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INTERPOLATION OF PERIODICALLY CORRELATED

STOCHASTIC SEQUENCES

UDC 519.21

I. I. DUBOVETS’KA, O. YU. MASYUTKA, AND M. P. MOKLYACHUK

Abstract. We study the problem of optimal estimation of a linear functional of
unknown values of a periodically correlated random sequence from observed values
of a sequence with an additive noise. Formulas for calculating the mean square
error and spectral characteristic of the optimal linear estimate of a functional are
established in the case where the spectral densities are known. The least favorable
spectral densities and minimax spectral characteristic of the optimal linear estimate
of a functional are found for some classes of admissible spectral densities.

1. Introduction

Gladyshev [5] studied the spectral properties and representations of periodically corre-
lated sequences. His results are based on relationships between periodically correlated
sequences and vector stationary sequences. Following the Gladyshev approach, the esti-
mation problem for periodically correlated sequences can be reduced to the corresponding
problem for vector stationary sequences. The main results concerning representations of
periodically correlated sequences in terms of simpler random sequences are given in the
book by Hurd and Miamee [8].

Classical methods for solving the problems of extrapolation, interpolation, and filtra-
tion for stationary processes with known spectral densities are developed by Kolmogo-
rov [9], Wiener [21], and Yaglom [22, 23]. The problem of prediction for vector stationary
sequences is studied by Rozanov [20]. If the spectral densities are unknown, but a set of
admissible spectral densities is specified instead, the minimax method can be used in the
problem of estimation. This method consists in minimizing the error for all densities of
a given class simultaneously. Grenander [6] is the first to use this approach for the prob-
lem of extrapolation of stationary processes. The problem of minimax extrapolation and
filtration of stationary sequences is studied by Franke [2, 3] and Franke and Poor [4] with
the help of methods of convex optimization. Moklyachuk [10]–[16] and Moklyachuk and
Masyutka [17]–[19] studied the problems of extrapolation, interpolation, and filtration
for stationary random processes and sequences.

In the current paper, we study the problem of optimal linear estimation of the func-
tional

ANζ =
N∑
j=0

a(j)ζ(j)
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from observations ζ(j) + θ(j) for j ∈ Z \ {0, 1, . . . , N}, where ζ(j) is a periodically
correlated sequence and θ(j) is a periodically correlated sequence that is uncorrelated
with ζ(j). We obtain formulas for calculation of the spectral characteristic and mean
square error of the estimate of the functional ANζ in the case where the spectral densities
of the sequence ζ(j) and those of the noise θ(j) are known. If the spectral densities are
unknown, but a set of admissible spectral densities is specified, we propose formulas to
calculate the least favorable spectral density and the minimax spectral characteristic of
the optimal linear estimate of the functional.

2. Periodically correlated sequences

generated by vector stationary sequences

Periodically correlated sequences are random sequences that have a periodic structure
(see [5, 8]).

Definition 2.1. A sequence of complex-valued random variables ζ(n), n ∈ Z, such that
E |ζ(n)|2 < +∞, is called periodically correlated with period T > 0 if

E ζ(n+ T ) = E ζ(n),(1)

E ζ(n+ T )ζ(m+ T ) = R(n+ T,m+ T ) = R(n,m),(2)

and if there is no number, smaller than T > 0, for which equalities (1) and (2) hold.

Studies of properties of periodically correlated random sequences are initiated by
Gladyshev [5]. Note also that stochastic periodic processes are considered by Bennet [1]
and called the cyclostationary processes there.

Definition 2.2 ([20]). A complex-valued T -dimensional random sequence

�ξ(n) = {ξk(n)}T−1
k=0 , n ∈ Z,

such that E ‖�ξ(n)‖2 < ∞, is called stationary if

E ξk(n) = mk

and
E ξk(n)ξj(m) = Rkj(n,m) = Rkj(n−m)

for all n,m ∈ Z and j, k ∈ {0, 1, . . . , T − 1}.

In this case, R(n) = {Rkj(n)}T−1
k,j=0, n ∈ Z, is called the covariance matrix of the

T -dimensional stationary sequence �ξ(n).

Theorem 2.1 (Gladyshev [5]). A sequence ζ(n) is a periodically correlated random
sequence with period T if and only if there exists a T -dimensional stationary sequence
�ξ(n) = {ξk(n)}T−1

k=0 such that ζ(n) admits the following representation:

(3) ζ(n) =

T−1∑
k=0

e2πink/T ξk(n), n ∈ Z.

We say that the sequence �ξ(n) generates the sequence ζ(n).

Denote by f
�ξ(λ) the matrix of spectral densities of a T -dimensional stationary se-

quence �ξ(n) = {ξk(n)}T−1
k=0 . Let f

�ζ(λ) be the matrix of the spectral densities of the

T -dimensional stationary sequence �ζ(n) constructed by subdividing a periodically corre-
lated sequence ζ(n) into the blocks of length T . This means that the coordinate p of the

random vector �ζ(n) is equal to

[�ζ(n)]p = ζ(nT + p), n ∈ Z, p = 0, 1, . . . , T − 1.
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If the spectral density f
�ξ(λ) exists, then the spectral density f

�ζ(λ) exists, too. Moreover

(4) f
�ζ(λ) = T · V (λ)f

�ξ(λ/T )V −1(λ),

where V (λ) is an unitary matrix with entries

vkj(λ) =
1√
T
e2πijk/T+ijλ/T , k, j = 0, 1, . . . , T − 1.

