
MATHEMATICS OF COMPUTATION, VOLUME 33, NUMBER 146

APRIL 1979, PAGES 659-679

A Collocation Solver for Mixed Order Systems

of Boundary Value Problems

By U. Ascher*, J. Christiansen** and R. D. Russell**

Abstract.   Implementation of a spline collocation method for solving boundary value

problems for mixed order systems of ordinary differential equations is discussed.

The aspects of this method considered include error estimation, adaptive mesh

selection, B-spline basis function evaluation, linear system solution and nonlinear prob-

lem solution.

The resulting general purpose code, COLSYS, is tested on a number of examples

to demonstrate its stability, efficiency and flexibility.

1.   Introduction.   Recently there have been several efforts to develop high quality,

general purpose software for the solution of boundary value problems for systems of

ordinary differential equations.  Most of the codes developed have been based on ini-

tial value methods, reflecting the current advanced state of such methods.  In particu-

lar, multiple shooting codes have been developed by England, Nichols and Reid [19]

and by Bulirsch, Stoer and Deuflhard [10].  Successful solution of some difficult non-

linear problems with the latter code is reported in [17].   Also, Scott and Watts have

produced a superposition code with orthonormalization [35].  A comparison of some

initial value type codes is given in [36].

A second approach has been implemented by Lentini and Pereyra [24], [25],

where a finite difference method with deferred corrections is used.

A thorough theoretical analysis of finite element methods has been available for

some time [13], [33], [7], but, to our knowledge, there has been no attempt, prior to

this work, to write a general purpose code using these methods.

In this paper we discuss an implementation of a spline collocation method for

solving boundary value problems for mixed order systems of ordinary differential equa-

tions.   While not in polished form, our code COLSYS (COLlocation for SYStems) is

sufficiently stabilized that we are able to present a number of its theoretical and prac-

tical aspects and demonstrate the power of this preliminary version.

There are a number of reasons for our choice of the collocation method. It is

the most suitable method among the finite element ones, for a general purpose code.

See [1], [30] and [31], where complexity comparisons are made which support the

above claim and also show collocation, when efficiently implemented, to be competi-
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tive with finite differences using extrapolation.  The theoretical results on the con-

vergence of the collocation method [11], [23], together with those on error estimation

and mesh selection [32], [12] are more general than for the other methods mentioned.

This, and the basic simplicity of the collocation procedure, also make programming of

the method reasonably straightforward. COLSYS is designed to solve mixed order sys-

tems of nonlinear boundary value problems. This is in contrast to the other codes men-

tioned above which require conversion of a given problem to a first order system, thereby

increasing the number of equations and changing the algebraic structure of the discretized

problem. Numerous numerical experiments have demonstrated the stability of the collo-

cation procedure, and recent attempts at adaptive mesh selection and error estimation

have been quite successful [32]. For these reasons we feel that a robust, efficient colloca-

tion code can be developed to reliably solve a larger class of problems than has heretofore

been possible.

Most of the points mentioned above are discussed and demonstrated in greater

detail in the rest of the paper.   In Section 2 the collocation theory for mixed order

boundary value systems [11], [23] is extended to obtain an error expression useful for

adaptive mesh selection, generalizing a result in [32] for a scalar equation.  Also, a

theoretical justification of the error estimation strategy as well as practical aspects of

these features are given.

Section 3 considers the method used for evaluating the piecewise polynomial

collocation solution, expressed in terms of a 5-spline basis.   This involves appropriate

modification of de Boor's Ä-spline evaluation procedures [4].

Section 4 describes some aspects of solving the collocation equations.  Newton's

method is currently used for solving nonlinear problems.   For each Newton iteration,

the resulting linear algebraic system of equations is solved using a package developed

by de Boor and Weiss [8], after first bringing the equations into a banded block struc-

ture.

