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A CLASS OF SECOND ORDER DIFFERENCE

APPROXIMATIONS FOR SOLVING SPACE

FRACTIONAL DIFFUSION EQUATIONS

WENYI TIAN, HAN ZHOU, AND WEIHUA DENG

Abstract. A class of second order approximations, called the weighted and
shifted Grünwald difference (WSGD) operators, are proposed for Riemann-

Liouville fractional derivatives, with their effective applications to numerically
solving space fractional diffusion equations in one and two dimensions. The
stability and convergence of our difference schemes for space fractional diffusion
equations with constant coefficients in one and two dimensions are theoretically
established. Several numerical examples are implemented to test the efficiency
of the numerical schemes and confirm the convergence order, and the numerical
results for variable coefficients problem are also presented.

1. Introduction

Fractional calculus is a fundamental mathematical tool for describing some spe-
cial phenomenons arising from engineering and science [15,19,23]. One of its most
important applications is to describe the subdiffusion and superdiffusion process
[5,10,16]. The suitable mathematical models are the diffusion equations with time
and/or space fractional derivatives, where the classical first order derivative in time
is replaced by the Caputo fractional derivative of order α ∈ (0, 1), and the second
order derivative in space is essentially replaced by the Riemann-Liouville fractional
derivative of order α ∈ (1, 2]. The physical interpretation and practical applications
of fractional diffusion equations have been discussed often with some common ideas
[1, 9, 14]. Based on these, our main purpose of this paper is to study the higher
accurate numerical solution of the space fractional diffusion equation by a novel
finite difference approximation.

From the perspective of the numerical analysis, there are some fundamental diffi-
culties in numerically approximating the fractional derivatives, because some good
properties of classical approximating operators are lost. Over the last decades, the
finite difference method has some developments in solving the fractional partial dif-
ferential equations, e.g., [2, 12, 13, 28]. The Riemann-Liouville fractional derivative
can be discretized by the standard Grünwald-Letnikov formula [19] with only first
order accuracy, but the difference scheme based on the Grünwald-Letnikov formula
for time dependent problems is unstable [12]. To overcome this problem, Meer-
schaert and Tadjeran in [12] first proposed the shifted Grünwald-Letnikov formula
to approximate fractional advection-dispersion flow equations. Recently, second
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order approximations to fractional derivatives have been studied, Sousaa and Li
presented a second order discretization for the Riemann-Liouville fractional deriv-
ative and established an unconditionally stable weighted average finite difference
method for the one-dimensional fractional diffusion equation in [24], and the results
in two-dimensional two-sided space fractional convection diffusion equation in finite
domain can be seen in [6]; Ortigueira [17] gave the “fractional centerd derivative”
to approximate the Riesz fractional derivative with second order accuracy, and this
method was used by Çelik and Duman in [2] to approximate the fractional diffu-
sion equation with the Riesz fractional derivative in a finite domain. In this paper,
we propose a new approach to approximate the Riemann-Liouville fractional de-
rivative via combining the distinct shifted Grünwald-Letnikov formulae with their
corresponding weights, which looks more general and flexible, and the weighted
and shifted Grünwald-Letnikov formulae achieve second and higher order accuracy.
A detailed algorithm shows that the weights are related to not only the shifted
numbers but also the order of the fractional derivative, which implies the numerical
algorithm is more related to the equation itself.

The paper is briefly summarized as follows. In Section 2, we propose a class
of discrete operators to approximate the Riemann-Liouville fractional derivatives
with high order truncating errors. In Sections 3 and 4, one-dimensional and two-
dimensional fractional diffusion equations are numerically solved by using the finite
difference method based on the weighted and shifted Grünwald-Letnikov formulae,
and the stability analysis of each case is presented. We prove that the finite differ-
ence solutions approximate the exact ones with O(τ2+h2) in the discrete L2 norm.
Some numerical experiments are performed in Section 5 to verify the efficiency and
accuracy of the methods. The concluding remarks are given in Section 6.

2. High order approximations for Riemann-Liouville

fractional derivatives

We begin with the definitions of the Riemann-Liouville fractional derivatives and
the properties of their Fourier transform.

Definition 2.1 ([19]). The α (n−1 < α < n) order left and right Riemann-Liouville
fractional derivatives of the function u(x) on [a, b] are defined as

(1) left Riemann-Liouville fractional derivative:

aD
α
xu(x) =

1

Γ(n− α)

dn

dxn

∫ x

a

u(ξ)

(x− ξ)α−n+1
dξ;

(2) right Riemann-Liouville fractional derivative:

xD
α
b u(x) =

(−1)n

Γ(n− α)

dn

dxn

∫ b

x

u(ξ)

(ξ − x)α−n+1
dξ.

If α = n, then aD
α
xu(x) =

dn

dxn u(x) and xD
α
b u(x) = (−1)n dn

dxn u(x).

Property 2.2 ([8]). Let α > 0, u ∈ C∞
0 (Ω), Ω ⊂ R. The Fourier transforms of

the left and right Riemann-Liouville fractional derivatives satisfy

F (−∞Dα
xu(x)) = (iω)αû(ω),

F (xD
α
∞u(x)) = (−iω)αû(ω),
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where û(ω) denotes the Fourier transform of u,

û(ω) =

∫
R

e−iωxu(x)dx.

In [12], the shifted Grünwald difference operator

(2.1) Aα
h,pu(x) =

1

hα

∞∑
k=0

g
(α)
k u(x− (k − p)h),

approximates the left Riemann-Liouville fractional derivative uniformly with first
order accuracy, i.e.,

(2.2) Aα
h,pu(x) = −∞Dα

xu(x) +O(h),

where p is an integer and g
(α)
k = (−1)k

(
α
k

)
. In fact, the coefficients g

(α)
k in (2.1) are

the coefficients of the power series of the function (1− z)α,

(2.3) (1− z)α =

∞∑
k=0

(−1)k
(
α

k

)
zk =

∞∑
k=0

g
(α)
k zk,

for all |z| ≤ 1, and they can be evaluated recursively:

(2.4) g
(α)
0 = 1, g

(α)
k =

(
1− α+ 1

k

)
g
(α)
k−1, k = 1, 2, . . . .

Lemma 2.3 ([12,13,19]). The coefficients in (2.1) satisfy the following properties
for 1 < α ≤ 2:

(2.5)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

g
(α)
0 = 1, g

(α)
1 = −α < 0,

1 ≥ g
(α)
2 ≥ g

(α)
3 ≥ . . . ≥ 0,

∞∑
k=0

g
(α)
k = 0,

m∑
k=0

g
(α)
k < 0, m ≥ 1.

2.1. Second order approximations. Inspired by the shifted Grünwald differ-
ence operator (2.1) and multi-step method, we derive the following second order
approximation for the Riemann-Liouville fractional derivatives.

Theorem 2.4. Let u ∈ L1(R), −∞Dα+2
x u and its Fourier transform belong to

L1(R), and define the weighted and shifted Grünwald difference (WSGD) operator
by

(2.6) LDα
h,p,qu(x) =

α− 2q

2(p− q)
Aα

h,pu(x) +
2p− α

2(p− q)
Aα

h,qu(x),

then we have

(2.7) LDα
h,p,qu(x) = −∞Dα

xu(x) +O(h2)

uniformly for x ∈ R, where p, q are integers and p �= q.

Note. The role of p and q is symmetric, i.e., LDα
h,p,qu(x) = LDα

h,q,pu(x).

Proof. By the definition of Aα
h,p in (2.1), we assume the WSGD operator with the

following form:

(2.8) LDα
h,p,qu(x) =

λ1

hα

∞∑
k=0

g
(α)
k u(x− (k − p)h) +

λ2

hα

∞∑
k=0

g
(α)
k u(x− (k − q)h).
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Taking Fourier transform on (2.8), we obtain

F [LDα
h,p,qu](ω) =

1

hα

∞∑
k=0

g
(α)
k

(
λ1e

−iω(k−p)h + λ2e
−iω(k−q)h

)
û(ω)

=
1

hα

(
λ1(1− e−iωh)αeiωhp + λ2(1− e−iωh)αeiωhq

)
û(ω)

= (iω)α
(
λ1Wp(iωh) + λ2Wq(iωh)

)
û(ω),

(2.9)

where

(2.10) Wr(z) =
(1− e−z

z

)α

erz = 1 + (r − α

2
)z +O(z2), r = p, q.

In order to have second order accuracy, coefficients λ1 and λ2 satisfy

{
λ1 + λ2 = 1,

(p− α

2
)λ1 + (q − α

2
)λ2 = 0,

which indicates that λ1 = α−2q
2(p−q) and λ2 = 2p−α

2(p−q) .

Denoting φ̂(ω, h) = F [LDα
h,p,qu](ω)−F [−∞Dα

xu](ω), then from (2.9) and (2.10)
there exists

(2.11) |φ̂(ω, h)| ≤ Ch2|iω|α+2|û(ω)|.

Using the condition F [−∞Dα+2
x u](ω) ∈ L1(R), yields

|LDα
h,p,qu− −∞Dα

xu| = |φ| ≤ 1

2π

∫
R

|φ̂(ω, h)|(2.12)

≤ C‖F [−∞Dα+2
x u](ω)‖L1h2 = O(h2). �

Remark 2.5. For the right Riemann-Liouville fractional derivative, similar to The-
orem 2.4, we can check that

(2.13) RDα
h,p,qu(x) =

α− 2q

2(p− q)
Bα

h,pu(x) +
2p− α

2(p− q)
Bα

h,qu(x) = xD
α
∞u(x) +O(h2),

uniformly for x ∈ R under the conditions that u ∈ L1(R), xD
α+2
∞ u and its Fourier

transform belong to L1(R), where p, q are integers and

(2.14) Bα
h,ru(x) =

1

hα

∞∑
k=0

g
(α)
k u(x+ (k − r)h).