Since V (λ) is continuous for λ ∈ [−π, π) and since the inverse matrix exists for V (λ),
one can rewrite equality (4) as

(5) f
�ξ(λ) =

1

T
· V −1(Tλ)f

�ζ(Tλ)V (Tλ).

3. Projection method for linear interpolation

Let ζ(n) and θ(n) be mutually uncorrelated T -periodically correlated random se-
quences. Assuming that the values of ζ(n) are unknown, consider the problem of optimal

linear estimation of the functional ANζ =
∑N

j=0 a(j)ζ(j) from observed values of the se-

quence ζ(j) + θ(j) for j ∈ Z \ {0, 1, . . . , N}.
Applying relation (3) for periodically correlated and vector stationary sequences, we

rewrite the functional ANζ as follows:

ANζ =

N∑
j=0

a(j)ζ(j) =

N∑
j=0

a(j)

T−1∑
k=0

e2πijk/T ξk(j)

=

N∑
j=0

T−1∑
k=0

a(j)e2πijk/T ξk(j) =

N∑
j=0

�a�(j)�ξ(j) = AN
�ξ,

where �a(j) = (a0(j), . . . , aT−1(j))
�, ak(j) = a(j)e2πijk/T , k = 0, 1, . . . , T − 1, and where

�ξ(j) = {ξk(j)}T−1
k=0 is a T -dimensional stationary sequence generating ζ(j).

Let �ξ(j) and �η(j) be uncorrelated T -dimensional stationary random sequences whose
matrices of spectral densities are given by

f
�ξ(λ) =

{
f
�ξ
kl(λ)

}T−1

k,l=0
and f�η(λ) =

{
f�η
kl(λ)

}T−1

k,l=0
,

respectively.
Consider the problem of optimal linear estimation of the functional

AN
�ξ =

N∑
j=0

�a�(j)�ξ(j)

from observed values of the sequence �ξ(j) + �η(j) for j ∈ Z \ {0, 1, . . . , N}.
Suppose the spectral densities f

�ξ(λ) and f�η(λ) satisfy the minimality condition (see
[20]), namely,

(6)

∫ π

−π

Tr

[(
f
�ξ(λ) + f�η(λ)

)−1
]
dλ < +∞.

Condition (6) is necessary and sufficient for the property that an error-free interpolation

is not possible for the sequence �ξ(j) + �η(j) (see [20]).
Denote by L2(f) the Hilbert space of complex-valued vector functions

b(λ) = {bk(λ)}T−1
k=0
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that are square integrable with respect to the measure whose density f(λ) = {fkl(λ)}T−1
k,l=0

satisfies ∫ π

−π

b�(λ)f(λ)b(λ)dλ =

∫ π

−π

T−1∑
k,l=0

bk(λ)bl(λ)fkl(λ) dλ < +∞.

The subspace of L2(f) generated by the functions

eijλδk, k = 0, 1, . . . , T − 1, j ∈ Z \ {0, 1, . . . , N},

is denoted by LN−
2 (f), where δk = {δkl}T−1

l=0 and

δkl =

{
1, k = l,

0, k �= l.

Every linear estimate ÂN
�ξ of the functional AN

�ξ constructed from observed values of

the sequence �ξ(j) + �η(j) for j ∈ Z \ {0, 1, . . . , N} can be written as

ÂN
�ξ =

∫ π

−π

h� (eiλ) (Zξ(dλ) + Zη(dλ)
)
=

∫ π

−π

T−1∑
k=0

hk

(
eiλ

) (
Zξ
k(dλ) + Zη

k (dλ)
)
,

where Zξ(Δ) =
{
Zξ
k(Δ)

}T−1

k=0
and Zη(Δ) = {Zη

k (Δ)}T−1

k=0 are random orthogonal mea-

sures corresponding to the sequences �ξ(j) and �η(j) and where h(eiλ) =
{
hk(e

iλ)
}T−1

k=0
is

the spectral characteristic of the estimate ÂN
�ξ. Note that h(eiλ) ∈ LN−

2 (f
�ξ + f�η).

The mean square error Δ(h; f
�ξ, f�η) of the estimate ÂN

�ξ is given by

Δ
(
h; f

�ξ, f�η
)
= E

∣∣∣AN
�ξ − ÂN

�ξ
∣∣∣2

=
1

2π

∫ π

−π

([
AN (eiλ)− h(eiλ)

]�
f
�ξ(λ)[AN (eiλ)− h(eiλ)]

+ h�(eiλ)f�η(λ)h(eiλ)
)
dλ,

AN (eiλ) =
N∑
j=0

�a(j)eijλ.