Several representative test problems, demonstrating the stability and flexibility of

COLSYS, are documented in Section 5.  A more detailed set of problems are given in

[2], where the linear examples are also tried with two other codes [35], [24] in order

to put COLSYS in a perspective.  From our considerable testing, COLSYS appears to

be competitive in general and particularly suitable for mildly difficult and difficult

problems.  Several of the examples with a small parameter are best solved by COLSYS.

It is also the only one which can solve some problems with singularities without any

modification.  The relative efficiency of the code increases for problems of higher order

and more than one component.

2.   Error Estimates and Mesh Selection.   The class of problems treated by our

code has the following general form:   A system of d nonlinear differential equations of

orders mx < m2 < ••• < 777d,

(mnh  \       ct > <.mi~l) (md_1\ - c /•        í  \\
(2.1)   un " (x) = Fn(x;ux,ux,...,ux ,u2,...,uda     ) =Fn(x; z(u)),

a < x < b,    n = 1, ..., d,



COLLOCATION SOLVER FOR MIXED ORDER SYSTEMS 661

is subject to nonlinear side conditions,

(2.2) gßf, z(u)) = 0,      f, <f2< •••<fm*,f/e [a, b],j= 1,..., 777*,

where m* = 2^ = 1mn.  To conveniently facilitate an efficient implementation we re-

quire that md < 4 and that the side conditions (2.2) each involve only one point.

Thus, for example, periodic boundary conditions are excluded.  However, any problem

with such nonseparated conditions (and even interface conditions) can be cast into

form (2.1), (2.2) at the expense of increasing the size d of the problem, as shown by

example in [2].

To be able to apply the collocation theory we need to have an isolated solution

u to (2.1)—(2.2).  This occurs if the linearized problem at u is uniquely solvable.  Spe-

cifically, consider the curve C C R"1   +1 defined by

C={[x, uxix),...,u[m^l\x),...,u(dmd~l\x)}:xG[a, b]},

and the linear problem

(2.3) ¿„w = 0>      n=l,...,d,

(2.4) 5;W = 0, j =  1, ...,777*,

where w = (wx, ..., wd),

(m i   *• 9^„(-;z("))
(2.3a) L„w = L»w - „£"»> - £       \ ■ »M

7=1 0Zl

n ao\                                          ïC dgfip z(u))
(2-4a> /3,-w = ^.(u)w = £  -4;-z,(w).

7=1 azi

If the Green's function G(x, t) for (2.3)—(2.4) exists (implying unique existence for

the linearized problem) and Fx, ..., Fd, gx.g   , are sufficiently smooth in some

ô-neighborhood of C, this is sufficient to guarantee that there exists a a > 0 such that

u(x) is the unique solution of (2.1)—(2.2) in the sphere B(Dmu, o) = {w(x):

\\wn  "   - un  " H < a, n = 1, ..., d} [11].  This also implies that Newton's method

converges quadratically if the initial approximation is sufficiently close to u(x).

To solve (2.1)—(2.2) numerically, we apply collocation at Gaussian points, using

piecewise polynomial functions.   If 7r is a partition of [a, b]

n: a = xx <x2 < •■■ <xN <xN + x = b,

(2.5) \Ii = (xi'xi+i)'    hi = xi+i -•*/>      i=l,...,N,

h =   max   hi
Ki<N

and Pk    = {v\v is a polynomial of order fc (degree < fc) on I¡, i = 1, ..., N], then

we seek an approximate solution \ = (vx, ..., vd) such that vn G Vk +m   ff n

C(m"~l)[a, b],n= 1, ...,d, or v G Pfc+m   „ nC(m-1)[a, b].  We require fc > md,

where fc is the number of collocation points per subinterval.   If {pAk¡= x are the Gauss-
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Legendre points on [-1, 1], then {xiAN±k1j=1 axe the collocation points, where

x¡ + xi + x

(2.6) *,/ =-j-+ HA,P' = x'- +1 /2 + Mipr

The collocation equations which v has to satisfy are thus

(2.7) C»\Xii) = Fn(xif, z(v)),      / = 1, ..., k, i = 1, ..., N, 77 = 1, ..., d,

and (2.2).

