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EXTRAPOLATION OF PERIODICALLY CORRELATED

STOCHASTIC PROCESSES OBSERVED WITH NOISE

UDC 519.21

I. I. DUBOVETS’KA AND M. P. MOKLYACHUK

Abstract. We consider the problem of the optimal linear estimation of the func-
tional

Aζ =

∫ ∞

0
a(t)ζ(t) dt

depending on unknown values of a periodically correlated stochastic process ζ(t).
An estimator is constructed from observations of the process ζ(t) + θ(t) for t < 0,
where θ(t) is a periodically correlated process being uncorrelated with ζ(t). Formulas
for calculating the spectral characteristic and the mean square error of the optimal
linear estimator of the functional are proposed in the case where spectral densities are
known. In the case where spectral densities are not known but a set of admissible
spectral densities is specified, formulas that determine the least favorable spectral
density and the minimax (robust) spectral characteristics of optimal estimators of

the above functional are proposed.

1. Introduction

The methods for the investigation of problems of estimation of unknown values of
stationary stochastic processes (extrapolation, interpolation, and filtration problems)
have been developed by Kolmogorov [8], Wiener [18], Yaglom [16, 17], and Rozanov [15].
These methods are based on the assumption that the spectral densities are known. If the
corresponding spectral densities are not known but a set of admissible spectral densities
is specified, then one can follow the minimax method when solving estimation problems.
The minimax method reduces to the minimization of the error for all densities belonging
to a specified set simultaneously. Grenander [2] was the first to apply the minimax
approach to the extrapolation problem for stationary stochastic processes. A survey of
publications related to minimax (robust) methods is presented by Kassam and Poor [7].
Moklyachuk [12] and Moklyachuk and Masyutka [13] study the problems of extrapolation,
interpolation, and filtration for stationary stochastic processes and sequences (also see
the book by Kurkin, Korobochkin, and Shatalov [9]).

Studies of periodically correlated processes were initiated by Gladyshev [1], who inves-
tigated the properties of covariance functions and spectral representations of periodically
correlated processes. A relationship between periodically correlated and infinite dimen-
sional stationary processes is considered by Makagon [10, 11]. The minimax problems of
the optimal estimation of linear functionals are studied by Dubovets’ka, Masyutka, and
Moklyachuk [3]–[5].
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In the current paper, we study the problem of the mean square linear optimal estima-
tion of the functional

Aζ =

∫ ∞

0

a(t)ζ(t) dt

constructed from the values of a mean square continuous periodically correlated sto-
chastic process ζ(t). The above functional is estimated from observations of the process
ζ(t) + θ(t) for t < 0, where θ(t) is a mean square continuous periodically correlated
process being uncorrelated with ζ(t). We find formulas for calculating the spectral char-
acteristic and mean square error of the optimal estimator of the functional Aζ in the
case where the spectral densities of the stationary sequences {ζj , j ∈ Z} and {θj , j ∈ Z}
are known. If the complete information about spectral densities is not available but a
set of admissible spectral densities is specified, then we follow the minimax approach
for solving the estimation problems. We find the least favorable spectral densities and
minimax spectral characteristic of the optimal estimator of the functional Aζ for some
classes of admissible spectral densities.

2. Periodically correlated processes and corresponding vector valued

stationary sequences

Definition 2.1 ([1]). A mean square continuous stochastic process

ζ : R → H = L2(Ω,F ,P), Eζ(t) = 0,

is called periodically correlated with period T if its correlation function K(t + u, u) =

Eζ(t+ u)ζ(u) is such that

K(t+ u, u) = Eζ(t+ u+ T )ζ(u+ T ) = K(t+ u+ T, u+ T )

for all t, u ∈ R.

Let ζ(t), t ∈ R, and θ(t), t ∈ R, be uncorrelated periodically correlated stochastic
processes. We construct two sequences of random functions:

(1) {ζj(u) = ζ(u+ jT ), u ∈ [0, T ), j ∈ Z},

(2) {θj(u) = θ(u+ jT ), u ∈ [0, T ), j ∈ Z}.
Each of the sequences (1) or (2) generates an L2([0, T );H) valued stationary sequence
{ζj , j ∈ Z} or {θj , j ∈ Z}, respectively, whose correlation functions are given by

Bζ(l, j) = 〈ζl, ζj〉H =

∫ T

0

E[ζ(u+ lT )ζ(u+ jT )] du

=

∫ T

0

Kζ(u+ (l − j)T, u) du = Bζ(l − j),

Bθ(l, j) = 〈θl, θj〉H =

∫ T

0

E[θ(u+ lT )θ(u+ jT )] du

=

∫ T

0

Kθ(u+ (l − j)T, u) du = Bθ(l − j),

where Kζ(t, s) = Eζ(t)ζ(s) and Kθ(t, s) = Eθ(t)θ(s) are the correlation functions of the
periodically correlated processes ζ(t) and θ(t), respectively.

If {
ẽk =

1√
T

exp

{
2πi

{
(−1)k

[
k

2

]}
u
/
T

}
, k = 1, 2, 3, . . .

}
, 〈ẽj , ẽk〉 = δkj ,
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is an orthonormal basis in L2([0, T );R), then the stationary sequences {ζj , j ∈ Z} and
{θj , j ∈ Z} admit the representations

(3)

ζj =
∞∑
k=1

ζkj ẽk,

ζkj = 〈ζj , ẽk〉 =
1√
T

∫ T

0

ζj(v) exp

{
−2πi

{
(−1)k

[
k

2

]}
v
/
T

}
dv,

and

(4)

θj =

∞∑
k=1

θkj ẽk,

θkj = 〈θj , ẽk〉 =
1√
T

∫ T

0

θj(v) exp

{
−2πi

{
(−1)k

[
k

2

]}
v
/
T

}
dv.

