] for the whole space.

In order to describe the existence result of renormalized solutions we need some
assumptions:∫

|ξ|<R

∫
Sd−1

B(|n.ξ|, |ξ|)dξ dn <∞ ∀R > 0, B ≥ 0,(58)

(1 + |z|)−2

∫
|ξ−z|<R

∫
Sd−1

B(|n.ξ|, |ξ|)dξ dn→ 0 as |z| → ∞, ∀R > 0.(59)

Also renormalized solutions are defined as functions f ∈ C
(

[0,∞);L1(R2d)
)

such
that ∫

Rd
f(t)[1 + |ξ|2 + |x|α + | ln(f(t))|]dξ <∞, for some α > 0;(60) ∫

Rd

Q+(f)
1 + f

dx ∈ L∞
(

0,∞;L1
loc(Rd)

)
,

∫
Rd

Q−(f)
1 + f

dx ∈ L1
loc

(
[0,∞)× Rd

)
;(61)

∂

∂t
β(f) + ξ · ∇β(f) = β′(f)Q(f), in D′

(
(0,∞)× R2d

)
,(62)

for all β ∈ C1
(

(0,∞) R
)

; and finally (see (54)),

(63)
∫ ∞

0

∫
Rd
D(f(t, x, ·))dx dt <∞.

Theorem 4.1. Let f0 satisfy (55), and let B satisfy (58) and (59). Then there
exists a renormalized solution to the Boltzmann equation with initial data f0. If
there is a strong solution, then the renormalized solution is unique.

We refer to [87] (part II) for the proof of this result. There are still open problems
on the properties of renormalized solutions besides the propagation of regularity.
For instance, the solution is built passing to the (strong) limit in a family of smooth
solutions for regularized kernels, but second ξ moments are only weakly convergent.
Therefore the conservation of energy or the local form of the momentum equation
do not follow. We also refer to §5.2 for other aspects of the Boltzmann equation.
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4.4. Kinetic formulation of hyperbolic-parabolic conservation laws. Ki-
netic equations also arise as a mathematical representation of nonlinear conservation
laws, the so-called kinetic formulation, which was introduced in Lions, Perthame
and Tadmor [92]. A recent overview of the subject is given in [102]. Kinetic formu-
lations can be seen as a method to replace nonlinear parabolic equations (and some
systems) by a linear equation, acting on a nonlinear quantity, and this is useful be-
cause one can use linear tools such as convolution and Fourier transform. It is also
a method which allows one to derive numerical schemes for nonlinear equations.
We present here, and following [35], the example of degenerate nonlinear parabolic
conservation laws in the scalar case.

To explain this concept, we consider first the nondegenerate case, a case where
existence of a unique family of smooth solutions with decay at infinity is standard
to establish. Then the problem is to find a smooth, vanishing at infinity, real-
valued function u(t, x) defined for t ≥ 0, x = (x1, x2, · · · , xd) ∈ Rd, which solves
the quasilinear parabolic equation

(64)

∂
∂tu+

d∑
i=1

∂
∂xi

Ai(u)−
d∑

i,j=1

∂2

∂xi∂xj
Aij(u) = 0,

u(t = 0, x) = u0(x).

We define and assume the following:

ai(·) = A′i(·) ∈ L∞loc(R), aij(·) = A′ij(·) ∈ L∞loc(R),

a(ξ) = (a1(ξ), a2(ξ), · · · , ad(ξ)) (a mapping : R→ Rd),

aij is a symmetric matrix, aij(·) ≥ ν Id×d (ν > 0).(65)

This equation satisfies a simple so-called entropy property. That is for all smooth
function S(·), after multiplying the equation (64) by S′(u), we obtain

(66)
∂

∂t
S(u) +

d∑
i=1

∂

∂xi
ηSi (u)−

d∑
i,j=1

∂2

∂xi∂xj
BSij(u) = −S′′(u)aij(u)

∂u

∂xi

∂u

∂xj
,

where the entropy fluxes ηSi , BSij are defined (up to an additive constant) by

(67)
(
ηSi

)′
(·) = ai(·)S′i(·),

(
BSij

)′
(·) = aij(·)S′i(·).