The spectral characteristic h(f
�ξ, f�η) of the optimal linear estimate AN

�ξ minimizes the
mean square error

Δ
(
f
�ξ, f�η

)
= Δ

(
h
(
f
�ξ, f�η

)
; f

�ξ, f�η
)

= min
h∈LN−

2 (f�ξ+f�η)
Δ
(
h; f

�ξ, f�η
)
= min

ÂN
�ξ
E
∣∣∣AN

�ξ − ÂN
�ξ
∣∣∣2 .(7)

The optimal linear estimate ÂN
�ξ is a solution of the optimization problem (7). Using

the classical Kolmogorov projection method [9], we obtain

h�
(
f
�ξ, f�η

)
=
(
A�

N

(
eiλ

)
f
�ξ(λ)− C�

N

(
eiλ

)) [
f
�ξ(λ) + f�η(λ)

]−1

= A�
N

(
eiλ

)
−
(
A�

N

(
eiλ

)
f�η(λ) + C�

N

(
eiλ

)) [
f
�ξ(λ) + f�η(λ)

]−1
(8)

and

(9) Δ
(
f
�ξ, f�η

)
= 〈�aN , RN�aN 〉+ 〈�cN , BN�cN 〉,
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where

CN (eiλ) =

N∑
j=0

�c(j)eijλ, �aN = {�a(k)}Nk=0 , �cN = {�c(k)}Nk=0 = B−1
N DN�aN ,

〈a, b〉 denotes the scalar product, and where BN , DN , and RN are matrices with entries
equal to the following T × T block matrices:

BN (j, k) =
1

2π

∫ π

−π

[(
f
�ξ(λ) + f�η(λ)

)−1
]�

ei(k−j)λ dλ,

DN (j, k) =
1

2π

∫ π

−π

[
f
�ξ(λ)

(
f
�ξ(λ) + f�η(λ)

)−1
]�

ei(k−j)λ dλ,

RN (j, k) =
1

2π

∫ π

−π

[
f
�ξ(λ)

(
f
�ξ(λ) + f�η(λ)

)−1

f�η(λ)

]�
ei(k−j)λdλ

for k, j = 0, 1, . . . , N . Thus the following theorem holds for the interpolation of a T -
dimensional stationary sequence [17].

Theorem 3.1. Let �ξ(j) = {ξk(j)}T−1
k=0 and �η(j) = {ηk(j)}T−1

k=0 be mutually uncorrelated
T -dimensional stationary sequences whose matrices of spectral densities are given by

f
�ξ(λ) =

{
f
�ξ
kj(λ)

}T−1

k,j=0
and f�η(λ) =

{
f�η
kj(λ)

}T−1

k,j=0
,

respectively.

Assume that the matrices f
�ξ(λ) and f�η(λ) satisfy the minimality condition (6). Then

the spectral characteristic h
(
f
�ξ, f�η

)
and the mean square error Δ

(
f
�ξ, f�η

)
of the optimal

linear estimate of the functional AN
�ξ constructed from observed values of the sequence

�ξ(j) + �η(j), j ∈ Z \ {0, 1, . . . , N}, are given by equalities (8) and (9), respectively.

Corollary 3.1. Let �ξ(j) = {ξk(j)}T−1
k=0 be a T -dimensional stationary sequence whose

matrix of spectral densities f
�ξ(λ) satisfies the minimality condition

(10)

∫ π

−π

Tr

[(
f
�ξ(λ)

)−1
]
dλ < +∞.

Then the spectral characteristic h(f
�ξ) and the mean square error Δ(f

�ξ) of the optimal lin-

ear estimate of the functional AN
�ξ constructed from observed values of the sequence �ξ(j),

j ∈ Z \ {0, 1, . . . , N}, are given by

(11) h�
(
f
�ξ
)
= A�

N

(
eiλ

)
− C�

N

(
eiλ

) [
f
�ξ(λ)

]−1

,

(12) Δ
(
f
�ξ
)
= 〈�cN ,�aN 〉,

where �aN = {�a(k)}Nk=0, �cN = {�c(k)}Nk=0 = B−1
N �aN , and where BN is the matrix with

entries equal to the following T × T block matrices:

BN (j, k) =
1

2π

∫ π

−π

[(
f
�ξ(λ)

)−1
]�

ei(k−j)λ dλ

for k, j = 0, 1, . . . , N .