The theory and a priori error estimates for collocation have been presented in

[11] (cf. also [23], [29], [7], [38] ).   Here, we merely quote the results that (as-

suming sufficient smoothness)

(2.8) \\u¡!)-v<nl)\L = 0(hk+r"n~'),      l = 0,...,mn,n = l,...,d,

and, at the mesh points, superconvergence occurs

(2.9) |(«« - i#>)(x,.)| = Oih2k),      i=l,...,N,l = 0,...,mn-l,n=l,...,d.

The phenomenon of higher order accuracy at the mesh points displayed in (2.9)

may suggest (as has been noted in various places in the literature) using a posteriori

high order interpolation of an approximate solution at the mesh points to improve the

overall accuracy, at least when fc > tti^.   However, it has been the experience of these

authors and others that this is generally not a very useful idea, as the asymptotic range

of h, 0 < h < h0, where the superiority of the bound (2.9) over (2.8) is demonstrated,

occurs very often for an h0 which is effectively too small.

We feel that in practice it is more significant that the main term of the error ex-

pression is local if fc > 777d. Below, we briefly describe this analysis which is similar to

that in [32] (cf. also [5]).

It is known [11] that a collocation solution of the linearized problem

(2.10a) ¿„w = L„u,      n=l,...,d,

(2.10b) ßf* = ßja,        j=l,...,m*,

where Ln and fy are defined in (2.3a), (2.4a), lies within 0(h2k) of the collocation so-

lution of the original problem (2.1), (2.2).  Therefore, for terms of order less than 2fc

in h, one need only consider the form of the error for linear problems.  The Green's

function G(x, t) exists if the linear problem has a unique solution.   If (2.10a) is cast

as a system of 777* first order equations, with one component assigned to each of

u(nl), I = 0, ..., mn - 1, n - 1, .... d, then the Green's function A^x, t) for this first

order system can be constructed as in [29].  The Green's function G(x, t) for the sys-

tem (2.10a), (2.10b) then consists of a subset of the components of K(x, t)-see [11].

Using a general form for K(x, t), it can be shown that as a function of t, Gni(x, t) is

in C(m"_1)[a, b] iXi^n and Gnn(x, t) is in C(m"~2)[a, b] with
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b"""'1 b™"'1
-Gnn(Ut+)--^-rGnn(t,t-) = (-l)   ».

btm"   ' bf"

If r(x) = L(u - v)(x), then the error is e(x) s u(x) - v(x) = /aö G(x, t)r(t)dt.   Using

(2.7) for the linear problem, we obtain (since rn(x¡A = 0, / = 1, ..., fc)

r(fc>(a -(r))     k

rn(t) =-r¡-IT (t -xif)    for t G [x,, xi+x],
*■ /=i

for some a„,-(»*) G [x,., x/+1].   So the error in the nth component is

«„W = Z   ET1 Gnl(x, t) ■ r(fc)(a„.(0) ft (' - »«V« *, " - 1.<*

Thé convergence results (2.8) and continuity arguments as in [32] imply, for fc > 777d,

(k+mn)

(2.ll)

i^aTfiij.) .

77 = l, ...,</,

for x G /., where

(2.12)    P(t)=r   ±-±±-¥—51- rTfr-« .)</,= «-LI-LL
"W     J-i fc!(w„-l)! /^Z     ^ k-mn      2fc!

for ? G (-1, 1).

In arriving at error estimation and mesh selection schemes we assume that the

local term in the error expression (2.11) is the dominant one.  This, of course, can be

guaranteed only when the mesh is quasiuniform, i.e. hlminx<i<Nh¡ is bounded, and h

is small enough.  If, for example, the solution behaves badly in one part of the domain

and well in another, (2.11) indicates that h should still be taken small in the region of

good behavior in order to keep the 0(h ) term relatively small.   However,

our experience has been that the mesh selection and error estimation schemes usually

work well, supporting our above assumption.