Notice also that a priori bounds follow from the entropy inequalities. We can choose
S(u) = |u|p, 1 ≤ p <∞, to obtain

‖u(t)‖Lp(Rd) ≤ ‖u0‖Lp(Rd), 1 ≤ p <∞,
and S(u) = (u−K)2

+ with an appropriate choice of K yields

minu0 ≤ u(t, x) ≤ maxu0.

We can also use the entropy dissipation, for S ≥ 0 and S′′ ≥ 0; we then have

(68)
∫ ∞

0

∫
Rd
S′′(u) aij(u)

∂u

∂xi

∂u

∂xj
dx dt ≤ 1

2

∫
Rd
S(u0) dx.

In particular the choice S(u) = u2/2 also leads to the energy estimate

(69)
∫ ∞

0

∫
Rd

aij(u)
∂u

∂xi

∂u

∂xj
dx dt ≤ 1

2
‖u0‖2L2(Rd).
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The choice Sξ(u) = max(0, u − ξ) for ξ > 0, and Sξ(u) = max(0, ξ − u) for ξ < 0,
leads to S′′ξ (u) = δ(u = ξ) and gives the (more interesting although not so clearly
defined) a priori estimate∫ ∞

0

∫
Rd

δ(ξ = u(t, x)) aij(ξ)
∂u

∂xi

∂u

∂xj
dx dt

≤ µ(ξ) :=
{
‖(u0 − ξ)+‖L1(Rd) for ξ ≥ 0,
‖(ξ − u0)+‖L1(Rd) for ξ ≤ 0.

(70)

At least this inequality makes sense as a measure in ξ, i.e. testing it against non-
negative continuous functions of ξ.

To proceed further in analyzing the consequences of these entropy inequalities,
we introduce the function (from R2 into R),

χ(ξ;u) =

 +1, for 0 < ξ < u,
−1, for u < ξ < 0,
0, otherwise.

This function is related to several deep problems, especially to weak limits of os-
cillating bounded sequences un(x) and to Young measures (see [102]). Indeed, it
gives a representation of any function S(u) as follows:

(71)
∫
R
S′(ξ)χ(ξ;u)dξ = S(u)− S(0).

Therefore, when a sequence of functions un converges in L∞ − w∗, it allows us to
study the limit of all the limits S(un) for all smooth functions S.

We claim that the family of equalities (66) is equivalent to writing in
D′((0,∞) × Rd+1) the so-called kinetic formulation (recall that ξ is a real-valued
variable here).

Proposition 4.2. Equation (66) is equivalent to the problem of finding a function
u(t, x) such that, in the sense of distributions,

∂

∂t
χ
(
ξ, u(t, x)

)
+ a(ξ) · ∇xχ

(
ξ, u(t, x)

)
− aij(ξ)

d∑
i,j=1

∂2

∂xi∂xj
χ
(
ξ, u(t, x)

)
=

∂

∂ξ
n(t, x, ξ),

(72)

(73) n(t, x, ξ) = δ(ξ = u(t, x)) aij(ξ)
∂u

∂xi

∂u

∂xj
.

In fact n is a bounded nonnegative measure thanks to (69), also thanks to in-
equality (70) and the usual continuity arguments,

n ∈ C0

(
Rξ;w −M1((0,+∞)× Rd)

)
,

where M1 denotes the Banach space of bounded Radon measures.
We now indicate the reason why the kinetic formulation holds true.

Derivation of the kinetic formulation (72). Using the chain rule in (72) we
have

∂

∂t
χ(ξ;u) = δ(ξ = u)

∂u

∂t
;
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therefore equation (72) can also be written

δ
(
ξ = u(t, x)

)[∂u
∂t

+ a(u) · ∇xu
]
−

d∑
i,j=1

∂

∂xi
[aij(u(t, x))δ(ξ = u)

∂u

∂xj
]

=
∂

∂ξ
[δ
(
ξ = u(t, x)

) d∑
i,j=1

aij(u(t, x))
∂u

∂xi

∂u

∂xj
].