Remark 2.6. Considering a well-defined function u(x) on the bounded interval [a, b],
if u(a) = 0 or u(b) = 0, the function u(x) can be zero extended for x < a or x > b.
Then the α order left and right Riemann-Liouville fractional derivatives of u(x)
at each point x can be approximated by the WSGD operators with second order
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accuracy

(2.15)

aD
α
xu(x) =

λ1

hα

[ x−a
h ]+p∑
k=0

g
(α)
k u(x− (k − p)h)

+
λ2

hα

[ x−a
h ]+q∑
k=0

g
(α)
k u(x− (k − q)h) +O(h2),

xD
α
b u(x) =

λ1

hα

[ b−x
h ]+p∑
k=0

g
(α)
k u(x+ (k − p)h)

+
λ2

hα

[ b−x
h ]+q∑
k=0

g
(α)
k u(x+ (k − q)h) +O(h2),

where λ1 = α−2q
2(p−q) , λ2 = 2p−α

2(p−q) .

Remark 2.7. The integers p, q are the numbers of the points located on the right/left
sides of the point x used for evaluating the α order left/right Riemann-Liouville
fractional derivatives at x, thus, when employing the difference method with (2.15)
for approximating non-periodic fractional differential equations on bounded inter-
val, p, q should be chosen satisfying |p| ≤ 1, |q| ≤ 1 to ensure that the nodes at
which the values of u needed in (2.15) are within the bounded interval; otherwise,
we need to use another way to discretize the fractional derivative when x is close to
the right/left boundary. When (p, q) = (0,−1), the approximation method turns
out to be unstable for time dependent problems. So two sets of (p, q) can be se-
lected to establish the difference scheme for fractional diffusion equations, that is,
(1, 0), (1,−1), and the corresponding weights in (2.6) and (2.13) are (α2 ,

2−α
2 ) and

( 2+α
4 , 2−α

4 ). For α = 2, the WSGD operator (2.6) is the centered difference ap-
proximation of second order derivative when (p, q) is equal to (1, 0) or (1,−1); for
α = 1, (p, q) = (1, 0), the centered difference scheme for first order derivative is
recovered.

The simplified forms of the discrete approximations (2.15) for Riemann-Liouville
fractional derivatives on grid points {xi = a + ih, h = (b − a)/n, i = 1, . . . , n − 1}
with (p, q) = (1, 0), (1,−1) are

aD
α
xu(xi) =

1

hα

i+1∑
k=0

w
(α)
k u(xi−k+1) +O(h2),

xD
α
b u(xi) =

1

hα

N−i+1∑
k=0

w
(α)
k u(xi+k−1) +O(h2),

(2.16)

where

(2.17)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(p, q) = (1, 0), w
(α)
0 =

α

2
g
(α)
0 , w

(α)
k =

α

2
g
(α)
k +

2− α

2
g
(α)
k−1, k ≥ 1,

(p, q) = (1,−1), w
(α)
0 =

2 + α

4
g
(α)
0 , w

(α)
1 =

2 + α

4
g
(α)
1 ,

w
(α)
k =

2 + α

4
g
(α)
k +

2− α

4
g
(α)
k−2, k ≥ 2.
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With Lemma 2.3 and some calculations, we obtain the properties of the coefficients

w
(α)
k in (2.16) corresponding to (p, q) = (1, 0), (1,−1) as follows.

Lemma 2.8. The coefficients in (2.16) satisfy the following properties for 1<α≤2,

(1) if (p, q) = (1, 0),

(2.18)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

w
(α)
0 =

α

2
, w

(α)
1 =

2− α− α2

2
< 0, w

(α)
2 =

α(α2 + α− 4)

4
,

1 ≥ w
(α)
0 ≥ w

(α)
3 ≥ w

(α)
4 ≥ . . . ≥ 0,

∞∑
k=0

w
(α)
k = 0,

m∑
k=0

w
(α)
k < 0, m ≥ 2;

(2) if (p, q) = (1,−1),

(2.19)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w
(α)
0 =

2 + α

4
, w

(α)
1 = −2α+ α2

4
< 0,

w
(α)
2 =

α3 + α2 − 4α+ 4

8
> 0, w

(α)
3 =

α(2− α)(α2 + α− 8)

6
≤ 0,

1 ≥ w
(α)
0 ≥ w

(α)
2 ≥ w

(α)
4 ≥ w

(α)
5 ≥ . . . ≥ 0,

∞∑
k=0

w
(α)
k = 0,

m∑
k=0

w
(α)
k < 0, m = 1 or m ≥ 3.

Next, we will explore the properties of the eigenvalues of the difference matrix
of (2.16) on grid points {xk = a + kh, h = (b − a)/n, k = 1, 2, . . . , n − 1}. In the
following, we denote by H the symmetric (respectively, hermitian) part of A if A
is real (respectively, complex) matrix.

Lemma 2.9 ([21]). A real matrix A of order n is positive definite if and only if its

symmetric part H = A+AT

2 is positive definite; H is positive definite if and only if
the eigenvalues of H are positive.

Lemma 2.10 ([21]). If A ∈ Cn×n, let H = A+A∗

2 be the hermitian part of A, A∗

the conjugate transpose of A, then for any eigenvalue λ of A, there exists

λmin(H) ≤ Re(λ) ≤ λmax(H),

where Re(λ) represents the real part of λ, and λmin(H), λmax(H) are the minimum
and maximum of the eigenvalues of H.

Definition 2.11 ([4]). Let Toeplitz matrix Tn be of the following form:

Tn =

⎛
⎜⎜⎜⎜⎜⎜⎝

t0 t−1 · · · t2−n t1−n

t1 t0 t−1 · · · t2−n

... t1 t0
. . .

...

tn−2 · · · . . .
. . . t−1

tn−1 tn−2 · · · t1 t0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

If the diagonals {tk}n−1
k=−n+1 are the Fourier coefficients of a function f , i.e.,

tk =
1

2π

∫ π

−π

f(x)e−ikxdx,

then the function f is called the generating function of Tn.
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Lemma 2.12 (Grenander-Szegö theorem [3,4]). For the above Toeplitz matrix Tn,
if f is a 2π-periodic continuous real-valued function, denote λmin(Tn) and λmax(Tn)
as the smallest and largest eigenvalues of Tn, respectively. Then we have

fmin ≤ λmin(Tn) ≤ λmax(Tn) ≤ fmax,

where fmin, fmax denote the minimum and maximum values of f(x). Moreover, if
fmin < fmax, then all eigenvalues of Tn satisfy

fmin < λ(Tn) < fmax,

for all n > 0; furthermore if fmin ≥ 0, then Tn is positive definite.

Theorem 2.13. Let matrix A be of the form

(2.20) A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

w
(α)
1 w

(α)
0

w
(α)
2 w

(α)
1 w

(α)
0

... w
(α)
2 w

(α)
1

. . .

w
(α)
n−2 · · · . . .

. . . w
(α)
0

w
(α)
n−1 w

(α)
n−2 · · · w

(α)
2 w

(α)
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where the diagonals {w(α)
k }n−1

k=0 are the coefficients given in (2.16) corresponding to
(p, q) = (1, 0) or (1,−1). Then we have that any eigenvalue λ of A satisfies

(1) Re(λ) ≡ 0, for (p, q) = (1, 0), α = 1,
(2) Re(λ) < 0, for (p, q) = (1, 0), 1 < α ≤ 2,
(3) Re(λ) < 0, for (p, q) = (1,−1), 1 ≤ α ≤ 2.

Moreover, when 1 < α ≤ 2, matrix A is negative definite, and the real parts of the
eigenvalues of matrix c1A+ c2A

T are less than 0, where c1, c2 ≥ 0, c21 + c22 �= 0.

Proof. We consider the symmetric part of matrix A, denoted as H = A+AT

2 . The

generating functions of A and AT are

fA(x) =
∞∑
k=0

w
(α)
k ei(k−1)x, fAT (x) =

∞∑
k=0

w
(α)
k e−i(k−1)x,

respectively. Then f(α;x) =
fA(x)+fAT (x)

2 is the generating function of H, and
f(α;x) is a periodic continuous real-valued function on [−π, π] since fA(x) and
fAT (x) are mutually conjugated.

Case (p, q) = (1, 0): with the corresponding coefficients w
(α)
k given by (2.17),

then

f(α;x) =
1

2

( ∞∑
k=0

w
(α)
k ei(k−1)x +

∞∑
k=0

w
(α)
k e−i(k−1)x

)

=
1

2

(α
2
e−ix

∞∑
k=0

g
(α)
k eikx +

2− α

2

∞∑
k=0

g
(α)
k eikx

+
α

2
eix

∞∑
k=0

g
(α)
k e−ikx +

2− α

2

∞∑
k=0

g
(α)
k e−ikx

)

=
α

4

(
e−ix(1− eix)α + eix(1− e−ix)α

)
+

2− α

4

(
(1− eix)α + (1− e−ix)α

)
.
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Next we check f(α;x) ≤ 0 for 1 < α ≤ 2. Since f(α;x) is a real-valued and even
function, we just consider its principal value on [0, π]. By the formula

eiθ − eiφ = 2i sin
(θ − φ

2

)
e

i(θ+φ)
2 ,

we obtain

(2.21) f(α;x) =
(
2 sin(

x

2
)
)α (α

2
cos

(α
2
(x− π)− x

)
+

2− α

2
cos

(α
2
(x− π)

))
.