Using the latter result, one can solve the problem of estimation of the functional ANζ
constructed from a T -periodically correlated sequence.
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Theorem 3.2. Let ζ(j) and θ(j) be uncorrelated T -periodically correlated random se-
quences. Then the optimal linear estimate of the functional ANζ constructed from ob-
served values of the sequence ζ(j) + θ(j), j ∈ Z \ {0, 1, . . . , N}, is given by

ÂNζ =

∫ π

−π

h�
(
f
�ξ, f�η

) (
Zξ(dλ) + Zη(dλ)

)
=

∫ π

−π

T−1∑
k=0

hk

(
f
�ξ, f�η

)(
Zξ
k(dλ) + Zη

k (dλ)
)
,

where �ξ(j) and �η(j) are vector sequences generating the T -periodically correlated random

sequences ζ(j) and θ(j), respectively. The spectral characteristic h
(
f
�ξ, f�η

)
and mean

square error Δ
(
f
�ξ, f�η

)
of the estimate ÂNζ are given by equalities (8) and (9), where

�a(j) = (a0(j), . . . , aT−1(j))
� and ak(j) = a(j)e2πijk/T , k = 0, 1, . . . , T −1. The matrices

of spectral densities f
�ζ(λ) and f

�θ(λ) of the T -dimensional stationary sequences �ζ(j)

and �θ(j) obtained by subdividing the one-dimensional periodically correlated sequences
ζ(j) and θ(j) into blocks of length T are related to the corresponding matrices of spectral

densities f
�ξ(λ) and f�η(λ) of the sequences �ξ and �η by (4).

Corollary 3.2. Let ζ(j) be a T -periodically correlated random sequence. Then the opti-
mal linear estimate of the functional ANζ constructed from observations of the sequence
ζ(j), j ∈ Z \ {0, 1, . . . , N}, is given by

(13) ÂNζ =

∫ π

−π

h�
(
f
�ξ
)
Zξ(dλ) =

∫ π

−π

T−1∑
k=0

hk

(
f
�ξ
)
Zξ
k(dλ),

where �ξ(j) is a stationary sequence generating the T -periodically correlated random se-

quence ζ(j). The spectral characteristic h
(
f
�ξ
)
and the mean square error Δ

(
f
�ξ
)
of the

estimate ÂNζ are given by equalities (11) and (12), respectively, where

�a(j) = (a0(j), . . . , aT−1(j))
�, ak(j) = a(j)e2πijk/T , k = 0, 1, . . . , T − 1.

The matrix of the spectral density f
�ζ of the T -dimensional stationary sequence �ζ(j) ob-

tained by subdividing the one-dimensional periodically correlated sequence ζ(j) into blocks

of length T is related to the matrix of the spectral density f
�ξ of the sequence �ξ by (4).

Example 3.1. Consider a 2-periodically correlated sequence ζ(n) = ξ0(n) + eπinξ1(n),

where �ξ(n) =
(

ξ0(n)
ξ1(n)

)
is a 2-dimensional stationary sequence. Let ξ0(n) = η(n) be a

one-dimensional stationary sequence with spectral density f(λ) = (2π)−1 (white noise)
and let ξ1(n) = γ(n) be a one-dimensional stationary sequence, uncorrelated with η(n)

and whose spectral density is g(λ) = (5 + 4 cosλ)/(2π) =
∣∣2 + eiλ

∣∣2/(2π).
We estimate the functional

A1ζ = 2ζ(0)− 3ζ(1) = (2, 2)

(
ξ0(0)
ξ1(0)

)
+ (−3, 3)

(
ξ0(1)
ξ1(1)

)
= A1

�ξ

from the observations ζ(n), n ∈ Z \ {0, 1}. Here a(0) = 2, a(1) = −3.

In this case, the matrix of the spectral densities �ξ(n) is such that

f
�ξ(λ) =

(
f(λ) 0
0 g(λ)

)
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and the inverse matrix [f
�ξ(λ)]

−1
satisfies the minimality condition (10). The matrix B1,

its inverse B−1
1 , and the vector of unknown coefficients �c1 are given by

B1 =
2π

3

⎛
⎜⎜⎝
1 0 0 0
0 4 0 −2
0 0 1 0
0 −2 0 4

⎞
⎟⎟⎠ , B−1

1 =
1

4π

⎛
⎜⎜⎝
2 0 0 0
0 2 0 1
0 0 2 0
0 1 0 2

⎞
⎟⎟⎠ , �c1 =

1

4π

⎛
⎜⎜⎝

4
7
−6
8

⎞
⎟⎟⎠ ,

respectively.
Then the spectral characteristic defined by equality (11) is equal to

h�(f
�ξ) =

⎛
⎜⎜⎝0,−2

3

∞∑
j=−∞,
j �=0,1

(−1)j
(

7

2|j|
− 8

2|j−1|

)
eijλ

⎞
⎟⎟⎠ .

The optimal linear estimate A1ζ defined by (13) is

Â1ζ = −2

3

∞∑
j=−∞,
j �=0,1

(−1)j
(

7

2|j|
− 8

2|j−1|

)
ξ1(j).

The mean square error of the estimate Â1ζ determined from (12) equals Δ(f
�ξ) = 16

π ≈
5.09. Then the matrix of the spectral densities of the T -dimensional stationary se-

quence �ζ(j) defined by (4) is equal to

f
�ζ(λ) =

1

π

(
3 + 2 cos(λ2 ) −2e

−iλ
2 − 1− e−iλ

−2e
iλ
2 − 1− eiλ 3 + 2 cos(λ2 )

)
.