On the other hand, we have

∂

∂xi
[aij(u(t, x))δ(ξ = u)

∂u

∂xj
] = δ′(ξ = u)aij(u)

∂u

∂xi

∂u

∂xj
+ δ(ξ = u)

∂

∂xi
[aij(u)

∂u

∂xj
],

and therefore (72) is also equivalent to

δ
(
ξ = u(t, x)

)[∂u
∂t

+ a(u) · ∇xu−
d∑

i,j=1

∂

∂xi

(
aij(u)

∂u

∂xj

)]
= 0,

which is equivalent to the parabolic conservation law (64) for smooth solutions.
Another way to see the equivalence is to multiply (72) by S′(ξ) (a test function)

and integrate dξ. Then one still recovers the entropy equalities (66) which are
equivalent to parabolic equation (64).

The interesting part of this formalism appears for degenerate diffusions (ν = 0)
and especially in the hyperbolic case Aij = 0. Then possible singularities of the
solution (shock waves for instance) make the chain rule no longer available. The
kinetic formulation however holds true, with the only difference being that the
measure on the right hand side is no longer defined explicitly by formula (73). It
is replaced by a bounded measure ñ(t, x, ξ) ≥ n(t, x, ξ). An application is to the
regularity of the solution in the degenerate case. This can be proved using tools as
averaging lemmas. Another application is to uniqueness of the solution [102], [35].
In order to treat degenerate diffusions,

(74) aij is a symmetric matrix, aij(·) ≥ 0,

the method consists of passing to the limit as ε vanishes in the family of solutions uε
associated with the diffusion matrix εI + (aij). It is possible to prove that this is a
strong limit in any Lp spaces, 1 ≤ p <∞, when we assume that u0 ∈ L1∩L∞(Rd).
In order to state correctly the limit problem we need the notations Σik(u) and
Σψik(u) for ψ ∈ C0(R) with ψ ≥ 0:

aij(·) =
d∑
k=1

σik(·)σjk(·),

Σ′ik(·) = σik(·), (Σψik)′(·) =
√
ψ(·)σik(·).

(75)

Then we end up with the two equivalent definitions:

(76) nψε (t, x) :=
d∑
k=1

( d∑
i=1

∂

∂xi
Σψik(uε)

)2

=
d∑
k=1

ψ(uε)
( d∑
i=1

∂

∂xi
Σik(uε)

)2

.

A fundamental remark is that this equality still holds in the limit ε → 0, and this
allows us to define, for weak solutions, the nonlinear term arising in the entropy
relation. Then, we end up with
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Definition 4.3. An entropy solution is a function u(t, x) ∈ L∞
(

[0,∞);L∞ ∩

L1(Rd)
)

such that

(i)
d∑
i=1

∂
∂xi

Σik(u) ∈ L2
(

[0,∞)× Rd
)
, for any k ∈ {1, · · · , d};

(ii) for any function ψ ∈ C0(R) with ψ(u) ≥ 0 and any k ∈ {1, · · · , d}, the chain
rules hold:

d∑
i=1

∂

∂xi
Σψik(u) =

√
ψ(u)

d∑
i=1

∂

∂xi
Σik(u) ∈ L2([0,∞)× Rd),(77)

nψ(t, x) := ψ(u(t, x))
d∑

k=1

( d∑
i=1

∂

∂xi
Σik(u(t, x))

)2

=
d∑
k=1

( d∑
i=1

∂

∂xi
Σψik(u(t, x))

)2

, a.e.;

(78)

(iii) there exists an entropy dissipation measure m(t, x, ξ) such that for any smooth
function S(u), we have in D′(R+ × Rd)

∂

∂t
S(u) +

d∑
i=1

∂

∂xi
ηSi (u)−

d∑
i,j=1

∂2

∂xi ∂xj
BSij(u) = −(mS′′ + nS

′′
),

S(u(t = 0)) = S(u0),

(79)

(80) mS′′(t, x) =
∫
R
S′′(ξ)m(t, x, ξ) dξ, with m(t, x, ξ) a nonnegative measure.