Denoting

g(α;x) =
α

2
cos

(α
2
(x− π)− x

)
+

2− α

2
cos

(α
2
(x− π)

)
,

it is easy to prove that g(α;x) decreases with respect to α, then f(α;x) ≤ 0. By
Lemma 2.10 and 2.12, Re(λ) ≡ 0 for α = 1 as f(1;x) ≡ 0, and f(α;x) is not
identically zero for 1 < α ≤ 2, then we get Re(λ) < 0.

Case (p, q) = (1,−1): the corresponding generating function f(α;x) of A+AT

2

can be calculated in the following form with coefficients w
(α)
k given by (2.17),

f(α;x) =
1

2

( ∞∑
k=0

w
(α)
k ei(k−1)x +

∞∑
k=0

w
(α)
k e−i(k−1)x

)

=
2 + α

8

(
e−ix

∞∑
k=0

g
(α)
k eikx + eix

∞∑
k=0

g
(α)
k e−ikx

)

+
2− α

8

(
eix

∞∑
k=0

g
(α)
k eikx + e−ix

∞∑
k=0

g
(α)
k e−ikx

)

=
2 + α

8

(
e−ix(1− eix)α + eix(1− e−ix)α

)
+

2− α

8

(
eix(1− eix)α + e−ix(1− e−ix)α

)
.

Next we check f(α;x) ≤ 0 for 1 < α ≤ 2. Since f(α;x) is a real-valued and even
function, we just consider its principal value on [0, π]. By simple calculation, we
obtain

(2.22) f(α;x) =
(
2 sin(

x

2
)
)α (α

2
sin

(α
2
(x− π)

)
sin(x) + cos

(α
2
(x− π)

)
cos(x)

)
.

Denoting

g(α;x) =
α

2
sin

(α
2
(x− π)

)
sin(x) + cos

(α
2
(x− π)

)
cos(x),

we can also check that g(α;x) decreases with respect to α, then

f(α;x) ≤
(
2 sin(

x

2
)
)α

g(1;x) = −
(
2 sin(

x

2
)
)α

sin3(
x

2
) ≤ 0.

Therefore, by Lemma 2.10 and 2.12, we get Re(λ) < 0 for 1 ≤ α ≤ 2.
From the above discussions and Lemma 2.12, we know, for 1 < α ≤ 2, the

matrix 1
2 (A+ AT ) is negative definite, which implies matrix A is negative definite

by Lemma 2.9, and the symmetric part of matrix c1A + c2A
T is c1+c2

2 (A + AT);

thus we obtain Re(λ(c1A+ c2A
T)) < 0 for 1 < α ≤ 2. �
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Remark 2.14. For the case (p, q) = (1, 0) and 1 < α ≤ 2, we can check that the
symmetric part H of matrix A in (2.20) is strictly diagonally dominant by using
Lemma 2.8, and the elements of the main diagonal of H are negative, then the
eigenvalues of H are less than zero by the Gershgorin circle theorem ([21], p. 188),
therefore, with Lemmas 2.9 and 2.10, we can also get Re(λ(A)) < 0, and A is
negative definite.

Remark 2.15. By the same approach described in Theorem 2.13, we can verify
that the generating function of the symmetric part of difference matrix for (p, q) =
(0,−1) is not identically negative when 1 < α ≤ 2, which leads to the instability of
the difference method to fractional diffusion equations for the same reason in the
stability analysis in Sections 3 and 4.

2.2. Third order approximations. Similar to the second order approximations
for Riemann-Liouville fractional derivatives, we give a combination of three shifted
Grünwald difference operators

(2.23) LGα
h,p,q,ru(x) = λ1A

α
h,pu(x) + λ2A

α
h,qu(x) + λ3A

α
h,ru(x),

where p, q, r are integers and mutually non-equal, and

λ1 =
12qr − (6q + 6r + 1)α+ 3α2

12(qr − pq − pr + p2)
,

λ2 =
12pr − (6p+ 6r + 1)α+ 3α2

12(pr − pq − qr + q2)
,

λ3 =
12pq − (6p+ 6q + 1)α+ 3α2

12(pq − pr − qr + r2)
.

(2.24)

Assuming u ∈ L1(R), and taking Fourier transform on (2.23), we get

F [LGα
h,p,q,ru](ω) = (iω)α

(
λ1Wp(iωh) + λ2Wq(iωh) + λ3Wr(iωh)

)
û(ω)

= (iω)α
(
1 + C(iωh)3

)
û(ω),

(2.25)

where Ws(z) is defined in (2.10). If −∞Dα+3
x u and its Fourier transform belong to

L1(R), then we have∣∣
LGα

h,p,q,ru− −∞Dα
xu

∣∣ ≤ 1

2π

∫
R

∣∣F [LGα
h,p,q,ru− −∞Dα

xu]
∣∣

≤ C‖F [−∞Dα+3
x u](ω)‖L1h3 = O(h3).

(2.26)

The above results can be stated in the following theorem.

Theorem 2.16. Let u ∈ L1(R), −∞Dα+3
x u and its Fourier transform belong to

L1(R), and the following 3-WSGD operator (2.23) satisfies

(2.27) LGα
h,p,q,ru(x) = −∞Dα

xu(x) +O(h3),

uniformly for x ∈ R.

If u ∈ L1(R), xD
α+3
∞ u and its Fourier transform belong to L1(R), we also have

(2.28) RGα
h,p,q,ru(x) = λ1B

α
h,pu(x) + λ2B

α
h,qu(x) + λ3B

α
h,ru(x) = xD

α
∞u+O(h3),

uniformly for x ∈ R, where the operator Bα
h,s is given by (2.14), and λi, i = 1, 2, 3

are the same as (2.24).
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As stated in Remark 2.7, the 3-WSGD operator can be utilized for approxi-
mating Riemann-Liouville fractional differential equations on bounded domain by
the finite difference method when choosing (p, q, r) = (1, 0,−1), then the corre-
sponding weight coefficients in (2.24) are λ1 = 5

24α + 1
8α

2, λ2 = 1 + 1
12α − 1

4α
2,

λ3 = − 7
24α + 1

8α
2. For function u(x) satisfying u(a) = u(b) = 0 on grid points

{xk = a+ kh, h = (b− a)/n, k = 1, . . . , n− 1}, the approximation matrix of (2.23)
with (p, q, r) = (1, 0,−1) is

G =λ1

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

g
(α)
1 g

(α)
0

g
(α)
2 g

(α)
1 g

(α)
0

... g
(α)
2 g

(α)
1

. . .

g
(α)
n−2 · · · . . .

. . . g
(α)
0

g
(α)
n−1 g

(α)
n−2 · · · g

(α)
2 g

(α)
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+ λ2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

g
(α)
0

g
(α)
1 g

(α)
0

... g
(α)
1 g

(α)
0

g
(α)
n−3 · · · . . .

. . .

g
(α)
n−2 g

(α)
n−3 · · · g

(α)
1 g

(α)
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+ λ3

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0

g
(α)
0 0
... g

(α)
0 0

g
(α)
n−4 · · · . . .

. . .

g
(α)
n−3 g

(α)
n−4 · · · g

(α)
0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(2.29)

Example 2.17. We utilize the approximation (2.23) for simulating the steady state
fractional diffusion problem

(2.30) −0D
α
xu(x) = −Γ(3 + α)

2
x2, x ∈ (0, 1),

with u(0) = 0, u(1) = 1, and 1 < α < 2. The exact solution is u(x) = x2+α.

The 3-WSGD operator with (p, q, r) = (1, 0,−1) is utilized for computing the
solution of Example 2.17, the numerical results are given in Table 1, from which
the order and accuracy of the 3-WSGD operator is verified.

Table 1. The maximum and L2 errors and their convergence rates
to Example 2.17 approximated by the 3-WSGD operator for α =
1.1, 1.9.

α = 1.1 α = 1.9

N ‖un − Un‖∞ rate ‖un − Un‖ rate ‖un − Un‖∞ rate ‖un − Un‖ rate

8 9.48629E-04 - 5.92003E-04 - 3.20333E-04 - 1.59788E-04 -
16 1.19530E-04 2.99 7.51799E-05 2.98 2.29262E-05 3.80 1.04858E-05 3.93
32 1.50130E-05 2.99 9.47995E-06 2.99 1.58500E-06 3.85 6.71546E-07 3.96
64 1.88094E-06 3.00 1.18999E-06 2.99 1.07818E-07 3.88 4.24776E-08 3.98

128 2.35382E-07 3.00 1.49052E-07 3.00 7.27733E-09 3.89 2.67067E-09 3.99
256 2.94392E-08 3.00 1.86501E-08 3.00 4.89318E-10 3.89 1.67325E-10 4.00



A CLASS OF SECOND ORDER DIFFERENCE APPROXIMATIONS FOR SFDES 1713

As in the above, the generating function of the symmetric part G+GT

2 of the
Toeplitz matrix G is

f(α;x) =
( 5

48
α+

1

16
α2

)(
e−ix(1− eix)α + eix(1− e−ix)α

)
+
(1
2
+

1

24
α− 1

8
α2

)(
(1− eix)α + (1− e−ix)α

)
+
(
− 7

48
α+

1

16
α2

)(
eix(1− eix)α + e−ix(1− e−ix)α

)
,

x ∈ [−π, π]. As matrix G+GT

2 is symmetric, thus f(α;x) is a real-valued and even
function, so we consider it on [0, π] and get

f(α;x) =
(
2 sin(

x

2
)
)α (( 5

48
α+

1

16
α2

)
cos

(α
2
(x− π)− x

)
+
(1
2
+

1

24
α− 1

8
α2

)
cos

(α
2
(x− π)

)
+
(
− 7

48
α+

1

16
α2

)
cos

(α
2
(x− π) + x

))
.