The components ζkj , k = 1, 2, . . . , and θkj , k = 1, 2, . . . , of the stationary sequences
{ζj , j ∈ Z} and {θj , j ∈ Z} are such that

Eζkj = 0, ‖ζj‖2H =

∞∑
k=1

E|ζkj |2 = Pζ < ∞, Eζklζnj = 〈Rζ(l − j)ek, en〉,

Eθkj = 0, ‖θj‖2H =

∞∑
k=1

E|θkj |2 = Pθ < ∞, Eθklθnj = 〈Rθ(l − j)ek, en〉

(see [6]), where {ek, k = 1, 2, . . . } is a basis in the space �2. The correlation functions
Rζ(j) and Rθ(j) of the stationary sequences {ζj , j ∈ Z} and {θj , j ∈ Z} are operator
valued functions in �2. The correlation operators Rζ(0) = Rζ and Rθ(0) = Rθ are kernel
operators

∞∑
k=1

〈Rζek, ek〉 = ‖ζj‖2H = Pζ ,

∞∑
k=1

〈Rθek, ek〉 = ‖θj‖2H = Pθ.

The stationary sequences {ζj , j ∈ Z} and {θj , j ∈ Z} have spectral densities f(λ) =
{fkn(λ)}∞k,n=1 and g(λ) = {gkn(λ)}∞k,n=1 that are positive operator valued functions in �2
of the argument λ ∈ [−π, π) if their correlation functions Rζ(j) and Rθ(j) can be written
as follows:

〈Rζ(j)ek, en〉 =
1

2π

∫ π

−π

eijλ〈f(λ)ek, en〉 dλ,

〈Rθ(j)ek, en〉 =
1

2π

∫ π

−π

eijλ〈g(λ)ek, en〉 dλ, k, n ≥ 1.

For almost all λ ∈ [−π, π), the spectral densities f(λ) and g(λ) are kernel operators
with integrable kernel norms

∞∑
k=1

1

2π

∫ π

−π

〈f(λ)ek, ek〉 dλ =

∞∑
k=1

〈Rζek, ek〉 = ‖ζj‖2H = Pζ ,

∞∑
k=1

1

2π

∫ π

−π

〈g(λ)ek, ek〉 dλ =

∞∑
k=1

〈Rθek, ek〉 = ‖θj‖2H = Pθ.
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3. Classical method of linear extrapolation

of periodically correlated processes

We study the problem of the mean square optimal linear estimation of the functional

(5) Aζ =

∫ ∞

0

a(t)ζ(t) dt

constructed from the values of a mean square continuous periodically correlated stochas-
tic process ζ(t). The functional A is estimated from observations of the process ζ(t)+θ(t)
for t < 0, where θ(t) is an uncorrelated with ζ(t) mean square continuous periodically
correlated process. The function a(t), t ∈ R+, is such that∫ ∞

0

|a(t)| dt < ∞.

We rewrite the functional Aζ as follows:

Aζ =

∫ ∞

0

a(t)ζ(t) dt =

∞∑
j=0

∫ T

0

aj(u)ζj(u) du,

a(u+ jT ) = aj(u), ζ(u+ jT ) = ζj(u), u ∈ [0, T ).

Recalling decomposition (3) of the stationary sequence {ζj , j ∈ Z}, the functional Aζ
can be rewritten as

Aζ =

∞∑
j=0

∫ T

0

aj(u)ζj(u) du

=

∞∑
j=0

1

T

∫ T

0

( ∞∑
k=1

akj exp

{
2πi

{
(−1)k

[
k

2

]}
u
/
T

})

×
( ∞∑

n=1

ζnj exp
{
2πi

{
(−1)n

[n
2

]}
u
/
T

})
du

=
∞∑
j=0

∞∑
k=1

∞∑
n=1

akjζnj
1

T

∫ T

0

exp

{
2πi

{
(−1)k

[
k

2

]
+ (−1)n

[n
2

]}
u
/
T

}
du

=

∞∑
j=0

∞∑
k=1

akjζkj =

∞∑
j=0

�a�j
�ζj ,

since solutions of the equation

(−1)k
[
k

2

]
+ (−1)n

[n
2

]
= 0

with respect to the pair of unknowns (k, n) are (1, 1), (2l + 1, 2l), and (2l, 2l + 1) for
l = 2, 3, . . . , where

�ζj = (ζkj, k = 1, 2, . . . )�,

�aj = (akj , k = 1, 2, . . . )� = (a1j , a3j , a2j , . . . , a2k+1,j , a2k,j , . . . )
�,

akj = 〈aj , ẽk〉 =
1√
T

∫ T

0

aj(v) exp

{
−2πi

{
(−1)k

[
k

2

]}
v
/
T

}
dv.

Assume that the coefficients {�aj , j = 0, 1, . . . } are such that

(6)

∞∑
j=0

‖�aj‖ < ∞,

∞∑
j=0

(j + 1)‖�aj‖2 < ∞, ‖�aj‖2 =

∞∑
k=1

|akj |2.
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According to the first condition in (6), the second moment of the functional Aζ is finite.
The second condition in (6) implies the compactness of the operators to be defined below.

Let the spectral densities f(λ) and g(λ) of the sequences {ζj , j ∈ Z} and {θj , j ∈ Z},
respectively, satisfy the following minimality condition:

(7)

∫ π

−π

Tr
[
(f(λ) + g(λ))−1

]
dλ < ∞.