The entropy dissipation measure m appears here because we have to take into
account the weak limit process when passing to the limit as ε→ 0 in the quadratic
terms. It accounts for the inequality( d∑

i=1

∂

∂xi
Σik(u(t, x))

)2

≤ w− lim
ε→0

( d∑
i=1

∂

∂xi
Σik(uε(t, x))

)2

because, weakly in L2, we have
d∑
i=1

∂

∂xi
Σik(uε(t, x))→

d∑
i=1

∂

∂xi
Σik(u(t, x)).

Notice that the following total mass control is satisfied:

(81)
∫ ∞

0

∫
Rd

(m+ n)(t, x, ξ) dt dx ≤ µ(ξ)

(recalling the definition of µ in (70)) with

n(t, x, ξ) = δ(ξ − u(t, x))
d∑

k=1

( d∑
i=1

∂

∂xi
Σik(u(t, x))

)2

.

A consequence of this definition is a kinetic formulation for the degenerate non-
isotropic parabolic equations

(82)
∂

∂t
χ(ξ;u) + a(ξ) · ∇xχ(ξ;u)−

d∑
i,j=1

aij(ξ)
∂2

∂xi∂xj
χ(ξ;u) =

∂

∂ξ
(m+ n)(t, x, ξ),
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in D′(R+ × Rd+1) with initial data

χ(ξ;u)|t=0 = χ(ξ;u0).

5. Asymptotic analysis

One of the early and main successes of the Boltzmann equation has been to de-
rive macroscopic equations from the kinetic scale and thus to provide a theoretical
basis to models established earlier by phenomenological laws. The derivation of
compressible transport equations (thanks to the Chapman-Enskog method [113],
[32], [33]) allows us not only to recover the structure of Navier-Stokes system for
compressibles fluids but also to give specific coefficients, the so-called transport
coefficients (in the case of hard spheres, for instance for monatomic gases). The
mathematical program of proving the compressible fluid limit for global large so-
lutions is still open and considered out of reach with the known tools. A rigorous
derivation for short times is given in Caflisch [29], and Kawashima, Matsumura
and Nishida [84]. Also for numerical purposes, it would be useful to find ‘good’
approximations of kinetic equations, which use the 2d phase space, by systems of
d dimensional reduced problems. This is still an active area where several recent
results are promising (see Levermore [86], Junk [83], Dubroca and Feugeas [52]),
but the Boltzmann equation is still a challenge, especially for the mathematical
basis.

It remains that many theoretical questions have progressed significantly these
last years, and we present some examples in this section. We also refer to the
chapter by Golse in [26] for additional references and material.

5.1. Hyperbolic limit. It is natural to assume that in the Boltzmann equation,
the collision term dominates transport when the density becomes larger because
the gas molecules undergo more collisions. A mathematical way to express this is
to consider the hyperbolic scaling of (47):

∂

∂t
fε(t, x, ξ) + ξ · ∇xfε =

1
ε
Q(fε).

This can be derived either as a rescaling of the density f in f/ε (this is specific to
the quadratic aspect of Boltzmann kernel) or a time-space rescaling in 1/ε (which
turns out to be a general point of view). Then one expects that Q(fε) → 0 as ε
vanishes and thus that the limit f of fε satisfies Q(f) = 0. Therefore, as explained
earlier (see formula (56)) this implies that f is a Maxwellian distribution

f = M [f ] :=
%

(2πT )d/2
e−
|ξ−u|2

2T ,

with %(t, x), u(t, x) and T (t, x) related to f thanks to the definition of macroscopic
quantities in (4)–(7). In order to study the limit as ε → 0, we firstly integrate
the Boltzmann equation against the measures dξ, ξdξ and 1

2 |ξ|2dξ, and obtain
macroscopic conservation laws, thanks to equations (52),

(83)


∂
∂t%+ div(%u) = 0, t ≥ 0, x ∈ Rd,

∂
∂t (%u) + div(%u⊗ u+ P ) = 0,
∂
∂tE + div(Eu+ P · u+ q) = 0.
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To obtain this system, we have used notations (4)–(7), and the pressure tensor P
in the momentum equation (second equation of (83)) is given by

(84) Pij(t, x) =
∫
Rd

(ξi − ui) (ξj − uj) f(t, x, ξ)dξ.