We can check that f(α;x) is identically negative only for 1+
√
73

6 < α ≤ 2, then the
real parts of the eigenvalues of matrix G are not always negative when 1 < α ≤ 2,
so the finite difference scheme using (2.23) or (2.28) for time dependent fractional

problems will not be unconditionally stable for 1 < α < 1+
√
73

6 .

3. One-dimensional space fractional diffusion equation

In this section, we consider the following two-sided one-dimensional space frac-
tional diffusion equation
(3.1)⎧⎪⎨

⎪⎩
∂u(x,t)

∂t = K1 aD
α
xu(x, t) +K2 xD

α
b u(x, t) + f(x, t), (x, t) ∈ (a, b)× (0, T ],

u(x, 0) = u0(x), x ∈ [a, b],

u(a, t) = φa(t), u(b, t) = φb(t), t ∈ [0, T ],

where both aD
α
x and xD

α
b are Riemann-Liouville fractional operators with 1<α≤2.

The diffusion coefficients K1 and K2 are non-negative constants with K2
1 +K2

2 �= 0;
if K1 �= 0, then φa(t) ≡ 0; if K2 �= 0, then φb(t) ≡ 0. Next we will discretize
the problem (3.1) by the second order accurate WSGD formulae (2.16). In the
analysis of the numerical method that follows, we assume that (3.1) has a unique
and sufficiently smooth solution.

3.1. CN-WSGD scheme. We partition the interval [a, b] into a uniform mesh
with the space step h = (b − a)/N and the time step τ = T/M , where N,M are
two positive integers, and the set of grid points is denoted by xi = ih and tn = nτ
for 0 ≤ i ≤ N and 0 ≤ n ≤ M . Let tn+1/2 = (tn + tn+1)/2 for 0 ≤ n ≤ M − 1, and
we use the following notations:

un
i = u(xi, tn), f

n+1/2
i = f(xi, tn+1/2), δtu

n
i = (un+1

i − un
i )/τ.

Using the Crank-Nicolson technique for the time discretization of (3.1) leads to

δtu
n
i − 1

2

(
K1(aD

α
xu)

n
i +K1(aD

α
xu)

n+1
i +K2(xD

α
b u)

n
i +K2(xD

α
b u)

n+1
i

)
= f

n+1/2
i +O(τ2).
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In space discretization, we choose the WSGD operators LDα
h,p,qu(x, t) and

RDα
h,p,qu(x, t) to approximate the Riemann-Liouville fractional derivatives

aD
α
xu(x, t) and xD

α
b u(x, t) with second order accuracy, respectively, and (p, q) =

(1, 0) or (1,−1). This implies that

δtu
n
i − 1

2

(
K1 LDα

h,p,qu
n
i +K1 LDα

h,p,qu
n+1
i +K2 RDα

h,p,qu
n
i +K2 RDα

h,p,qu
n+1
i

)
= f

n+1/2
i + εni ,

(3.2)

where

(3.3) |εni | ≤ c̃(τ2 + h2).

Multiplying (3.2) by τ and separating the time layers, we have

un+1
i − K1τ

2
LDα

h,p,qu
n+1
i − K2τ

2
RDα

h,p,qu
n+1
i

= un
i +

K1τ

2
LDα

h,p,qu
n
i +

K2τ

2
RDα

h,p,qu
n
i + τf

n+1/2
i + τεni .

(3.4)

Substituting LDα
h,p,qu,RDα

h,p,qu by (2.16), we obtain that

un+1
i − K1τ

2hα

i+1∑
k=0

w
(α)
k un+1

i−k+1 −
K2τ

2hα

N−i+1∑
k=0

w
(α)
k un+1

i+k−1

= un
i +

K1τ

2hα

i+1∑
k=0

w
(α)
k un

i−k+1 +
K2τ

2hα

N−i+1∑
k=0

w
(α)
k un

i+k−1 + τf
n+1/2
i + τεni .

(3.5)

Denoting Un
i as the numerical approximation of un

i , we derive the CN-WSGD
scheme for (3.1):

Un+1
i − K1τ

2hα

i+1∑
k=0

w
(α)
k Un+1

i−k+1 −
K2τ

2hα

N−i+1∑
k=0

w
(α)
k Un+1

i+k−1

= Un
i +

K1τ

2hα

i+1∑
k=0

w
(α)
k Un

i−k+1 +
K2τ

2hα

N−i+1∑
k=0

w
(α)
k Un

i+k−1 + τf
n+1/2
i .

(3.6)

For the convenience of implementation, using the matrix form of the grid functions

Un =
(
Un
1 , U

n
2 , · · · , Un

N−1

)T

, Fn =
(
f
n+1/2
1 , f

n+1/2
2 , · · · , fn+1/2

N−1

)T

,

makes the finite difference scheme (3.6) be described as

(3.7)
(
I− τ

2hα
(K1A+K2A

T)
)
Un+1 =

(
I+

τ

2hα
(K1A+K2A

T)
)
Un+τFn+Hn,

where A is given by (2.20) and
(3.8)

Hn =
τ

2hα

⎡
⎢⎢⎢⎢⎢⎢⎣

K1w
(α)
2 +K2w

(α)
0

K1w
(α)
3

...

K1w
(α)
N−1

K1w
(α)
N

⎤
⎥⎥⎥⎥⎥⎥⎦
(Un

0 + Un+1
0 ) +

τ

2hα

⎡
⎢⎢⎢⎢⎢⎢⎣

K2w
(α)
N

K2w
(α)
N−1

...

K2w
(α)
3

K1w
(α)
0 +K2w

(α)
2

⎤
⎥⎥⎥⎥⎥⎥⎦
(Un

N + Un+1
N ).
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3.2. Stability and convergence. Now we consider the stability and convergence
analysis for the CN-WSGD scheme (3.7). Define

Vh = {v : v = {vi} is a grid function in {xi = ih}Ni=0 and v0 = vN = 0}.

For any v = {vi} ∈ Vh, we define its pointwise maximum norm

(3.9) ‖v‖∞ = max
1≤i≤N−1

|vi|

and the following discrete L2-norm

‖v‖ =

√√√√h

N−1∑
i=1

v2i .

Theorem 3.1. The finite difference scheme (3.6) is unconditionally stable.

Proof. Denoting B = τ
2hα (K1A+K2A

T), the matrix form of the difference approx-
imation for problem (3.1) can be rewritten as

(3.10) (I −B)Un+1 = (I +B)Un + τFn +Hn,

and the relationship between the error en+1 in Un+1 and the error en in Un is given
by

(3.11) en+1 = (I −B)−1(I +B)en.

If we denote λ as an eigenvalue of matrix B, then 1+λ
1−λ is the eigenvalue of matrix

(I−B)−1(I+B). The result of Theorem 2.13 shows that the eigenvalues of matrix
B+BT

2 = τ(K1+K2)
4hα (A + AT) are negative, thus Re(λ) < 0, which implies that

| 1+λ
1−λ | < 1. Therefore, the spectral radius of matrix (I − B)−1(I + B) is less than

one, which yields that
(
(I −B)−1(I +B)

)n
converges to zero matrix (see Theorem

1.5 in [21]). Then the difference scheme (3.6) is unconditionally stable. �

Remark 3.2. Considering the θ weighted scheme for the time discretization of (3.1),
then the iterative matrix of the full discrete scheme is

(3.12)
(
I − θB

)−1(
I + (1− θ)B

)
.

If λ is an eigenvalue of matrix B, then the eigenvalue of (3.12) is 1+(1−θ)λ
1−θλ . As

Re(λ) < 0, it is easy to check that

(3.13)
∣∣∣1 + (1− θ)λ

1− θλ

∣∣∣ < 1

for 1
2 ≤ θ ≤ 1. Then the θ weighted WSGD scheme for (3.1) is unconditionally

stable when 1
2 ≤ θ ≤ 1.

The following theorem shows the unconditional convergence of the scheme (3.6).

Theorem 3.3. Let un
i be the exact solution of problem (3.1), and Un

i the solution
of the finite difference scheme (3.6), then for all 1 ≤ n ≤ M , we have

(3.14) ‖un − Un‖ ≤ c(τ2 + h2),

where c denotes a positive constant and ‖ · ‖ stands for the discrete L2-norm.
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Proof. Let eni = un
i − Un

i , and from (3.5) and (3.6) we have

(3.15) (en+1 − en)− K1τ

2hα
A(en+1 + en)− K2τ

2hα
AT(en+1 + en) = τεn,

where

en =
(
un
1 − Un

1 , u
n
2 − Un

2 , · · · , un
N−1 − Un

N−1

)T

, εn =
(
εn1 , ε

n
2 , · · · , εnN−1

)T

.

Multiplying (3.15) by h, and acting (en+1 + en)T on both sides, we obtain that

h(en+1 + en)TI(en+1 − en)− K1τ

2hα−1
(en+1 + en)TA(en+1 + en)

− K2τ

2hα−1
(en+1 + en)TAT(en+1 + en) = τh(en+1 + en)Tεn.