Note that condition (7) is necessary and sufficient for the error free extrapolation of
unknown values of the sequence {ζj + θj , j ∈ Z} to be impossible (see [15, 12]).

Denote by L2(f) the Hilbert space of vector complex valued functions

b(λ) = {bk(λ)}∞k=1

that are square integrable with respect to the Lebesgue measure and that have the
density f(λ): ∫ π

−π

b�(λ)f(λ)b(λ) dλ =

∫ π

−π

∞∑
k,n=1

bk(λ)bn(λ)fkn(λ) dλ < ∞.

We denote by L−
2 (f) the subspace of L2(f) generated by the functions

eijλδk, k = 1, 2, . . . , j < 0,

where

δk = {δkn}∞n=1

and δkk = 1, δkn = 0 for k 
= n.
Any linear estimator Âζ of the functional Aζ constructed from the observations of the

sequence {ζj + θj}, j < 0, can be written as follows:

(8) Âζ =

∫ π

−π

h� (
eiλ

) (
Zζ(dλ) + Zθ(dλ)

)
=

∫ π

−π

∞∑
k=1

hk

(
eiλ

) (
Zζ
k(dλ) + Zθ

k(dλ)
)
,

where Zζ(Δ) =
{
Zζ
k(Δ)

}∞
k=1

and Zθ(Δ) = {Zθ
k(Δ)}∞k=1 are orthogonal random measures

of the sequences {ζj} and {θj}, respectively, and where h(eiλ) = {hk(e
iλ)}∞k=1 is the

spectral characteristic of the estimator Âζ. Note also that h(eiλ) ∈ L−
2 (f + g).

The mean square error Δ(h; f, g) of the estimator Âζ is calculated from the following
formula:

Δ(h; f, g) = E |Aζ − Âζ|2

=
1

2π

∫ π

−π

([
A

(
eiλ

)
− h

(
eiλ

)]�
f(λ)[A (eiλ)− h (eiλ)]

+ h� (
eiλ

)
g(λ)h (eiλ)

)
dλ,

(9)

A(eiλ) =

∞∑
j=0

�aje
ijλ.

The spectral characteristic h(f, g) of the optimal linear estimator Âζ minimizes the mean
square error

(10) Δ(f, g) = Δ(h(f, g); f, g) = min
h∈L−

2 (f+g)
Δ(h; f, g) = min

Âζ
E|Aζ − Âζ|2.

The optimal linear error Âζ is a solution of the optimization problem (10).
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When using the classical Kolmogorov method of projections [8] we write the following

two conditions that determine Âζ as a projection onto the subspace H−(ζ + θ) of the
space H generated by the random variables ζj + θj , j < 0:

1) Âζ ∈ H−(ζ + θ),

2) (Aζ − Âζ) ⊥ H−(ζ + θ).

Condition 2) holds if

E(Aζ − Âζ)(ζj + θj) =
1

2π

∫ π

−π

[(
A

(
eiλ

)
− h

(
eiλ

))�
f(λ)− h� (

eiλ
)
g(λ)

]
e−ijλ dλ

=
1

2π

∫ π

−π

[
A� (

eiλ
)
f(λ)− h� (

eiλ
)
(f(λ) + g(λ))

]
e−ijλ dλ = 0,

j = −1,−2, . . . .

The latter equality implies that

A� (
eiλ

)
f(λ)− h� (

eiλ
)
(f(λ) + g(λ)) =

∞∑
j=0

�c�j e
ijλ = C� (

eiλ
)
,

where �cj , j = 0, 1, . . . , are unknown coefficients. Thus the spectral characteristic h(f, g)
of the optimal estimator of the functional Aζ can be written as follows:

h�(f, g) =
(
A� (

eiλ
)
f(λ)− C� (

eiλ
))

[f(λ) + g(λ)]−1

= A� (
eiλ

)
−

(
A� (

eiλ
)
g(λ) + C� (

eiλ
))

[f(λ) + g(λ)]−1 .
(11)

Condition 1) above is equivalent to the equalities∫ π

−π

h(f, g)e−ilλ dλ = 0, l = 0, 1, . . . ,

that is,

∞∑
j=0

1

2π

∫ π

−π

[
f(λ)(f(λ) + g(λ))−1

]�
ei(j−l)λ dλ�aj

=

∞∑
j=0

1

2π

∫ π

−π

[
(f(λ) + g(λ))−1

]�
ei(j−l)λ dλ�cj , l = 0, 1, . . . .

(12)

Introducing the matrices B = {B(l, j)}∞l,j=0 and D = {D(l, j)}∞l,j=0 constituted by the
entries

B(l, j) =
1

2π

∫ π

−π

[
(f(λ) + g(λ))−1

]�
ei(j−l)λ dλ,

D(l, j) =
1

2π

∫ π

−π

[
f(λ)(f(λ) + g(λ))−1

]�
ei(j−l)λ dλ

and vectors a = {�aj}∞j=0 and c = {�cj}∞j=0, the system of equations (12) can be written

in the matrix form

Da = Bc,

whence we conclude that unknown coefficients �cj , j = 0, 1, . . . , are determined from the
equation

c = B−1Da.
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In view of equality (9), the mean square error of the optimal estimator Âζ is given by

Δ(f, g) = Δ(h(f, g); f, g)

=
1

2π

∫ π

−π

[
A� (

eiλ
)
g(λ) + C� (

eiλ
)]

[f(λ) + g(λ)]−1

× f(λ)[f(λ) + g(λ)]−1
[
A� (

eiλ
)
g(λ) + C� (

eiλ
)]∗

dλ

+
1

2π

∫ π

−π

[
A� (

eiλ
)
f(λ)− C� (

eiλ
)]

[f(λ) + g(λ)]−1

× g(λ)[f(λ) + g(λ)]−1
[
A� (

eiλ
)
f(λ)− C� (

eiλ
)]∗

dλ.