The energy flux is given by the formula
1
2

∫
Rd
|ξ|2 ξ f(t, x, ξ) dξ = Eu+ 1

2

∫
Rd
|ξ|2 (ξ − u) f(t, x, ξ) dξ.

But, since we have∫
Rd
|ξ|2 (ξi − ui) f(t, x, ξ) dξ

=
∫
Rd

(
|ξ − u|2 + |u|2 + 2 (ξ − u) · u

)
(ξi − ui) f(t, x, ξ)dξ

=
∫
Rd

(
|ξ − u|2 + 2 (ξj − uj)uj

)
(ξi − ui) f(t, x, ξ)dξ

= 2qi(t, x) + 2
d∑
j=1

uj · Pij ,

we obtain that the heat flux q is defined by

(85) qi(t, x) =
1
2

∫
Rd

(ξi − ui)|ξ − u|2f(t, x, ξ) dξ.

We may also derive a macroscopic entropy inequality which complements system
(83). From (54), we deduce

(86)
∂

∂t
S(t, x) + divη(t, x) ≤ 0,

with
S(t, x) =

∫
Rd
f ln(f) dξ, η(t, x) =

∫
Rd
ξ f ln(f) dξ.

System (83), together with laws (84) and (85), is always satisfied by solutions to
the Boltzmann equation.

In order to go further in the study of the limit ε → 0, we secondly identify f
with its local Maxwellian limit as mentioned earlier. We end up with the system
(83) completed by

P = % T Id×d, q = 0.
This is the Euler system for compressible flow. As is well known, this is a non-
linear hyperbolic system, and shocks (discontinuities) appear generically in finite
time. The entropy inequality (86) is therefore fundamental to selecting the right
solutions, and it is completed in this limit by the relations (simplified after taking
into consideration the conservation laws)

S = % ln(
%

T d/2
), η = u S.

This program is again open for discontinuous limits (see, however, the refer-
ences in the introduction to this section). It has been solved for simplified kinetic
equations which involve a single conservation law because compactness related to
contraction properties helps. In such cases the hyperbolic limit is strongly related
with kinetic formulations in §4.4. Other problems have also been treated, as e.g.
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the collision operator of granular materials. Then the Maxwellian is no longer the
right equilibrium, and this leads to different pressure laws; see Benedetto et al. [18].
We refer to [102] for further references on this huge subject.

5.2. Diffusion limits. The classical field of application of the diffusion limits is to
derive macroscopic equations like the heat equation from a scattering model. The
regime of interest is again when the scattering part dominates transport; see §4.2.
Then a parameter ε > 0 is introduced to represent the ratio ‘transport/scattering’,
and one considers the rescaled problem fε = f(εt, xε , ξ). We arrive at
(87)
∂

∂t
fε(t, x, ξ) +

ξ

ε
· ∇xfε +

1
ε2

∫
Rd

[Kε(ξ, ξ′)fε(t, x, ξ)−Kε(ξ′, ξ)fε(t, x, ξ′)]dξ′ = 0.

The problem of studying the limit as ε vanishes is extremely classical and leads
to a diffusion equation; see [11]. For instance, in case of the nonlinear model of
chemotaxis where equation (87) is coupled with (45)–(46), we can prove (see [99],
[34]) that fε(t, x, ξ) → %(t, x), Sε(t, x) → S(t, x) and that the Keller-Segel model
holds in the limit

∂

∂t
%(t, x) + div(χ%∇S) = div(D∇%), t ≥ 0, x ∈ Rd,

−∆S = %,

with transport coefficients given by

D(t, x) =
1

3|V |(α+ + α−)ψ(S)

∫
V

|ξ|2 dξ, χ(S) =
k′(S)
3k(S)

∫
V

|ξ|2 dξ.

Notice that drift terms in diffusion equations have also been considered in Degond
et al. [39]. Radiative transfer equations were the first nonlinear equations to be
treated [10] (again compactness is required which uses averaging lemmas; see §3).
Other phenomena can also lead to diffusion limits as thin films where the diffusion
comes from reflection conditions on the boundary; see Babovski et al. [7].