A Posteriori Error Estimate.   Suppose we have approximations v(-) and v*(-) on

the meshes {x,.}^1 and [xf}2=x+1 respectively, with x*,_1 = x¡ and x2t = xi + x/2

= lA(x¡ + xi+x).  We want to estimate the maximum of the error e*(x) = un(x) - v*(x)

for x G [x(-, xJ + x].  If fc > md, vn and v* can be compared at several points to esti-

mate [32]

ü""    k+m

1 i k+mn + l.

n + 1
+ 0(h       "    )

1 fc+m„ + l.

<K\\<\\vn-v*\\-^- +0(h )•



664 U. ASCHER, J. CHRISTIANSEN AND R. D. RUSSELL

However, if fc > md, we use the structure indicated by (2.11) as follows: Consider the

points x*,._2/3 =x,.+ 1/6 andx*,._1/3 = *i+1/3 (see Figure 2.1).

k2l-l X*A2i

Figure 2.1

ki + i

c*'2.-1-1

Let

(2.13)

Al  = M*,+ i/6) -«£(*/+1/6)1 = K(Xi+l/6) ~en(Xi+l/6)\I lb>

i«rm"V,)i
2fc+m/i

/»B(-2/3)--f—P„(-l/3)
" k+m„

2       "

k + m„       „.  fc+m„ + lN
«,. " + 0(/7 "       ),

and similarly

A2 = l^i + i^-^. + i/s)!

(2.14)
i   (k + mnh   m

fc +m„
2        "

1
p«(-1/3>-t^;^1/3>

2        "

«,fc+m"+o(«ic+m" + 1),

where /*„ is defined in (2.12).   From (2.11),

max |e*(x)|

(2.15)
II^IKA, + A2)

\2k + m"Pn(-2l3)-Pn(-H3)\ + \2k+mnPn(-l/3)-Pn(l/3)\

,  k +m„ + 1.
+ 0(h        "     ).

When (2.15) is generalized to provide estimates of errors in all the components of z(v),

then the weights multiplying (Aj + A2) are given by

II/*"0!!

(2.16)

with IK) = P(k,%) = (£2 - lfl(2k)\

\22k~vP{v)(-2l3)-P{v)(-1/3)| + \22k-vI*v)(-ll3) -piv\H3)\

i»«0,...,*-l,

2 -nfc/r?tv

(2.17)

These weights are precomputed and stored as constant data in the program, and the
■ . ,, ^„k+m„-l+l.

is then estimated by ignoring the 0(h        "        ) term m

max k*«>(x)| = o>Kk_m      (Ax + A2) + 0(«*+m«-,+ 1),
Î   .       .     YÍ   .1 "*e[x2i-l-*2.1

/ = 0, . . . , 777„ - 1,

where Ax and A2 are taken for v^\ n= 1,..., d.
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Mesh Selection. The results below are a generalization of [5], [18], [12]. Given

a set of tolerances TOL , / = 1, ..., NTOL, with a set of pointers LTOL-, j = 1, ...,

NTOL, COLSYS attempts to satisfy

(2.18) \\z,(u) - z,(y)|| < TOLj,      I = LTOL¡, / = 1, ..., NTOL.

The aim of the mesh selection algorithm is to meet the above requirements with the

least number of mesh points.

As before we neglect the global term in (2.11) and write

max       \efix)\^Ckík l\uTmn\x¡)\hki+mn-\
(2.19) xB[Xi,xi+1]

I = 0, ..., mn - 1,

where

(2.20) Ckv = \\P>\k; -)\\l22k-v,      v = 0,l,...,k-l.