Using the following properties of spectral densities,

f(λ) = f∗(λ), g(λ) = g∗(λ),

f(λ)[f(λ) + g(λ)]−1g(λ) = g(λ)[f(λ) + g(λ)]−1f(λ),

the formula for calculating the mean square error Δ(f, g) can be rewritten as

(13)

Δ(f, g) =
∞∑
j=0

�a�j

∞∑
l=0

1

2π

∫ π

−π

[f(λ)(f(λ) + g(λ))−1g(λ)]� ei(l−j)λ dλ�al

+
∞∑
j=0

�c�j

∞∑
l=0

1

2π

∫ π

−π

[(f(λ) + g(λ))−1]� ei(l−j)λ dλ�cl

= 〈a,Ra〉+ 〈c,Bc〉,
where 〈a, b〉 means the scalar product in the space �2 and where the matrix R =
{R(j, l)}∞j,l=0 is constructed from the entries

R(j, l) =
1

2π

∫ π

−π

[
f(λ)(f(λ) + g(λ))−1g(λ)

]�
ei(l−j)λ dλ, l, j = 0, 1, . . . .

Combining all the above results we get the following assertion.

Theorem 3.1. Let {ζ(t), t ∈ R} and {θ(t), t ∈ R} be mutually uncorrelated periodi-
cally correlated stochastic processes such that both stationary sequences {ζj , j ∈ Z} and
{θj , j ∈ Z} defined by equalities (1) and (2), respectively, possess the spectral densi-
ties f(λ) and g(λ) that satisfy the minimality condition (7).

Further assume that the coefficients {�aj , j = 0, 1, . . . } defining the functional Aζ sat-
isfy conditions (6).

Then the spectral characteristic h(f, g) and mean square error Δ(f, g) of the optimal
linear estimator of the functional Aζ constructed from the observations of the process
ζ(t) + θ(t), t < 0, are calculated by equalities (11) and (13), respectively. The optimal

estimator Âζ of the functional Aζ is calculated by formula (8).

Theorem 3.1 implies the following result for the extrapolation problem of the func-
tional Aζ without noise.

Corollary 3.1. Let {ζ(t), t ∈ R} be a periodically correlated stochastic process such
that the stationary sequence {ζj , j ∈ Z} defined by relations (1) possesses the spectral
density f(λ) that satisfies the following minimality condition:

(14)

∫ π

−π

Tr
[
(f(λ))−1

]
dλ < ∞.

Let the coefficients {�aj , j = 0, 1, . . . } defining the functional Aζ satisfy condition (6).
Then the spectral characteristic h(f) and mean square error Δ(f) of the optimal linear
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estimator of the functional Aζ constructed from observations of the process ζ(t), t < 0,
are calculated as follows:

h�(f) = A� (
eiλ

)
− C� (

eiλ
)
[f(λ)]−1,(15)

Δ(f) = 〈c, a〉,(16)

where c = {�cj}∞j=0 = B−1a and where the matrix B = {B(l, j)}∞l,j=0 is constructed from

the entries

B(l, j) =
1

2π

∫ π

−π

[
(f(λ))−1

]�
ei(j−l)λ dλ, l, j = 0, 1, . . . .

The optimal estimator Âζ of the functional Aζ is given by

(17) Âζ =

∫ π

−π

h� (
eiλ

)
Zζ(dλ) =

∫ π

−π

∞∑
k=1

hk

(
eiλ

)
Zζ
k(dλ).

Remark 3.1. Kolmogorov [8] used another method for solving the problem of interpola-
tion of a stationary sequence (that is, for finding the spectral characteristic and mean
square error of the optimal linear estimator for a missing observation in the sequence).
Kolmogorov’s method is based on a treatment of the Fourier coefficients of the func-
tion 1/f . Theorem 3.1 shows that the Fourier coefficients of functions of spectral den-
sities can be used for finding the spectral characteristic and mean square error of the
optimal linear estimator for functionals of stationary sequences in the extrapolation and
interpolation problems for both cases of observations without and with a noise.

The expressions for the spectral characteristic and mean square error of the optimal
estimator written in this way are convenient for finding the least favorable spectral den-
sities and minimax spectral characteristics of estimators of the corresponding functionals
in the extrapolation and interpolation problems for both cases of observations without
and with a noise.

To solve the extrapolation problem for stationary sequences, Kolmogorov [8] (also
see [18, 16, 17, 15]) used a method based on the factorization of the spectral density. This
method is convenient for solving the extrapolation problems for observations without a
noise, while the method of Theorem 3.1 fits the case of observations with a noise, as well.

Below we use the method based on the factorization of spectral densities and apply it
to the estimation of a functional from observations without a noise.

Definition 3.1. Denote by Hζ(n) the closed linear subspace of the Hilbert space H
generated by random variables ζkj , k ≥ 1, j ≤ n. A sequence {ζj , j ∈ Z} is called regular
if

⋂
n Hζ(n) = ∅.