The same scaling can be applied to the Boltzmann equation and raises one of
the beautiful mathematical theories which has followed the notion of renormalized
solutions. We present the result very roughly and restrict here to dimension d =
3. In a series of papers by Bardos, Golse, Levermore and Saint-Raymond [9],
[68], and by Lions and Masmoudi [89], the incompressible Navier-Stokes limit has
been considered. It relates, in three dimensions, the Boltzmann equation with
the incompressible Navier-Stokes system. The problem is to find a velocity field
u(t, x) ∈ R3 and a temperature field T (t, x) ≥ 0 such that

(88)
divu(t, x) = 0,

∂
∂tu+ u · ∇xu+∇p = ν∆u, t > 0, x ∈ R3,

∂
∂tT + u · ∇xT = κ∆T.

Since this is a diffusive regime, the Boltzmann equation (47) is rescaled as ex-
plained before:

∂

∂t
fε(t, x, ξ) +

ξ

ε
· ∇xfε =

1
ε2
Q(fε).

But, in view of the hyperbolic limit in §5.1, an additional scaling has to be im-
posed so as to generate velocities of order ε. This is achieved by considering initial
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distributions close to a uniform Maxwellian (see (56)),

(89) f0
ε (x, ξ) ≈M(ξ)[1 + ε u0(x) · ξ + T 0(x)

|ξ|2 − 5
2

], M(ξ) =
1

(2π)3/2
e−
|ξ|2

2 .

When this is written correctly, it is proved in [68] that

1
ε

∫
R3
ξ fε(t, x, ξ)dξ → u(t, x),

1
ε

∫
R3

(
1
3
|ξ|2 − 1) fε(t, x, ξ)dξ → T (t, x),

and (u, T ) is a solution to (88) where the viscosity ν and heat conductivity κ depend
on the collision kernel B. In fact, for strong enough assumptions on f0

ε , it is proved
that some expansion like (89) holds true also for the solution fε.

5.3. Strong field limits. The possibility to scale Vlasov equations (see §4.1) ap-
peared only recently in the mathematical literature and raises a fascinating class
of problems which is far from being closed, both in terms of models of interest
and mathematical theory. It is again a hyperbolic scaling when the force term is
dominating. Typically, one obtains

∂

∂t
fε(t, x, ξ) + ξ · ∇xfε +

1
ε

divξ[F (x, ξ) fε] = Q(fε), t ≥ 0, x, ξ ∈ Rd.

The difference with the hyperbolic or diffusive limits (then the kernel of the collision
operator gives the formal limit) is that for strong field limits we cannot guess (up
to a finite number of macroscopic parameters) the limiting distribution f as ε→ 0
from the formal limit

divξ[F (x, ξ) f(t, x, ξ)] = 0.
Typical examples are
(i) combinations of strong collisions and strong field can appear. Then, the collision
operator and the force term are scaled together with the same parameter. This
appeared first for semiconductor models in Poupaud [106] (see also Nieto, Poupaud
and Soler [98] and the references therein), and this class of hydrodynamic limits
has attracted much interest; see for instance Degond and Jüngel [40], Arnold et al.
[6] and the references therein.
(ii) strong magnetic fields in stratospheric plasmas (F = ξ∧B, with B the magnetic
field plus possible Poisson forces); see Frénod and Sonnendrücker [55], Golse and
Saint-Raymond [67], Saint-Raymond [109]. This is a situation of homogenization
type; a fast variable appears.
(iii) strong electric field in Vlasov-Poisson system with a background; see Grenier
[71] and Brenier [28] for a method based on modulated hamiltonians.
(iv) strong friction for particles in a fluid (F = U − ξ); see Jabin [79]. Here the
distribution does not remain bounded in L∞, and it concentrates on a Dirac mass
in ξ. See also [69].

The main mathematical difficulties can come from the properties of the kinetic
kernel itself (typically divξ[F (x, ξ) f ] = Q(f) in case (i)) which can require specific
mathematical treatment. But they can also come from the limits themselves, which
can be nonlinear hyperbolic and thus lack regularity for justifying the asymptotics.
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