For each / (1 < /' < NTOL), let / = LTOLj, let 77 = JTOLj indicate the compo-

nent of u that z,(u) is a derivative of, let WEIGHT be the appropriate Ck v divided by

TOL , and let ROOT • be the inverse of the expected rate of convergence of z;(v/

From (2.18)-(2.20), the goal is to pick a mesh {x*}?**1 for which

max       WEIGHT,- ■ |«¿*+"-}(*;)l*?1/ROOT' < 1. fr - TTOLj);
(2.21) Kj<NTOL ' '

i=l,...,N*,

for the smallest N* possible.   Actually finding this mesh is impossible since the

un       " (-"-i*) are unknown.  Moreover, for COLSYS the final mesh is a halving of the

one before last (so that an error estimate is at hand).   If

(2.22) 5/x) = WEIGHT,-!«** +m"\x)\,

and

ROOT
(2.23) S(x) =       max      S        '(x),

Kj<NTOL

then (2.21) is equivalent to

(2.24) S(x(*)«*<l,      i=l,...,N*.

A collocation solution v on a mesh satisfying (2.24) would satisfy

(2.25) llz,(u) - zfir)\\ < TOLjil + 0(h)),     I = LTOLp j = 1, ..., NTOL,

the 0(h) term arising from neglecting higher order terms in (2.19).   By requiring that

x •

(2.26) f  '+lS(x)dx= 1
J X?
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instead of (2.24), (2.25) still holds [5].  To approximately satisfy (2.26), we still need

to approximate un       " (x), n = I, ...,d.   Given a mesh {x,}^1 and an approxi-

mate collocation solution v, an accurate approximation for the higher order derivatives

can be constructed as follows (cf. [12]):   The polynomial in the error expression for

the (fc + mn — l)st derivative of the 77th component is

(2fc)! dfk

2fc-l

(Ï2  - D* = I-
1     d-       <>2

-1

Therefore, e(k+m"   l\xi+xj2) = 0(h2) and

,, , 2i-r--"w.>-.:r"-"W
un(xi+l) :=-—-

■*/ + 2       *i

(2.27)
= \unk+m"\xi+x)\ + 0(h) = \u(nk+m"\x)\ + 0(h)

for x G [x¡, x¡ + 2] ,i= I,...,N- 1.

Define un(x) over the whole interval [a, b] by

"„(*,-),       x G [x¡, x¡ + x],i=2, ...,N,

"n(*2)>      xG[xx,x2],
(2.28) ü„(x) =

so that \u*+m"\x)\ = \Û„ix)\ + 0(A).  Then

ROOT
(2.29) s(x) :=       max       [WEIGHT- • Û„(x)] ',      n = JTOL-,

Kj<NTOL

is a piecewise constant computable function, and (2.25) is satisfied for {x*}^j+1 by

requiring

*'+> *.,
(2.30) f '      s(x)dx=l,      i=l, ,N*

In practice (2.30) may lead to a very large N*, compared to N, which could mean that

N* has been determined by premature data.  Also, an error estimate is needed at the

end to check whether the tolerances have been satisfied.   So, we modify the criterion

(2.30) to allow for these considerations by picking a new mesh (for some N*), ac-

cording to

(2.31) f *'+ ' Kx)dx = y = ¿ f " ?(x) A = -L £ î(> )A        / = 1, ..., TV*.
Jx* /y*   -'a TV* y^j i     i

There are still two questions to be answered:   When to redistribute the points,

as opposed to just halving the current mesh, and how to choose N*.  When an approx-

imate solution on the current mesh {x,-}fLV has been obtained, the diagnostics rx =

maXjSix^hj, r2 = ^¡v=x ?(x1-)A/, and r3 = r2/N axe computed.  The ratio rx/r3 gives
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some idea of the gain to be achieved by redistribution.  Specifically, the code feels it

can reduce the error by as much in redistributing with TV* = TV as by taking TV* =

(rx/r3) ' TV with the current distribution.  Our present policy is to redistribute only

when rx > 2r3.

When redistributing, r2 = yN* predicts the number of points needed to satisfy

the tolerances.   If r2 is much larger or much smaller than TV, then we do not put much

faith in this prediction.  The current policy is to take

(2-32) /y* = min{V4TV, N, lA max[N, r2]},

where N is the maximum number of subintervals allowed by the storage specifications.