(3.16)

By Theorem 2.13, A and its transpose AT both being negative definite matrices,
we get

(3.17) (en+1 + en)TA(en+1 + en) < 0, (en+1 + en)TAT(en+1 + en) < 0,

and from (3.16) and (3.17) it yields that

(3.18) ‖en+1‖2 − ‖en‖2 ≤ τh(en+1 + en)Tεn ≤ τ (‖en+1‖+ ‖en‖) · ‖εn‖.

Then we have

(3.19) ‖en+1‖ − ‖en‖ ≤ τ‖εn‖, n ≥ 0.

Consequently,

(3.20) ‖en‖ ≤ τ

n∑
k=1

‖εn‖ ≤ c(τ2 + h2), n ≥ 1,

which is the result that we need. �

4. Two-dimensional space fractional diffusion equation

We next consider the following two-sided space fractional diffusion equation in
two dimensions
(4.1)⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂u(x,y,t)
∂t =

(
K+

1 aD
α
xu(x, y, t) +K+

2 xD
α
b u(x, y, t)

)
+
(
K−

1 cD
β
yu(x, y, t) +K−

2 yD
β
du(x, y, t)

)
+ f(x, y, t), (x, y, t) ∈ Ω× [0, T ],

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω,

u(x, y, t) = ϕ(x, y, t), (x, y, t) ∈ ∂Ω× [0, T ],

where Ω = (a, b)× (c, d), aD
α
x , xD

α
b and cD

β
y , yD

β
d are Riemann-Liouville fractional

operators with 1 < α, β ≤ 2. The diffusion coefficients satisfy K+
i , K−

i ≥ 0, i =
1, 2, (K+

1 )2 + (K+
2 )2 �= 0 and (K−

1 )2 + (K−
2 )2 �= 0, and the boundary function ϕ

satisfies, if K+
1 �= 0, then ϕ(a, y, t) = 0; if K+

2 �= 0, then ϕ(b, y, t) = 0; if K−
1 �= 0,

then ϕ(x, c, t) = 0; if K−
2 �= 0, then ϕ(x, d, t) = 0. We assume that (4.1) has a

unique and sufficiently smooth solution.
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4.1. CN-WSGD scheme. Now we establish the Crank-Nicolson difference scheme
by using WSGD formulae (2.16) for problem (4.1). We partition the domain Ω into
a uniform mesh with the space steps hx = (b − a)/Nx, hy = (d − c)/Ny and the
time step τ = T/M , where Nx, Ny,M being positive integers, and the set of grid
points is denoted by xi = ihx, yj = jhy and tn = nτ for 0 ≤ i ≤ Nx, 0 ≤ j ≤ Ny

and 0 ≤ n ≤ M . Let tn+1/2 = (tn + tn+1)/2 for 0 ≤ n ≤ M − 1, and we use the
following notations:

un
i,j = u(xi, yj , tn), f

n+1/2
i,j = f(xi, yj , tn+1/2), δtu

n
i,j = (un+1

i,j − un
i,j)/τ.

Discretizing (4.1) in time direction leads to

δtu
n
i,j =

1

2

(
K+

1 (aD
α
xu)

n+1
i,j +K+

2 (xD
α
b u)

n+1
i,j +K−

1 (cD
β
yu)

n+1
i,j +K−

2 (yD
β
du)

n+1
i,j

+K+
1 (aD

α
xu)

n
i,j +K+

2 (xD
α
b u)

n
i,j +K−

1 (cD
β
yu)

n
i,j +K−

2 (yD
β
du)

n
i,j

)
+ f

n+1/2
i,j +O(τ2).

(4.2)

In space discretization, we choose the WSGD operators LDα
hx,p,q

u, RDα
hx,p,q

u and

LDβ
hy,p,q

u, RDβ
hy,p,q

u to respectively approximate the fractional diffusion terms

aD
α
xu, xD

α
b u and cD

β
yu, yD

β
du, and multiplying (4.2) by τ and separating the

time layers, we have that

(
1− K+

1 τ

2
LDα

hx,p,q −
K+

2 τ

2
RDα

hx,p,q −
K−

1 τ

2
LDβ

hy,p,q
− K−

2 τ

2
RDβ

hy,p,q

)
un+1
i,j

=
(
1 +

K+
1 τ

2
LDα

hx,p,q +
K+

2 τ

2
RDα

hx,p,q +
K−

1 τ

2
LDβ

hy,p,q
+

K−
2 τ

2
RDβ

hy,p,q

)
un
i,j

+ τf
n+1/2
i,j + τ ε̂ni,j ,

(4.3)

where |ε̂ni,j | ≤ c̃(τ2 + h2
x + h2

y) denotes the truncation error. We denote

δαx = K+
1 LDα

hx,p,q +K+
2 RDα

hx,p,q , δβy = K−
1 LDβ

hy,p,q
+K−

2 RDβ
hy,p,q

.

Using the Taylor expansion, we have

τ2

4
δαx δ

β
y (u

n+1
i,j − un

i,j) =
τ3

4

(
(K+

1 aD
α
x +K+

2 xD
α
b )(K

−
1 cD

β
y +K−

2 yD
β
d )ut

)n+1/2

i,j

+ τ3O(τ2 + h2
x + h2

y).

(4.4)

Adding formula (4.4) to the right-hand side of (4.3) and making the factorization
leads to(

1− τ

2
δαx

)(
1− τ

2
δβy

)
un+1
i,j =

(
1 +

τ

2
δαx

)(
1 +

τ

2
δβy

)
un
i,j + τf

n+1/2
i,j + τεni,j ,(4.5)

where εni,j = ε̂ni,j + O(τ2). Denoting by Un
i,j the numerical approximation to un

i,j ,
we obtain the finite difference approximation for problem (4.1):(

1− τ

2
δαx

)(
1− τ

2
δβy

)
Un+1
i,j =

(
1 +

τ

2
δαx

)(
1 +

τ

2
δβy

)
Un
i,j + τf

n+1/2
i,j .(4.6)
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For efficiently solving (4.6), the following techniques can be used.
Peaceman-Rachford ADI scheme [18, 25]:(

1− τ

2
δαx

)
V n
i,j =

(
1 +

τ

2
δβy

)
Un
i,j +

τ

2
f
n+1/2
i,j ,(4.7a) (

1− τ

2
δβy

)
Un+1
i,j =

(
1 +

τ

2
δαx

)
V n
i,j +

τ

2
f
n+1/2
i,j .(4.7b)

Douglas ADI scheme [7]:(
1− τ

2
δαx

)
V n
i,j =

(
1 +

τ

2
δαx + τδβy

)
Un
i,j + τf

n+1/2
i,j ,(4.8a) (

1− τ

2
δβy

)
Un+1
i,j = V n

i,j −
τ

2
δβyU

n
i,j .(4.8b)

D’Yakonov ADI scheme [25]:(
1− τ

2
δαx

)
V n
i,j =

(
1 +

τ

2
δαx

)(
1 +

τ

2
δβy

)
Un
i,j + τf

n+1/2
i,j ,(4.9a) (

1− τ

2
δβy

)
Un+1
i,j = V n

i,j .(4.9b)

A simple calculation shows that
(4.10)
τ3

4
δαx δ

β
y f

n+1/2
i,j =

τ3

4
(K+

1 aD
α
x +K+

2 xD
α
b )(K

−
1 cD

β
y +K−

2 yD
β
d )f

n+1/2
i,j +τ3O(h2

x+h2
y).

Then from (4.5) and (4.10), it yields that

(4.11)

(
1− τ

2
δαx

)(
1− τ

2
δβy

)
un+1
i,j =

(
1 +

τ

2
δαx

)(
1 +

τ

2
δβy

)
un
i,j

+ τf
n+1/2
i,j +

τ3

4
δαx δ

β
y f

n+1/2
i,j + τ ε̃ni,j .

where

(4.12) ε̃ni,j = εni,j +O(τ2h2
x + τ2h2

y).

Eliminating the truncating error and denoting Un
i,j as the numerical approximation

of un
i,j , we have

(4.13)

(
1− τ

2
δαx

)(
1− τ

2
δβy

)
Un+1
i,j =

(
1 +

τ

2
δαx

)(
1 +

τ

2
δβy

)
Un
i,j

+ τf
n+1/2
i,j +

τ3

4
δαx δ

β
y f

n+1/2
i,j .

Introducing the intermediate variable V n
i,j , we obtain the locally one-dimensional

(LOD) scheme mentioned in [22, 29],(
1− τ

2
δαx

)
V n
i,j =

(
1 +

τ

2
δαx

)
Un
i,j +

τ

2

(
1 +

τ

2
δαx

)
f
n+1/2
i,j ,(4.14a) (

1− τ

2
δβy

)
Un+1
i,j =

(
1 +

τ

2
δβy

)
V n
i,j +

τ

2

(
1− τ

2
δβy

)
f
n+1/2
i,j .(4.14b)

4.2. Stability and convergence. Now we consider the stability and convergence
analysis for the CN-WSGD scheme (4.6). Define the sets of the index of the interior
and boundary mesh grid points in domain [a, b]× [c, d], respectively, as

Λh = {(i, j) : 1 ≤ i ≤ Nx − 1, 1 ≤ j ≤ Ny − 1},
∂Λh = {(i, j) : i = 0, Nx; 0 ≤ j ≤ Ny} ∪ {(i, j) : 1 ≤ i ≤ Nx − 1; j = 0, Ny}.
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For any v = {vi} ∈ Vh, we define its pointwise maximum norm and discrete L2

norm, respectively, as

(4.15) ‖v‖∞ = max
(i,j)∈Λh

|vi,j |, ‖v‖ =

√√√√hxhy

Nx−1∑
i=1

Ny−1∑
j=1

v2i,j ,

where

Vh = {v : v = {vi,j} is a grid function in Λh ∪ ∂Λh and vi,j = 0 on ∂Λh}.
In the following, we list some properties of Kronecker products of matrices.