A regular stationary sequence {ζj , j ∈ Z} admits the canonical moving average repre-
sentation for its components

(18) ζkj =

j∑
u=−∞

M∑
m=1

dkm(j − u)εm(u)

(see [6]), where εm(u), m = 1, . . . ,M , u ∈ Z, are mutually orthogonal sequences with
orthogonal values in H, that is

E εm(u)εp(v) = δmpδuv,

where M is the multiplicity of the stationary sequence {ζj}, and where the sequences
dkm(u), k = 1, 2, . . . , m = 1, . . . ,M , u = 0, 1, . . . , are such that

∞∑
u=0

∞∑
k=1

M∑
m=1

|dkm(u)|2 = Pζ .
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The optimal linear estimator of components of a regular stationary sequence {ζj , j ∈ Z}
constructed from observations of this sequence for j < 0 can be written as follows:

(19) ζ̂kj =

−1∑
u=−∞

M∑
m=1

dkm(j − u)εm(u).

Since unknown values of components of a singular stationary sequence are estimated to
be error free, one can restrict the consideration to the case of regular stationary sequences
in the problem of optimal linear estimation.

The spectral density f(λ) of a regular stationary sequence {ζj , j ∈ Z} admits the
canonical representation

(20) f(λ) = P (λ)P ∗(λ), P (λ) =

∞∑
u=0

d(u)e−iuλ,

where the matrix d(u) = {dkm(u)}m=1,...,M
k=1,...,∞ is defined via the coefficients of canonical

representation (18).
Using representations (18) and (19) for components of a regular stationary sequence

{ζj , j ∈ Z}, one can write the mean square error of the optimal estimator Âζ as follows:

Δ(h(f); f) = E

∣∣∣∣∣∣
∞∑
k=1

∞∑
j=0

akj

j∑
u=0

M∑
m=1

dkm(j − u)εm(u)

∣∣∣∣∣∣
2

=
∞∑
l=0

M∑
m=1

∣∣∣∣∣∣
∞∑
k=1

∞∑
j=l

akjdkm(j − l)

∣∣∣∣∣∣
2

=
∞∑
l=0

‖(Ad)l‖2 = ‖Ad‖2,

where (Ad)l =
∑∞

j=l �a
�
j d(j − l), l ≥ 0. If the second condition in (6) holds, then A is a

compact operator.
Recall that the spectral characteristic h(f) minimizes the mean square error

(21) Δ(f) = Δ(h(f); f) = min
h∈L−

2 (f)
Δ(h; f) = ‖Ad‖2.

On the other hand, we derive from (9) that

Δ(h; f) =
1

2π

∫ π

−π

[
A

(
eiλ

)
− h(eiλ)

]�
f(λ)[A (eiλ)− h (eiλ)] dλ.

Thus it is natural to assume that

h(f) = A
(
eiλ

)
−X(λ),

where X(λ) is a vector column defined by

∞∑
l=0

‖(Ad)l‖2 =
1

2π

∫ π

−π

( ∞∑
l=0

(Ad)le
ilλ

) ( ∞∑
p=0

(Ad)pe
ipλ

)∗

dλ

=
1

2π

∫ π

−π

( ∞∑
l=0

(Ad)le
ilλ

)
Q(λ)P (λ)P ∗(λ)︸ ︷︷ ︸

f(λ)

Q∗(λ)

( ∞∑
p=0

(Ad)pe
ipλ

)∗

dλ

=
1

2π

∫ π

−π

X�(λ)f(λ)X(λ)dλ.
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Then X(λ) = S(eiλ)Q(λ), where

S(eiλ) =

∞∑
l=0

(Ad)le
ilλ

and

Q(λ) = {qmk(λ)}k=1,...,∞
m=1,...,M

is a matrix valued function satisfying the equation Q(λ)P (λ) = IM . The spectral char-
acteristic h(f) is calculated according to

(22) h�(f) = A� (
eiλ

)
− S

(
eiλ

)
Q(λ).

The above results are combined in the following assertion.

Theorem 3.2. Let {ζ(t), t ∈ R} be a periodically correlated stochastic process such
that the stationary sequence {ζj , j ∈ Z} defined by relation (1) possesses the spectral
density f(λ) that satisfies the minimality condition (14).

Let the coefficients {�aj , j = 0, 1, . . . } determining the functional Aζ in (5) satisfy
conditions (6).

Then the spectral characteristic h(f) and mean square error Δ(f) of the optimal linear
estimator of the functional Aζ constructed from observations of the process ζ(t), t < 0,

are calculated by relations (22) and (21). The optimal estimator Âζ of the functional Aζ
is calculated by (17).

Similarly to the reasoning above, one can prove the following assertion (that also
follows from Theorem 3.2) for the functional:

ANζ =

∫ (N+1)T

0

a(t)ζ(t) dt =

N∑
j=0

�a�j
�ζj .

Corollary 3.2. Let {ζ(t), t ∈ R} be a periodically correlated stochastic process such that
the stationary sequence {ζj , j ∈ Z} constructed according to equality (1) possesses the
spectral density f(λ) that satisfies the minimality condition (14).

Then the spectral characteristic hN (f) and mean square error ΔN (f) of the optimal
estimator of the functional ANζ constructed from observations of the process ζ(t), t < 0,
are calculated by

(23) h�
N (f) = A�

N

(
eiλ

)
− SN

(
eiλ

)
Q(λ),

(24) ΔN (f) =

N∑
l=0

‖(ANd)l‖2 = ‖ANd‖2,

AN

(
eiλ

)
=

N∑
j=0

�aje
ijλ, SN

(
eiλ

)
=

N∑
l=0

(ANd)le
ilλ, (ANd)l =

N∑
j=l

�a�j d(j − l).