Example 3.2. Let ζ(n) = ξ0(n) + eπinξ1(n), where ξ0(n) = η(n) is a one-dimensional
Ornstein–Uhlenbeck stationary sequence with spectral density

f(λ) =
q1

2π|1− be−iλ|2

and let ξ1(n) = η(n) + γ(n), where γ(n) is an uncorrelated with η(n) one-dimensional
stationary sequence with spectral density g(λ) = q2/(2π). Let q1, q2 ≥ 0 and |b| < 1. We
estimate the functional A1ζ = a(0)ζ(0) + a(1)ζ(1) with a(0) = α and a(1) = β.

In this case, the matrix of the spectral densities �ξ(n) is given by

f
�ξ(λ) =

(
f(λ) f(λ)
f(λ) f(λ) + g(λ),

)

and the inverse matrix [f
�ξ(λ)]

−1
satisfies the minimality condition (10). The spectral

characteristic of the linear optimal estimate A1ζ defined by (11) is equal to

h�(f
�ξ) =

(
2αb

1 + b2 + b4
[(
1 + b2

)
e−iλ + be2iλ

]
, 0

)
.

The optimal linear estimate of A1ζ defined by (13) has the form

Â1ζ =
2αb

1 + b2 + b4
(
1 + b2

)
ξ0(−1) +

2αb2

1 + b2 + b4
ξ0(2).

Then the mean square error of this estimate defined by (12) is equal to

Δ(f
�ξ) =

q2
2π

(
α2 + β2

)
+

4α2q1
1π(1 + b2 + b4)

(
1 + b2

)
,
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and the matrix of spectral densities of the T -dimensional stationary sequence �ζ(j) defined
by (4) is given by

f
�ζ(λ) =

q2
2π

(
4q1

q2|1−be−iλ/2|2 + 1 e−iλ/2

eiλ/2 1

)
.

The following results are expressed in terms of the matrices of spectral densities f
�ζ(λ)

and f
�θ(λ) of the T -dimensional stationary sequences �ζ(j) and �θ(j), respectively. These

sequences are obtained by subdividing the one-dimensional periodically correlated se-
quences ζ(j) and θ(j) into blocks of length T .

Theorem 3.3. Let ζ(j) and θ(j) be uncorrelated T -periodically correlated sequences and

let f
�ζ(λ) and f

�θ(λ) be the matrices of spectral densities of the T -dimensional stationary

sequences �ζ(j) and �θ(j), respectively, obtained by subdividing the one-dimensional peri-

odically correlated sequences ζ(j) and θ(j) into blocks of length T . Assume that f
�ζ(λ)

and f
�θ(λ) satisfy the minimality condition (6). Then the optimal linear estimate of the

functional ANζ constructed from the observations ζ(j) + θ(j), j ∈ Z \ {0, 1, . . . , N}, is
given by

ÂNζ =

∫ π

−π

h�
(
f
�ζ , f

�θ
) (

Zξ(dλ) + Zη(dλ)
)
=

∫ π

−π

T−1∑
k=0

hk

(
f
�ζ , f

�θ
)(

Zξ
k(dλ) + Zη

k (dλ)
)
,

where �ξ(j) and �η(j) are stationary sequences generating ζ(j) and θ(j), respectively. The

spectral characteristic h
(
f
�ζ , f

�θ
)
and the mean square error Δ

(
f
�ζ , f

�θ
)
of the estimate

ÂNζ are given by

(14)

h�
(
f
�ζ , f

�θ
)
=
(
A�

N

(
eiλ

)
V −1(Tλ)f

�ζ(Tλ)− T · C�
N (eiλ)V −1(Tλ)

)
×
[
f
�ζ(Tλ) + f

�θ(Tλ)
]−1

V (Tλ)

= A�
N

(
eiλ

)
−
(
A�

N

(
eiλ

)
V −1(Tλ)f

�θ(Tλ) + T · C�
N

(
eiλ

)
V −1(Tλ)

)
×
[
f
�ζ(Tλ) + f

�θ(Tλ)
]−1

V (Tλ),

(15) Δ
(
f
�ζ , f

�θ
)
=
〈
�aN , Rζ

N�aN

〉
+
〈
�c ζ
N , Bζ

N�c
ζ
N

〉
,

where �c ζ
N =

{
�c ζ(k)

}N
k=0

=
(
Bζ

N

)−1
Dζ

N�aN and where Bζ
N , Dζ

N , and Rζ
N are the matrices

whose entries are the following T × T block matrices:

Bζ
N (j, k) =

T

2π

∫ π

−π

V �(Tλ)

[(
f
�ζ(Tλ) + f

�θ(Tλ)
)−1

]�
V (Tλ)ei(k−j)λ dλ,

Dζ
N (j, k) =

1

2π

∫ π

−π

V �(Tλ)

[
f
�ζ(Tλ)

(
f
�ζ(Tλ) + f

�θ(Tλ)
)−1

]�
V (Tλ)ei(k−j)λ dλ,

Dζ
N (j, k) =

1

T · 2π

∫ π

−π

V �(Tλ)