Lemma 4.1 ([11]). Let A ∈ Rn×n have eigenvalues {λi}ni=1, and B ∈ Rm×m have
eigenvalues {μj}mj=1. Then the mn eigenvalues of A ⊗ B, which represents the
Kronecker product of matrix A and B, are

λ1μ1, . . . , λ1μm, λ2μ1, . . . , λ2μm, . . . , λnμ1, . . . , λnμm.

Lemma 4.2 ([11]). Let A ∈ Rm×n, B ∈ Rr×s, C ∈ Rn×p, D ∈ Rs×t. Then

(4.16) (A⊗B)(C ⊗D) = AC ⊗BD (∈ R
mr×pt).

Moreover, if A,B ∈ Rn×n, I is a unit matrix of order n, then matrices I ⊗ A and
B ⊗ I commute.

Lemma 4.3 ([11]). For all A and B, (A⊗B)T = AT ⊗BT.

The theoretical stability and convergence analysis of the designed numerical
scheme for two-dimensional problem are given by the following theorems.

Theorem 4.4. The difference scheme (4.6) and (4.13) are unconditionally stable
for 1 < α, β ≤ 2.

Proof. We represent the discrete functions Un
i,j and f

n+1/2
i,j into vector forms with

Un =(un
1,1, u

n
2,1, · · · , un

Nx−1,1, u
n
1,2, u

n
2,2, · · · , un

Nx−1,2, · · · ,
un
1,Ny−1, u

n
2,Ny−1, · · · , un

Nx−1,Ny−1)
T,

Fn+1/2 =(f
n+1/2
1,1 , f

n+1/2
2,1 , · · · , fn+1/2

Nx−1,1, f
n+1/2
1,2 , f

n+1/2
2,2 , · · · , fn+1/2

Nx−1,2, · · · ,

f
n+1/2
1,Ny−1, f

n+1/2
2,Ny−1, · · · , f

n+1/2
Nx−1,Ny−1)

T,

and denote

(4.17) Dx =
K+

1 τ

2hα
x

Iy ⊗Aα +
K+

2 τ

2hα
x

Iy ⊗AT
α , Dy =

K−
1 τ

2hβ
y

Aβ ⊗ Ix +
K−

2 τ

2hβ
y

AT
β ⊗ Ix,

where the symbol ⊗ denotes the Kronecker product, Ix and Iy are unit matrices of
(Nx − 1) and (Ny − 1) squares, respectively, and matrices Aα and Aβ are defined
in (2.20) corresponding to α, β, respectively.

From the difference scheme (4.6) and (4.13), we have the relationship between
the error en+1 in Un+1 and the error en in Un as

(4.18) en+1 =
(
I −Dy

)−1(
I −Dx

)−1(
I +Dx

)(
I +Dy

)
en,

where I is the unit matrix of (Nx − 1) × (Ny − 1) squares. Using Lemma 4.2, we
can check that Dx and Dy commute, i.e.,

(4.19) DxDy = DyDx =
τ2

4hα
xh

β
y

(K−
1 Aβ +K−

2 AT
β )⊗ (K+

1 Aα +K+
2 AT

α).
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Thus (4.18) can be rewritten as

(4.20) en =
((

I −Dy

)−1(
I +Dy

))n((
I −Dx

)−1(
I +Dx

))n

e0.

We can also calculate the symmetric parts of Dx and Dy by Lemma 4.3 as

Dx +DT
x

2
=

(K+
1 +K+

2 )τ

2hα
x

Iy ⊗
(Aα +AT

α

2

)
,

Dy +DT
y

2
=

(K−
1 +K−

2 )τ

2hβ
y

(Aβ +AT
β

2

)
⊗ Ix.

From Theorem 2.13, the eigenvalues of
Aα+AT

α

2 and
Aβ+AT

β

2 are all negative when
1 < α, β ≤ 2. Defining λα and λβ as an eigenvalue of matrices Dx and Dy,
respectively, then it yields from the consequences of Lemma 2.10 and 4.1 that the
real parts of λα and λβ are both less than zero. Since (1 + λα)/(1− λα) and (1 +
λβ)/(1−λβ) are eigenvalues of matrices (I−Dx)

−1(I+Dx) and (I−Dy)
−1(I+Dy),

respectively, thus the spectral radius of each matrix is less than 1, which follows
that

(
(I − Dx)

−1(I + Dx)
)n

and
(
(I − Dy)

−1(I + Dy)
)n

converge to zero matrix
(see Theorem 1.5 in [21]). Therefore the difference scheme (4.6) is unconditionally
stable. �

Remark 4.5. For the similar reason described in Remark 3.2 and the proof of The-
orem 4.4, we conclude that the WSGD scheme with θ weighted scheme for the time
discretization for (4.1) is unconditionally stable when 1

2 ≤ θ ≤ 1.

Lemma 4.6. Let Dx and Dy be defined in (4.17), then

‖(I −Dx)
−1(I −Dy)

−1‖2 ≤ 1,

‖(I −Dγ)
−1(I +Dγ)‖2 ≤ 1, γ = x, y,

where ‖ · ‖2 denotes the 2-norm (spectral norm).

Proof. From Theorem 2.13 and Lemma 4.1, we know that Dx+DT
x and Dy+DT

y are

negative semi-definite and symmetric matrices. Then for any v ∈ R
(Nx−1)×(Ny−1),

we obtain that
vTv ≤ vT(I −DT

γ )(I −Dγ)v, γ = x, y.

Substituting v and vT by (I − Dγ)
−1v and vT(I − DT

γ )
−1, respectively, for any

v ∈ R(Nx−1)×(Ny−1), we get

vT(I −DT
γ )

−1(I −Dγ)
−1v ≤ vTv, γ = x, y.

Thus, it leads to

‖(I −Dγ)
−1‖2 = sup

v �=0

√
vT(I −DT

γ )
−1(I −Dγ)−1v

vTv
≤ 1, γ = x, y.

Consequently,

‖(I −Dx)
−1(I −Dy)

−1‖2 ≤ ‖(I −Dx)
−1‖2‖(I −Dy)

−1‖2 ≤ 1

holds.
Since Dx +DT

x and Dy +DT
y are negative semi-definite and symmetric, for any

v ∈ R(Nx−1)×(Ny−1), we have

vT(I +DT
γ )(I +Dγ)v ≤ vT(I −DT

γ )(I −Dγ)v, γ = x, y.
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By choosing vector (I −Dγ)
−1v, we have that for any v ∈ R(Nx−1)×(Ny−1),

vT(I −DT
γ )

−1(I +DT
γ )(I +Dγ)(I −Dγ)

−1v ≤ vTv, γ = x, y.

As (I −Dγ)
−1(I +Dγ) = (I +Dγ)(I −Dγ)

−1, then it yields that

‖(I −Dγ)
−1(I +Dγ)‖2 = ‖(I +Dγ)(I −Dγ)

−1‖2

= sup
v �=0

√
vT(I −DT

γ )
−1(I +DT

γ )(I +Dγ)(I −Dγ)−1v

vTv
≤ 1. �

Theorem 4.7. Let un
i,j be the exact solution of (4.1) with 1 < α, β ≤ 2, and Un

i,j

the solution of the difference scheme (4.6), then for all 1 ≤ n ≤ M , we have

(4.21) ‖un − Un‖ ≤ c(τ2 + h2
x + h2

y),

where c denotes a positive constant and ‖ · ‖ stands for the discrete L2-norm.

Proof. Let eni,j = un
i,j − Un

i,j , subtracting (4.5) from (4.6) leads to

(4.22)
(
I −Dx

)(
I −Dy

)
en+1 =

(
I +Dx

)(
I +Dy

)
en + τEn,

where Dx and Dy are given in (4.17) and

e =(e1,1, e2,1, · · · , eNx−1,1, e1,2, e2,2, · · · , eNx−1,2, · · · ,
e1,Ny−1, e2,Ny−1, · · · , eNx−1,Ny−1)

T,

E =(ε1,1, ε2,1, · · · , εNx−1,1, ε1,2, ε2,2, · · · , εNx−1,2, · · · ,
ε1,Ny−1, ε2,Ny−1, · · · , εNx−1,Ny−1)

T.

Since Dx commutes with Dy, denoting P =
(
I−Dx

)−1(
I−Dy

)−1(
I+Dx

)(
I+Dy

)
,

it yields that

(4.23) en+1 = Pen + τ (I −Dx

)−1(
I −Dy

)−1En.

Replacing n by k and iterating for all 0 ≤ k ≤ n−1 and taking the discrete L2-norm
on both sides, we have that
(4.24)

‖en‖ ≤ τ‖(I −Dx)
−1(I −Dy)

−1‖2
n−1∑
k=0

‖P k‖2 · ‖En−1−k‖ ≤ τ

n−1∑
k=0

‖P k‖2 · ‖En−1−k‖,

where Lemma 4.6 shows that ‖(I −Dx)
−1(I −Dy)

−1‖2 ≤ 1.
Since Dx and Dy commute, matrix P can be rewritten as

(4.25) P = (I −Dx)
−1(I +Dx)(I −Dy)

−1(I +Dy).