4. Minimax (robust) extrapolation

One can use relations (11), (13), (15), (16), and (21)–(24) for evaluating the spec-
tral characteristic and mean square error of the optimal estimator of the functional Aζ
only if the spectral densities f(λ) and g(λ) of the stationary sequences {ζj , j ∈ Z} and
{θj , j ∈ Z} constructed according to relations (1) and (2), respectively, are known. Oth-
erwise, if the spectral densities are not known but a set D = Df × Dg of admissible
spectral densities is specified, then one can use the minimax approach to the problems of
estimation of the functional depending on unknown values of the underlying process. We
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search for an estimator that minimizes the error simultaneously for all spectral densities
belonging to a given class D.

Definition 4.1. Given a set of pairs of spectral densities D = Df × Dg, the spectral
densities f0(λ) ∈ Df and g0(λ) ∈ Dg are called the least favorable in D for the optimal
estimator of the functional Aζ if

Δ(f0, g0) = Δ
(
h(f0, g0); f0, g0

)
= max

(f,g)∈D
Δ(h(f, g); f, g).

Definition 4.2. Given a set of pairs of spectral densities D = Df × Dg, the spectral
characteristic h0(λ) of the optimal estimator of the functional Aζ is called minimax
(robust) if

h0(λ) ∈ HD =
⋂

(f,g)∈D

L−
2 (f + g), min

h∈HD

max
(f,g)∈D

Δ(h; f, g) = max
(f,g)∈D

Δ(h0; f, g).

Taking into account relations (11), (13), (15), (16), and (21)–(24), we prove the fol-
lowing auxiliary results.

Lemma 4.1. Spectral densities f0(λ) ∈ Df and g0(λ) ∈ Dg satisfying condition (7) are
the least favorable in the class D for the optimal estimator of the functional Aζ if the
Fourier coefficients of the functions(

f0(λ) + g0(λ)
)−1

, f0(λ)
(
f0(λ) + g0(λ)

)−1
, f0(λ)

(
f0(λ) + g0(λ)

)−1
g0(λ)

being the entries of the matrices B0, D0, and R0 determine a solution of the following
optimization problem:

(25) max
(f,g)∈D

(
〈a,Ra〉+

〈
(B)−1Da,Da

〉)
=

〈
a,R0a

〉
+

〈
(B0)−1D0a,D0a

〉
.

The minimax spectral characteristic h0 = h(f0, g0) of the optimal estimator of the func-
tional Aζ is calculated by equality (11) under the condition that h(f0, g0) ∈ HD.

Lemma 4.2. A spectral density f0(λ) ∈ Df satisfying condition (14) is the least fa-
vorable in the class Df for the optimal estimator of the functional Aζ constructed from
observations of the process ζ(t), t < 0, if the Fourier coefficients of the function (f0(λ))−1

constitute the matrix B0 that determine a solution of the following optimization problem:

(26) max
f∈Df

〈
(B)−1a, a

〉
=

〈
(B0)−1a, a

〉
.

The minimax spectral characteristic h0 = h(f0) of the optimal estimator of the func-
tional Aζ is calculated by equality (15) under the condition that h(f0) ∈ HD.

Lemma 4.3. A spectral density f0(λ) ∈ Df satisfying condition (14) is the least fa-
vorable in the class Df for the optimal estimator of the functional Aζ constructed from
observations of the process ζ(t), t < 0, if it admits the canonical factorization

(27) f0(λ) =

( ∞∑
u=0

d0(u)e−iuλ

) ( ∞∑
u=0

d0(u)e−iuλ

)∗

,

where d0 = {d0(u), u = 0, 1, . . . } is a solution of the following conditional extremum
problem:

(28) ‖Ad‖2 → max, f(λ) =

( ∞∑
u=0

d(u)e−iuλ

) ( ∞∑
u=0

d(u)e−iuλ

)∗

∈ D.

The minimax spectral characteristic h0 = h(f0) of the optimal estimator of the func-
tional Aζ is calculated according to equality (22) under the condition that h(f0) ∈ HD.
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Lemma 4.4. A spectral density f0(λ) ∈ Df satisfying condition (14) is the least favor-
able in the class Df for the optimal estimator of the functional ANζ constructed from
observations of the process ζ(t), t < 0, if it admits the canonical factorization

(29) f0(λ) =

(
N∑

u=0

d0(u)e−iuλ

) (
N∑

u=0

d0(u)e−iuλ

)∗

,

where d0 = {d0(u), u = 0, 1, . . . , N} is a solution of the following conditional extremum
problem:

(30) ‖ANd‖2 → max, f(λ) =

(
N∑

u=0

d(u)e−iuλ

) (
N∑

u=0

d(u)e−iuλ

)∗

∈ D.

The minimax spectral characteristic h0
N = hN (f0) of the optimal estimator of the func-

tional Aζ is calculated according to equality (23) under the condition that hN (f0) ∈ HD.

The proof of Lemmas 4.1–4.4 is straightforward; they follow directly from Theo-
rems 3.1 and 3.2 and their corollaries in view of the definition of the least favorable
densities and minimax spectral characteristic.