[
f
�ζ(Tλ)

(
f
�ζ(Tλ) + f

�θ(Tλ)
)−1

f
�θ(Tλ)

]�
× V (Tλ)ei(k−j)λ dλ

for k, j = 0, 1, . . . , N .
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Corollary 3.3. Let ζ(j) be a T -periodically correlated sequence and let f
�ζ(λ) be the

matrix spectral density of the T -dimensional stationary sequence �ζ(j). Assume that

f
�ζ(λ) satisfies the minimality condition (10). Then the optimal linear estimate of ANζ

constructed from the observed values of the sequence ζ(j), j ∈ Z \ {0, 1, . . . , N}, is given
by

ÂNζ =

∫ π

−π

h�
(
f
�ζ
)
Zξ(dλ) =

∫ π

−π

T−1∑
k=0

hk

(
f
�ζ
)
Zξ
k(dλ),

where �ξ(j) is the stationary sequence generating ζ(j).

The spectral characteristic h(f
�ζ) and mean square error Δ(f

�ζ) of the estimate ÂNζ
are given by

(16) h�
(
f
�ζ
)
= A�

N

(
eiλ

)
− T · C�

N

(
eiλ

)
V −1(Tλ)

[
f
�ζ(Tλ)

]−1

V (Tλ),

(17) Δ
(
f
�ζ
)
=
〈
�c ζ
N ,�aN

〉
,

where �c ζ
N =

{
�c ζ(k)

}N
k=0

=
(
Bζ

N

)−1
�aN and where Bζ

N is the matrix whose entries are the
following T × T block matrices:

Bζ
N (j, k) =

T

2π

∫ π

−π

V �(Tλ)

[(
f
�ζ(Tλ)

)−1
]�

V (Tλ)ei(k−j)λ dλ,

k, j = 0, 1, . . . , N.

Example 3.3. Let ζ(n) be a 2-periodically correlated sequence. Let ζ(2n) = η(n) be a
one-dimensional white noise sequence with spectral density f(λ) = a/(2π), a ≥ 0, and
let ζ(2n+ 1) = γ(n) be an uncorrelated with η(n) one-dimensional stationary Ornstein–
Uhlenbeck sequence with the spectral density

g(λ) =
b

2π|1− ceiλ|2

with b ≥ 0 and |c| < 1. We estimate the functional A1ζ with the coefficients a(0) = α
and a(1) = β.

In this case, the matrix of spectral densities of �ζ(n) is given by

f
�ζ(λ) =

(
f(λ) 0
0 g(λ)

)
,

and its inverse
[
f
�ζ(λ)

]−1
satisfies the minimality condition (6). The spectral character-

istic of the optimal estimate of A1ζ defined by (16) is equal to

h�(f
�ζ) =

(
cβ

1 + c

[
e−iλ + e3iλ

]
,− cβ

1 + c

[
e−iλ + e3iλ

])
.

The optimal linear estimate A1ζ is of the form

Â1ζ =
cβ

1 + c
(ξ0(−1) + ξ0(3))−

cβ

1 + c
(ξ1(−1) + ξ1(3))

and the mean square error of the estimate defined by (17) is

Δ(f
�ξ) =

1

2π

(
aα2 +

β2b

1 + c

)
.
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4. Minimax (robust) interpolation method

Relations (14)–(17) can be used for finding the spectral characteristic and the mean
square error of the optimal linear estimate of the functional ANζ if the matrices of
spectral densities f(λ) and g(λ) of the T -dimensional stationary sequences obtained by
subdividing the initial one-dimensional periodically correlated sequences into blocks of
length T are known. If the matrices of densities are not known, but a family D = Df×Dg

of admissible spectral densities is specified, then one can apply the minimax approach
to solve the problems of estimation of the functionals depending on unknown values of
stationary sequences. We search for an estimate that minimizes the mean square error
for all spectral densities belonging to a given class D.

Definition 4.1. Given a set D = Df ×Dg of pairs of spectral densities, the matrices of
spectral densities f0(λ) ∈ Df and g0(λ) ∈ Dg are called the least favorable in D for the
optimal linear interpolation of the functional ANζ if

Δ(f0, g0) = Δ
(
h(f0, g0); f0, g0

)
= max

(f,g)∈D
Δ(h(f, g); f, g).

Definition 4.2. Given a set D = Df × Dg of pairs of spectral densities, a spectral
characteristic h0(λ) of the optimal linear interpolation of the functional ANζ is called
minimax (robust) if

h0(λ) ∈ HD =
⋂

(f,g)∈D

LN−
2 (f + g), min

h∈HD

max
(f,g)∈D

Δ(h; f, g) = max
(f,g)∈D

Δ
(
h0; f, g

)
.

Using these definitions and the above relations (14)–(17) one can prove the following
results (see [17]).