We then obtain from Lemma 4.6 that

(4.26) ‖P‖2 ≤ ‖(I −Dx)
−1(I +Dx)‖2‖(I −Dy)

−1(I +Dy)‖2 ≤ 1.

Then for any 1 ≤ k ≤ M , ‖P k‖2 ≤ ‖P‖k2 ≤ 1 holds. Now we can get that

�(4.27) ‖en‖ ≤ τ

n−1∑
k=0

‖Ek‖ ≤ c(τ2 + h2
x + h2

y).

The convergence result for scheme (4.13) can also be obtained by the similar way
as above.
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5. Numerical examples

5.1. One-dimensional case.

Example 5.1. Consider the following problem

(5.1)
∂u(x, t)

∂t
= 0D

α
xu(x, t)− e−t

(
x1+α + Γ(2 + α)x

)
, (x, t) ∈ (0, 1)× (0, 1],

with the boundary conditions

u(0, t) = 0, u(1, t) = e−t, t ∈ [0, 1],

and initial value

u(x, 0) = x1+α, x ∈ [0, 1].

Then the exact solution of (5.1) is u(x, t) = e−tx1+α.

In Table 2, we present the maximum and L2 errors at t = 1 and the corresponding
convergence rates to Example 5.1 approximated by the CN-WSGD scheme (3.6)
with different space step sizes. The second order accuracy in space is verified for
the problem (3.1) with only left Riemann-Liouville fractional derivative, and the
numerical results show that the scheme (3.6) also performs efficiently for α near 1.

Table 2. The maximum and L2 errors and their convergence rates
to Example 5.1 approximated by the CN-WSGD scheme at t = 1
for different α with τ = h.

(p, q) = (1, 0) (p, q) = (1,−1)

α N ‖uM − UM‖∞ rate ‖uM − UM‖ rate ‖uM − UM‖∞ rate ‖uM − UM‖ rate

1.1 16 6.65881E-05 - 3.61993E-05 - 9.07705E-04 - 9.88412E-05 -

32 1.54190E-05 2.11 8.91288E-06 2.02 2.28231E-04 1.99 1.69497E-05 2.54

64 3.59204E-06 2.10 2.20864E-06 2.01 5.54453E-05 2.04 3.18905E-06 2.41

128 8.38779E-07 2.10 5.50064E-07 2.01 1.32272E-05 2.07 6.62381E-07 2.27

256 2.07953E-07 2.01 1.37309E-07 2.00 3.12360E-06 2.08 1.49541E-07 2.15

512 5.19919E-08 2.00 3.43071E-08 2.00 7.33195E-07 2.09 3.55944E-08 2.07

1.5 16 6.17157E-05 - 8.80121E-06 - 3.88221E-04 - 3.91200E-05 -

32 1.25568E-05 2.30 2.30799E-06 1.93 7.85748E-05 2.30 5.04830E-06 2.95

64 2.47412E-06 2.34 6.07043E-07 1.93 1.54572E-05 2.35 7.43659E-07 2.76

128 4.76404E-07 2.38 1.56527E-07 1.96 2.97507E-06 2.38 1.49956E-07 2.31

256 9.01282E-08 2.40 3.97926E-08 1.98 5.62846E-07 2.40 3.72282E-08 2.01

512 1.93161E-08 2.22 1.00351E-08 1.99 1.05033E-07 2.42 9.60334E-09 1.95

1.9 16 1.63058E-05 - 2.27814E-06 - 6.02603E-05 - 7.78084E-06 -

32 2.49190E-06 2.71 6.49029E-07 1.81 9.23273E-06 2.71 9.04790E-07 3.10

64 4.93027E-07 2.34 1.81207E-07 1.84 1.35841E-06 2.76 1.49823E-07 2.59

128 1.27340E-07 1.95 4.81095E-08 1.91 1.94436E-07 2.80 4.02142E-08 1.90

256 3.23580E-08 1.98 1.24022E-08 1.96 3.06615E-08 2.66 1.12278E-08 1.84

512 8.15631E-09 1.99 3.14892E-09 1.98 7.93775E-09 1.95 2.99226E-09 1.91

Example 5.2. Consider the problem

∂u(x, t)

∂t
= 0D

α
xu(x, t) + xD

α
1 u(x, t) + f(x, t), (x, t) ∈ (0, 1)× (0, 1],

u(0, t) = u(1, t) = 0, t ∈ [0, 1],

u(x, 0) = x3(1− x)3, x ∈ [0, 1],

(5.2)
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with the source term

f(x, t) = −e−t
(
x3(1− x)3 +

Γ(4)

Γ(4− α)

(
x3−α + (1− x)3−α

)
−3

Γ(5)

Γ(5− α)

(
x4−α + (1− x)4−α

)
+3

Γ(6)

Γ(6− α)

(
x5−α + (1− x)5−α

)
− Γ(7)

Γ(7− α)

(
x6−α + (1− x)6−α

))
.

By simple evaluation, the exact solution of (5.2) is u(x, t) = e−tx3(1− x)3.

Table 3 shows the maximum and L2 errors at t = 1 and the corresponding
convergence rates to Example 5.2, obtained by the CN-WSGD scheme (3.6) with
different space step sizes. We can observe that CN-WSGD scheme (3.6) with the
two cases (p, q) = (1, 0) and (1,−1) is also very efficient for the problem with two
sided Riemann-Liouville fractional derivatives, and second order accuracy in space
is achieved.

Table 3. The maximum and L2 errors and their convergence rates
to Example 5.2 approximated by the CN-WSGD scheme at t = 1
for different α with τ = h.

(p, q) = (1, 0) (p, q) = (1,−1)

α N ‖uM − UM‖∞ rate ‖uM − UM‖ rate ‖uM − UM‖∞ rate ‖uM − UM‖ rate

1.1 16 1.21351E-04 - 6.87244E-05 - 1.04202E-04 - 5.49761E-05 -

32 3.10400E-05 1.97 1.75798E-05 1.97 4.32767E-05 1.27 2.00595E-05 1.45

64 7.93983E-06 1.97 4.47207E-06 1.97 1.48399E-05 1.54 7.42486E-06 1.43

128 2.01674E-06 1.98 1.12995E-06 1.98 4.19788E-06 1.82 2.23601E-06 1.73

256 5.08051E-07 1.99 2.84150E-07 1.99 1.10967E-06 1.92 6.11319E-07 1.87

512 1.27511E-07 1.99 7.12580E-08 2.00 2.84899E-07 1.96 1.59692E-07 1.94

1.5 16 2.03009E-04 - 5.46438E-05 - 2.99388E-04 - 8.57787E-05 -

32 4.52559E-05 2.17 1.37190E-05 1.99 7.90624E-05 1.92 2.31127E-05 1.89

64 1.13225E-05 2.00 3.45401E-06 1.99 2.01483E-05 1.97 6.01008E-06 1.94

128 2.83579E-06 2.00 8.67756E-07 1.99 5.08147E-06 1.99 1.53528E-06 1.97

256 7.09655E-07 2.00 2.17555E-07 2.00 1.27542E-06 1.99 3.88274E-07 1.98

512 1.77509E-07 2.00 5.44715E-08 2.00 3.19447E-07 2.00 9.76542E-08 1.99

1.9 16 2.02959E-04 - 3.60448E-05 - 2.35899E-04 - 4.37067E-05 -

32 4.57927E-05 2.15 8.97441E-06 2.01 5.44882E-05 2.11 1.10506E-05 1.98

64 9.36312E-06 2.29 2.23928E-06 2.00 1.13848E-05 2.26 2.77301E-06 1.99

128 2.03859E-06 2.20 5.59714E-07 2.00 2.55286E-06 2.16 6.94607E-07 2.00

256 5.08948E-07 2.00 1.39944E-07 2.00 6.35234E-07 2.01 1.73827E-07 2.00

512 1.27160E-07 2.00 3.49898E-08 2.00 1.58420E-07 2.00 4.34792E-08 2.00

Example 5.3. Consider the following variable coefficients problem:

(5.3)

∂u(x, t)

∂t
= xα

0D
α
xu(x, t) + (1− x)αxD

α
1 u(x, t)

+ f(x, t), (x, t) ∈ (0, 1)× (0, 1],

u(0, t) = u(1, t) = 0, t ∈ [0, 1],

u(x, 0) = x3(1− x)3, x ∈ [0, 1],
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with the source term

f(x, t) = −e−t
(
x3(1− x)3 +

Γ(4)

Γ(4− α)

(
x3 + (1− x)3

)
− 3

Γ(5)

Γ(5− α)

(
x4 + (1− x)4

)
+3

Γ(6)

Γ(6− α)

(
x5 + (1− x)5

)
− Γ(7)

Γ(7− α)

(
x6 + (1− x)6

))
.

By simple evaluation, the exact solution of (5.3) is u(x, t) = e−tx3(1− x)3.

The numerical results for the variable coefficients problem in Example 5.3 are
listed in Table 4, including the maximum and L2 errors at t = 1 and the correspond-
ing convergence rates. From Table 4, second order accuracy in space is observed,
which indicates the discretization formulae (2.16) with (p, q) = (1, 0) and (1,−1)
for the Riemann-Liouville fractional derivatives can also be efficient for designing
finite difference scheme for some variable coefficients fractional problems.

Table 4. The maximum and L2 errors and their convergence rates
to Example 5.3 approximated by the CN-WSGD scheme at t = 1
for different α with τ = h.