The least favorable spectral densities f0(λ) ∈ Df , g
0(λ) ∈ Dg and minimax spectral

characteristic h0 = h(f0, g0) form a saddle point of the function Δ(h; f, g) in the set
HD ×D. The saddle point inequalities

Δ
(
h0; f, g

)
≤ Δ

(
h0; f0, g0

)
≤ Δ

(
h; f0, g0

)
, ∀h ∈ HD, ∀f ∈ Df , ∀g ∈ Dg,

hold if h0 = h(f0, g0), h(f0, g0) ∈ HD, and if (f0, g0) is a solution of the following
conditional extremum problem:

(31) Δ
(
h(f0, g0); f, g

)
→ sup, (f, g) ∈ D,

Δ
(
h(f0, g0); f, g

)
=

1

2π

∫ π

−π

[
A� (

eiλ
)
g0(λ) +

(
C0(eiλ)

)�] (
f0(λ) + g0(λ)

)−1

× f(λ)
(
f0(λ) + g0(λ)

)−1
[
g0(λ)A (eiλ) + C0 (eiλ)

]
dλ

+
1

2π

∫ π

−π

[
A� (

eiλ
)
f0(λ)−

(
C0(eiλ)

)�] (
f0(λ) + g0(λ)

)−1

× g(λ)
(
f0(λ) + g0(λ)

)−1
[
f0(λ)A (eiλ)− C0 (eiλ)

]
dλ.

The conditional extremum problem (31) is equivalent to the following unconditional
extremum problem:

ΔD(f, g) = −Δ
(
h(f0, g0); f, g

)
+ δ((f, g)|D) → inf,

where δ((f, g)|D) denotes the indicator function of the set D. A solution (f0, g0) of the
latter problem is determined by the condition 0 ∈ ∂ΔD(f0, g0) (see [14]), which is a
necessary and sufficient condition for the point (f0, g0) to belong to the set of minimums
of a convex function. Here ∂ΔD(f0, g0) is a subdifferential of the convex functional
ΔD(f, g) at the point (f, g) = (f0, g0).

Now we apply the conditions just obtained and find the least favorable spectral den-
sities in some classes of admissible densities.
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5. Least favorable spectral densities in the class D0 ×Dε

Consider the problem of the minimax estimation of the functional Aζ from observa-
tions of the process ζ(t)+θ(t), t < 0, under the condition that the spectral densities f(λ)
and g(λ) of the stationary sequences {ζj , j ∈ Z} and {θj , j ∈ Z}, respectively, constructed
according to relations (1), (2), belong to the sets

D0 =

{
f(λ)

∣∣∣ 1

2π

∫ π

−π

Tr f(λ) dλ = Pζ

}
,

Dε =

{
g(λ)

∣∣∣ Tr g(λ) = (1− ε)ω(λ) + εu(λ),
1

2π

∫ π

−π

Tr g(λ) dλ = Pθ

}
,

where ω(λ) is a known nonnegative function and u(λ) is an unknown nonnegative func-
tion. The set D0 is described by restrictions imposed on the moment of the spectral
density f(λ). The set Dε describes the model of a “ε-contamination” of a stochastic
sequence {θj , j ∈ Z}.

To determine the pair of the least favorable densities (f0(λ), g0(λ)) one can use the
method of indefinite Lagrange multipliers. The Lagrange function for the conditional
extremum problem (31) is given by

L(f, g) = −Δ(h(f0, g0); f, g) + α2

(
1

2π

∫ π

−π

Tr f(λ) dλ− Pζ

)
+ β2

(
1

2π

∫ π

−π

Tr g(λ) dλ− Pθ

)
+ γ2

(
Tr g(λ)− (1− ε)ω(λ)− εu(λ)

)
,

where α2, β2, and γ2 are Lagrange multipliers. According to the Lagrange method, a
solution (f0(λ), g0(λ)) of the problem (31) satisfies the equation(

g0(λ)A (eiλ) + C0 (eiλ)
)(

A� (
eiλ

)
g0(λ) +

(
C0

(
eiλ

))�)
= α2

(
f0(λ) + g0(λ)

)2
,(32) (

f0(λ)A (eiλ)− C0 (eiλ)
) (

A� (
eiλ

)
f0(λ)−

(
C0

(
eiλ

))�)
=

(
β2 + ϕ(λ)

) (
f0(λ) + g0(λ)

)2
,

(33)

where ϕ(λ) ≥ 0 and ϕ(λ) = 0 if Tr g0(λ) ≥ (1− ε)ω(λ).
The latter equations (32)–(33) define the least favorable spectral densities in the class

D0 ×Dε.
The results above are combined in the following assertion.

Theorem 5.1. Let spectral densities f(λ) ∈ D0, g(λ) ∈ Dε satisfy condition (7). Then
the matrices of spectral densities f0(λ), g0(λ) are the least favorable in the class D0×Dε

for the optimal estimator of the functional Aζ if they satisfy relations (32), (33) and
determine a solution of the extremum problem (25). The minimax spectral characteristic
h(f0, g0) of the optimal estimator of the functional Aζ is calculated by formula (11).

In the case of the estimation problem for the functional Aζ by observations without
noise, Theorem 5.1 implies the following corollaries for the sets D0 and Dε of admissible
densities.

Corollary 5.1. Let a spectral density f0(λ) ∈ D0 satisfy condition (14). Then the
matrix of spectral density f0(λ) is the least favorable in the class D0 for the optimal
estimator of the functional Aζ constructed from observations of the process ζ(t), t < 0,
if it satisfies the relation

C0(eiλ)
(
C0

(
eiλ

))�
= α2

(
f0(λ)

)2
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and determines a solution of the extremum problem (26). The minimax spectral charac-
teristic h(f0) of the optimal estimator of the functional Aζ is determined by relation (15).

Corollary 5.2. Let a spectral density f0(λ) ∈ Dε satisfy condition (14). Then the matrix
of the spectral density f0(λ) is the least favorable in the class Dε for the optimal estimator
of the functional Aζ constructed from the observations of the process ζ(t), t < 0, if it
satisfies the relation

C0(eiλ)
(
C0

(
eiλ

))�
=

(
β2 + ϕ(λ)

) (
f0(λ)

)2
and determines a solution of the extremum problem (26). The minimax spectral charac-
teristic h(f0) of the optimal estimator of the functional Aζ is determined by formula (15).