Lemma 4.1. The matrices of spectral densities f0(λ) ∈ Df and g0(λ) ∈ Dg satisfying
condition (6) are least favorable in a class D for the optimal linear interpolation of the
functional ANζ if the Fourier coefficients of the matrix-valued functions

T · V −1(Tλ)
(
f0(Tλ) + g0(Tλ)

)−1
V (Tλ),

V −1(Tλ)f0(Tλ)
(
f0(Tλ) + g0(Tλ)

)−1
V (Tλ),

1

T
· V −1(Tλ)f0(Tλ)

(
f0(Tλ) + g0(Tλ)

)−1
g0(Tλ)V (Tλ)

generate the matrices B0
N , D0

N , and R0
N that determine the solution of the following

extremal problem:

max
(f,g)∈D

(〈
�aN , Rζ

N�aN

〉
+
〈
(Bζ

N )−1Dζ
N�aN , Dζ

N�aN

〉)
=
〈
�aN , R0

N�aN
〉
+
〈(

B0
N

)−1
D0

N�aN , D0
N�aN

〉
.

The minimax spectral characteristic h0 = h(f0, g0) is evaluated by (14) if

h
(
f0, g0

)
∈ HD.

Lemma 4.2. The matrix of the spectral density f0(λ) ∈ Df that satisfies condition (10)
is least favorable in the class Df for the optimal linear interpolation of ANζ if the Fourier
coefficients of the matrix-valued function T ·V −1(Tλ)(f0(Tλ))−1V (Tλ) generate the ma-
trix B0

N that determines the solution of the extremal problem

max
f∈Df

〈(
Bζ

N

)−1

�aN ,�aN

〉
=
〈(

B0
N

)−1
�aN ,�aN

〉
.

The minimax spectral characteristic h0 = h(f0) is given by equality (16) if h(f0) ∈ HD.
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The least favorable spectral densities f0(λ) ∈ Df and g0(λ) ∈ Dg and the minimax
spectral characteristic h0 = h(f0, g0) form a saddle point of the function Δ(h; f, g) in
the set HD ×D. The conditions for a saddle point

Δ
(
h0; f, g

)
≤ Δ

(
h0; f0, g0

)
≤ Δ

(
h; f0, g0

)
, ∀h ∈ HD, ∀f ∈ Df , ∀g ∈ Dg

hold if h0 = h(f0, g0), h(f0, g0) ∈ HD, and if (f0, g0) is a solution of the conditional
extremum problem

Δ
(
h
(
f0, g0

)
; f, g

)
=

1

2πT

∫ π

−π

(
A
(
eiλ

)
V −1(Tλ)g0(Tλ)V (Tλ) + TC0

(
eiλ

))�
× V −1(Tλ)

(
f0(Tλ) + g0(Tλ)

)−1
f(Tλ)

(
f0(Tλ) + g0(Tλ)

)−1
V (Tλ)

× (A(eiλ)V −1(Tλ)g0(Tλ)V (Tλ) + TC0(eiλ)) dλ

+
1

2πT

∫ π

−π

(
A
(
eiλ

)
V −1(Tλ)f0(Tλ)V (Tλ)− T · C0

(
eiλ

))�
× V −1(Tλ)

(
f0(Tλ) + g0(Tλ)

)−1
g(Tλ)

(
f0(Tλ) + g0(Tλ)

)−1
V (Tλ)

×
(
A(eiλ)V −1(Tλ)f0(Tλ)V (Tλ)− T · C0(eiλ)

)
dλ

→ sup, (f, g) ∈ D.

Lemma 4.3. Suppose f0(λ) satisfies the minimality condition (10) and is a solution of
the following conditional extremum problem:

Δ
(
h(f0); f

)
=

T

2π

∫ π

−π

(
C0

N

(
eiλ

))�
V −1(Tλ)

(
f0(Tλ)

)−1
f(Tλ)

(
f0(Tλ)

)−1

× V (Tλ)(C0
N (eiλ)) dλ

→ sup, f(λ) ∈ Df .

(18)

Then f0(λ) is the least favorable matrix of the spectral densities for the optimal linear
interpolation of ANζ constructed from observed values of the sequence

ζ(j), j ∈ Z \ {0, 1, . . . , N}.
The spectral characteristic h0 = h(f0) given by (16) is minimax if h(f0) ∈ HD.

5. Least favorable spectral densities for the set D−
0

Consider the minimax estimation problem for the functional ANζ from observations
ζ(j), j ∈ Z \ {0, 1, . . . , N}, for which the matrix of spectral densities f(λ) belongs to the
set

D−
0 =

{
f(λ)

∣∣∣∣ 1

2π · T

∫ π

−π

V −1(Tλ)f−1(Tλ)V (Tλ) dλ = P

}
,

where P = {pij}T−1
i,j=0 is a given positive definite matrix such that detP �= 0. Using

Lemma 4.3 and the Lagrange multipliers method we prove that the solution f0(λ) of the
conditional extremum problem (18) satisfies the equation

(19)
1

T
· V (Tλ)

[(
f0(Tλ)

)−1
]�

V �(Tλ)C0
N

(
eiλ

)
= V (Tλ)

[(
f0(Tλ)

)−1
]�

V �(Tλ)�α,

where �α = (α0, . . . , αT−1)
� is the vector of Lagrange multipliers,

C0
N (eiλ) =

N∑
j=0

�c0(j)eijλ,
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�c0N =
{�c0(k)}N

k=0
= (B0

N )−1�aN , and where B0
N is the matrix constructed from the

Fourier coefficients of the matrix-valued function V (Tλ)
[
(f0(Tλ))−1

]�
V �(Tλ),

B0
N (k, j) = R�(k − j) =

1

2π

∫ π

−π

V (Tλ)
[(
f0(Tλ)

)−1
]�

V �(Tλ)ei(j−k)λ dλ,

k, j = 0, 1, . . . , N.