(p, q) = (1, 0) (p, q) = (1,−1)

α N ‖uM − UM‖∞ rate ‖uM − UM‖ rate ‖uM − UM‖∞ rate ‖uM − UM‖ rate

1.1 16 1.77123E-04 - 7.32001E-05 - 3.95613E-04 - 1.92219E-04 -

32 4.47870E-05 1.98 1.76184E-05 2.05 9.75763E-05 2.02 4.11452E-05 2.22

64 1.08962E-05 2.04 4.36356E-06 2.01 2.43654E-05 2.00 1.00363E-05 2.04

128 2.66784E-06 2.03 1.08906E-06 2.00 6.10991E-06 2.00 2.51523E-06 2.00

256 6.67126E-07 2.00 2.72235E-07 2.00 1.53026E-06 2.00 6.31764E-07 1.99

1.5 16 1.88510E-04 - 6.18902E-05 - 3.56874E-04 - 1.30433E-04 -

32 4.48741E-05 2.07 1.46628E-05 2.08 8.32954E-05 2.10 2.80619E-05 2.22

64 1.10524E-05 2.02 3.61334E-06 2.02 2.02076E-05 2.04 6.65178E-06 2.08

128 2.74933E-06 2.01 8.99424E-07 2.01 4.98975E-06 2.02 1.63398E-06 2.03

256 6.86120E-07 2.00 2.24518E-07 2.00 1.24092E-06 2.01 4.05976E-07 2.01

1.9 16 1.61881E-04 - 4.02897E-05 - 1.79407E-04 - 5.75044E-05 -

32 3.43080E-05 2.24 9.58213E-06 2.07 4.06728E-05 2.14 1.27751E-05 2.17

64 7.72475E-06 2.15 2.35289E-06 2.03 9.30708E-06 2.13 3.02268E-06 2.08

128 1.91676E-06 2.01 5.83977E-07 2.01 2.34573E-06 1.99 7.37420E-07 2.04

256 4.80573E-07 2.00 1.45527E-07 2.00 5.92611E-07 1.98 1.82315E-07 2.02

5.2. Two-dimensional case.

Example 5.4. The following fractional diffusion problem

∂u(x, y, t)

∂t
= 0D

1.2
x u(x, y, t) + xD

1.2
1 u(x, y, t) + 0D

1.8
y u(x, y, t) + yD

1.8
1 u(x, y, t) + f(x, y, t)

is considered in the domain Ω = (0, 1)2 and t > 0 with boundary conditions
u(x, y, t)|∂Ω = 0 and the initial condition u(x, y, 0) = x3(1 − x)3y3(1 − y)3, where
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the source term

f(x, y, t) = −e−t
[(

x3(1− x)3y3(1− y)3
)

+
( Γ(4)

Γ(2.8)

(
x1.8 + (1− x)1.8

)
− 3Γ(5)

Γ(3.8)

(
x2.8 + (1− x)2.8

)

+
3Γ(6)

Γ(4.8)

(
x3.8 + (1− x)3.8

)
− Γ(7)

Γ(5.8)

(
x4.8 + (1− x)4.8

))
y3(1− y)3

+
( Γ(4)

Γ(2.2)

(
y1.2 + (1− y)1.2

)
− 3Γ(5)

Γ(3.2)

(
y2.2 + (1− y)2.2

)

+
3Γ(6)

Γ(4.2)

(
y3.2 + (1− y)3.2

)
− Γ(7)

Γ(5.2)

(
y4.2 + (1− y)4.2

))
x3(1− x)3

]
.

Then the exact solution of the fractional partial differential equation is u(x, y, t) =
e−tx3(1− x)3y3(1− y)3.

We use four numerical schemes: LOD (4.14), PR-ADI (4.7), Douglas-ADI (4.8)
and D’yakonov-ADI (4.9), to simulate Example 5.4, the maximum and L2 errors
and their convergence rates to Example 5.4 approximated at t = 1 are listed in
Table 5, where N = Nx = Ny, and p, q are the shifted numbers of the WSGD
operators. From the numerical results, three ADI schemes obtain more accurate
solution than the LOD scheme, and it also reflects that the three ADI schemes are
equivalent in two dimensional case.

Table 5. The maximum and L2 errors and their convergence rates
to Example 5.4 approximated at t = 1 with τ = hx = hy.

(p, q) = (1, 0) (p, q) = (1,−1)

Scheme N ‖uM − UM‖∞ rate ‖uM − UM‖ rate ‖uM − UM‖∞ rate ‖uM − UM‖ rate

8 4.49810E-05 - 1.36781E-05 - 4.81859E-05 - 1.50257E-05 -

16 1.16951E-05 1.94 3.68935E-06 1.89 1.21720E-05 1.99 3.77002E-06 1.99

LOD 32 2.94559E-06 1.99 9.40245E-07 1.97 3.11386E-06 1.97 9.74178E-07 1.95

64 7.36186E-07 2.00 2.36472E-07 1.99 7.84850E-07 1.99 2.47973E-07 1.97

128 1.83637E-07 2.00 5.92494E-08 2.00 1.96486E-07 2.00 6.25130E-08 1.99

8 6.43195E-06 - 1.95007E-06 - 6.44770E-06 - 2.05016E-06 -

16 1.54712E-06 2.06 4.84833E-07 2.01 2.04790E-06 1.65 6.06100E-07 1.76

PR-ADI 32 3.83522E-07 2.01 1.21460E-07 2.00 5.56723E-07 1.88 1.69028E-07 1.84

64 9.57751E-08 2.00 3.04854E-08 1.99 1.44070E-07 1.95 4.50482E-08 1.91

128 2.39462E-08 2.00 7.64237E-09 2.00 3.65748E-08 1.98 1.16567E-08 1.95

8 6.43195E-06 - 1.95007E-06 - 6.44770E-06 - 2.05016E-06 -

Douglas- 16 1.54712E-06 2.06 4.84833E-07 2.01 2.04790E-06 1.65 6.06100E-07 1.76

ADI 32 3.83522E-07 2.01 1.21460E-07 2.00 5.56723E-07 1.88 1.69028E-07 1.84

64 9.57751E-08 2.00 3.04854E-08 1.99 1.44070E-07 1.95 4.50482E-08 1.91

128 2.39462E-08 2.00 7.64237E-09 2.00 3.65748E-08 1.98 1.16567E-08 1.95

8 6.43195E-06 - 1.95007E-06 - 6.44770E-06 - 2.05016E-06 -

D’yakonov- 16 1.54712E-06 2.06 4.84833E-07 2.01 2.04790E-06 1.65 6.06100E-07 1.76

ADI 32 3.83522E-07 2.01 1.21460E-07 2.00 5.56723E-07 1.88 1.69028E-07 1.84

64 9.57751E-08 2.00 3.04854E-08 1.99 1.44070E-07 1.95 4.50482E-08 1.91

128 2.39462E-08 2.00 7.64237E-09 2.00 3.65748E-08 1.98 1.16567E-08 1.95

6. Conclusion

The paper provides the novel second order approximations for fractional deriva-
tives, called the weighted and shifted Grünwald difference operator; it also suggests
a direction to gain higher order discretization and compact schemes of fractional
derivatives, e.g., [31]. The discretizations are used to solve one- and two-dimensional
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space fractional diffusion equations; several numerical schemes are designed, their
effectiveness are theoretically proved and numerically verified.
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[2] Cem Çelik and Melda Duman, Crank-Nicolson method for the fractional diffusion equation
with the Riesz fractional derivative, J. Comput. Phys. 231 (2012), no. 4, 1743–1750, DOI

10.1016/j.jcp.2011.11.008. MR2876585
[3] Raymond H. Chan, Toeplitz preconditioners for Toeplitz systems with nonnegative generating

functions, IMA J. Numer. Anal. 11 (1991), no. 3, 333–345, DOI 10.1093/imanum/11.3.333.
MR1118960 (92f:65041)

[4] Raymond Hon-Fu Chan and Xiao-Qing Jin, An Introduction to Iterative Toeplitz Solvers,
Fundamentals of Algorithms, vol. 5, Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 2007. MR2376196 (2008k:65001)

[5] A.V. Chechkin, R. Goreno, I.M. Sokolov, Retarding subdiffusion and accelerating superdif-
fusion governed by distributed-order fractional diffusion equations, Phys. Rev. E. 66 (2002)
046129

[6] Minghua Chen andWeihua Deng, A second-order numerical method for two-dimensional two-
sided space fractional convection diffusion equation, Appl. Math. Model. 38 (2014), no. 13,
3244–3259, DOI 10.1016/j.apm.2013.11.043. MR3207518

[7] Jim Douglas Jr. and Seongjai Kim, Improved accuracy for locally one-dimensional methods
for parabolic equations, Math. Models Methods Appl. Sci. 11 (2001), no. 9, 1563–1579, DOI
10.1142/S0218202501001471. MR1872682 (2002i:65083)

[8] Vincent J. Ervin and John Paul Roop, Variational formulation for the stationary fractional
advection dispersion equation, Numer. Methods Partial Differential Equations 22 (2006),
no. 3, 558–576, DOI 10.1002/num.20112. MR2212226 (2006m:65265)

[9] Rudolf Gorenflo and Francesco Mainardi, Random walk models for space-fractional diffusion
processes, Fract. Calc. Appl. Anal. 1 (1998), no. 2, 167–191. MR1656314 (99m:60117)

[10] Natalia Krepysheva, Liliana Di Pietro, and Marie-Christine Néel, Space-fractional advection-
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