6. Least favorable densities in the class D0

Consider the minimax estimation problem for the functionals Aζ and ANζ by using
the observations of the process ζ(t), t < 0, for the set D0 of spectral densities f(λ) of
stationary sequences {ζj , j ∈ Z} constructed according to relation (1) and that admit
the canonical factorization (20).

To determine the least favorable density f0(λ) we use the method of indefinite La-
grange multipliers. The Lagrange function for the conditional extremum function (28) is
given by

L(f) = − 1

2π

∫ π

−π

( ∞∑
l=0

(Ad)le
ilλ

)
Q(λ)f(λ)Q∗(λ)

( ∞∑
l=0

(Ad)le
ilλ

)∗

dλ

+ α2

(
1

2π

∫ π

−π

Tr f(λ) dλ− Pζ

)
,

where α2 is the Lagrange multiplier. Following the Lagrange method, we find that a
solution f0(λ) of problem (28) satisfies the relation

Q�(λ)

( ∞∑
l=0

(Ad)le
ilλ

)� ( ∞∑
l=0

(Ad)leilλ

)
Q(λ) = α2I∞,

which is equivalent to

(34)

( ∞∑
l=0

(Ad)le
ilλ

)� ( ∞∑
l=0

(Ad)leilλ

)
= α2P�(λ)P (λ).

Removing the parentheses on the left hand side of (34) and then equating the coeffi-
cients of eilλ, l ≥ 0, on both sides of (34) we get

∞∑
t=0

d�(t)
∞∑
p=0

∞∑
s=0

�at+l+p�a
∗
s+pd(s) = α2

∞∑
t=0

d�(t)d(t+ l).

Given a fixed t = 0, 1, . . . , we change the index of summation t + l = r and apply the
transposition in the left hand side of the latter equality. Then we obtain

(35)

∞∑
p=0

∞∑
s=0

�ar+p�a
�
s+p d(s) = α2d(r), r = 0, 1, . . . .

If equalities (35) hold for all r = 0, 1, . . . , then equality (34) holds, as well.
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The condition f(λ) ∈ D0 yields the following restriction:

1

2π

∫ π

−π

Tr

( ∞∑
u=0

d(u)e−iuλ

) ( ∞∑
u=0

d(u)e−iuλ

)∗

dλ =
∞∑
u=0

∞∑
k=1

M∑
m=1

|dkm(u)|2

=

∞∑
u=0

‖d(u)‖2 = ‖d‖2 = Pζ .

(36)

The results above allow one to state the following assertion.

Theorem 6.1. The spectral density (27) of the moving average sequence (18) is the least
favorable in the class D0 for the optimal estimator of the functional Aζ. The sequence
of matrices

d0 = {d0(u), u = 0, 1, . . . }

is defined by equality (35) and condition (36). The function h(f0) calculated according
to formula (22) is the minimax spectral characteristic of the functional Aζ.

Applying the Lagrange method of indefinite multipliers to the conditional optimiza-
tion problem (30) and reasoning as above, one can prove for the functional ANζ that
relation (34) in the case under consideration is given by

(37)

(
N∑
l=0

(ANd)le
ilλ

)� (
N∑
l=0

(ANd)leilλ

)

= α2

(
N∑

u=0

d0(u)e−iuλ

)� (
N∑

u=0

d0(u)e−iuλ

)
.

Equality (37) follows from the equalities

(38)
N−r∑
p=0

N−p∑
s=0

�ar+p�a
�
s+pd(s) = α2d(r), r = 0, 1, . . . , N.

Restriction (36) is rewritten as follows:

(39) ‖dN‖2 =
N∑

u=0

‖d(u)‖2 =
N∑

u=0

∞∑
k=1

M∑
m=1

|dkm(u)|2 = Pζ .

The above results allow one to state the following assertion.

Theorem 6.2. The spectral density (29) of the moving average sequence

ζkj =

j∑
u=j−N

M∑
m=1

gkm(j − u)εm(u)

is the least favorable in the class D0 for the optimal estimator of the functional ANζ.
The sequence of matrices

d0
N = {d0(u), u = 0, 1, . . . , N}

is determined by equalities (38) and condition (39). The function hN (f0) calculated by
formula (23) is the minimax spectral characteristic of the functional ANζ.
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7. Concluding remarks

A method is proposed for solving the optimal linear estimation problem for functionals
depending on unknown values of periodically correlated stochastic processes. The method
is based on reducing the problem to a corresponding problem for stationary (infinite
dimensional) sequences. We also use the property that the mean square error can be
written as a linear functional in the space L1 × L1 with respect to (f, g), which allows
one to solve the conditional extremum problem and find a minimax estimator.

There are a number of papers devoted to periodically correlated sequences, and only
a few of them deal with periodically correlated processes (see, for example, the papers
by Makagon [10] and [11]).

In the current paper, we establish a formula for the mean square error and for the
spectral characteristic in the optimal estimation problem for the functional

Aζ =

∫ ∞

0

a(t)ζ(t) dt

that depends on unknown values of a periodically correlated stochastic process ζ(t). The
estimator is constructed from observations of the process

ζ(t) + θ(t), t < 0,

where θ(t) is a periodically correlated stochastic process being uncorrelated with ζ(t).
The problem is considered for both cases of observations with and without a noise. We
show that the periodically correlated stochastic process generating the stationary (infinite
dimensional) one-sided moving average sequences is the least favorable for the optimal
linear estimation of the functional Aζ in the class of admissible spectral densities with
restrictions imposed on the moments.
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