The Fourier coefficients R(k) = R∗(−k), k = 0, 1, . . . , N , found from the equation

B0
N �αN = �aN

with �αN = (�α,�0, . . . ,�0)�, satisfy relation (19) and equality B0
N
�c0N = �aN . The equations

obtained above imply that

R(k) = P (�a(0))−1�a�(k), k = 0, 1, . . . , N,

where
[
(�a(0))−1

]� · �a(0) = 1. This implies that R(0) = P .
Let �a(k), k = 0, 1, . . . , N , be a vector sequence such that the matrix-valued function

T · V −1(Tλ)(f0(Tλ))−1V (Tλ) =

N∑
k=−N

R�(k)eikλ

is positive definite and nonsingular. Then T · V −1(Tλ)(f0(Tλ))−1V (Tλ) is represented
as follows:

T · V −1(Tλ)
(
f0(Tλ)

)−1
V (Tλ) =

(
N∑

k=0

Ake
−ikλ

)
·
(

N∑
k=0

Ake
−ikλ

)∗

(see [7]). Thus T · V −1(Tλ)(f0(Tλ))−1V (Tλ) is the spectral density of the multivariate
random autoregressive sequence of order N given by

(20)

N∑
k=0

Ak
�ξ(n− k) = �ε(n),

where �ξ(n) is the sequence generating ζ(n) and where �ε(n) is a white noise vector se-
quence. Then the minimax spectral characteristic h(f0) is given by

(21) h(f0) = −
N∑

k=1

R(k)
(
PT

)−1
�a(0)e−ikλ.

Thus the following result holds.

Theorem 5.1. Suppose the sequence of coefficients �a(k) = (a0(k), a1(k), . . . , aT−1(k))
�,

aj(k) = a(k)e2πijk/T , j = 0, 1, . . . , T − 1, determining the linear functional ANζ of
a T -periodically correlated sequence ζ is such that the matrix-valued function∑N

k=−N R�(k)eikλ, where

R(k) = R∗(−k) = P (�a(0))−1�a�(k), k = 0, 1, . . . , N,

is positive definite and nonsingular. Then the least favorable spectral density in the class
D−

0 for the optimal linear interpolation of ANζ is given by

(22) f0(Tλ) = T · V (Tλ)

( N∑
k=−N

R(k)�eikλ
)−1

V −1(Tλ).

The minimum spectral characteristic h(f0) is defined by (21). The maximum value of

the mean square error of the estimate ÂNζ is given by

(23) Δ(f0) = 〈�c0N ,�aN 〉.
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Example 5.1. Let ζ(n) be a 2-periodically correlated sequence. Consider the problem
of the minimax interpolation of A0ζ = κζ(0), κ ∈ R, in the set D−

0 with

P =

(
17 11
11 13

)
.

The matrix of the least favorable spectral density in the class D−
0 for the estimate of A0ζ

is defined by (22) and thus is equal to

f0(λ) =
1

25

(
1 −e−iλ/2

−eiλ/2 13

)
.

The matrix of the least favorable spectral density of the two-dimensional stationary

sequence �ξ(n) generating ζ(n) equals

f
�ξ,0 =

1

100

(
13 −11
−11 17

)
.

The two-dimensional stationary sequence itself admits the representation

�ξ(n) =
1

10

(
3 −1
−2 4

)
�ε(n)

(see (20)). The maximum value of the mean square error of this estimate is calculated
by (23) and thus equals Δ(f0) = 2

25κ
2.

6. Concluding remarks

Formulas for calculating the mean square error and spectral characteristic in the prob-
lem of optimal linear interpolation of the functional

ANζ =
N∑
j=0

a(j)ζ(j)

from observed values of the sequence ζ(j) + θ(j), j ∈ Z \ {0, 1, . . . , N}, are proposed,
where ζ(j) is a periodically correlated random sequence (its values are unknown) and θ(j)
is a uncorrelated with ζ(j) periodically correlated random sequence. The problem is
considered for two cases, namely for the case where the matrices of spectral densities f(λ)
and g(λ) of the signal ζ(n) and of the noise θ(n), respectively, are known, and for the
case where the matrices of spectral densities are unknown but a family D = Df ×
Dg of admissible spectral densities is specified. The results are obtained by using the
relationship between periodically correlated and vector stationary sequences and by the
method of estimation of vector stationary sequences.
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