This allows for changes up to a factor of 2 in TV and for later halving of the mesh in

order to obtain an error estimate.  Also, restrictions are placed on the number of times

a mesh can be redistributed before halving.

3.  5-Spline Evaluation.   For reasons of efficiency, stability, and flexibility in or-

der and continuity, 5-splines are chosen as the basis functions.   Efficient algorithms for

calculating with Zf-splines are given by deBoor [4], who implements these algorithms

in a Fortran package [6].  Evaluation of the basis functions is a major cost for finite

element methods, and careful implementation of the selected algorithms is necessary

for the code to be competitive.  Our use of 5-splines is somewhat special because

(i) we are solving a system of differential equations, so many repetitive calculations can

be avoided, (ii) the continuity in the solution at the mesh points is more restricted

here than in [6], allowing us to trade unneeded generality for an increase in speed,

and (hi) on many occasions we evaluate the 5-splines at points which are placed in a

regular fashion in each subinterval.  We take advantage of these special features in im-

plementing restricted versions of de Boor's algorithms.

As we only outline the modifications to these algorithms, the interested reader

is referred to [3] for the complete details.

A. Evaluation of the B-Splines and the Solution.   Recall that u„(x) G ?k+m >7r

n C    "      [a, b] (1 < 77 < d) for a given mesh u: a = xx <x2 < •■■ <xN + x = b.

If TV- k is the ;'th 5-spline of order fc [4], then

TV*

(3.1) V„(X)= Z aj,nNj,k+mn(-X)-
j=-k-mn+2

Defining the knot sequence

; < fc + 777d,

ik + ma<j< (i + l)fc + md,(Ki<N- 1),

Nk + md < j < (N + l)fc + 2md,

then only k + mn Ä-splines may be nonzero at x G [t¡, ti+,), viz.

o

(3.3) V„(x)= £ <*t+j,nNi+j,k+m„(xy
j = -k-mn + l

(3.2)

xv

ti — Ix i+V

XN+V



668 U. ASCHER, J. CHRISTIANSEN AND R. D. RUSSELL

The algorithm in [4] for the evaluation of these 5-splines is

Algorithm I.  Let TVu(x) = 1.

Do for / = I, ..., k + md - I:

Ni-,,l+i(x) = 0

Do for / = 1, ..., /:

Mi+M ,(x) = Ni+j_u(x)l(ti+j - ti+M),

Ni+j_,_Xtl + x(x) = Nt+M_ltl+l(x) + (ti+rx)Mi+j_hl(x),

-Ni+Ml+X(x) = (x- ti+M)Mi+j_,,(x).

From the recursive manner in which the fi-splines are defined it is clear that

Algorithm I need only be performed once for a given x to produce the //-splines needed

to evaluate all components of v(x) by (3.3).  Also, since the structure of the knot se-

quence is known in terms of the mesh 7r, there is no need to generate the tj's.  If x G

[xj, xI+x), we can make the changes in Algorithm I according to

(3.4)

and

(3.5)

'/+/ 'Í+/-7

hj_x+hj for / < fc, / + fc < /,

for/<fc, /</ + *-!,

hj + hI+x    for *+!</,

'<+/

ph¡ for 1 < / < fc,

phj + hI+x    for fc + 1 <j < k + md - 1 (< 2k),

where p is chosen appropriately.  The substitutions (3.4) and (3.5) have led to an al-

gorithm about 50% faster than the general one [6] (when running on an IBM 370/168).

Some of the 5-spline values at x depend only on their relative position in

[xj, x/+1) and not on the subinterval itself.   For example, the collocation points are

located at the same relative positions in all subintervals, so it is only necessary to eval-

uate these mesh independent splines once for each relative position.  The points at

which the approximate solution is evaluated for the error estimate (2.17) are another

instance where this saving may be made.  Since lA(k + md){k + md - 1) 5-splines are

needed for any x and only mdimd - 1) are subinterval dependent, a saving of at least

50% is obtained for fc > md.

We have used two routines in the implementation of the modified version of Al-

gorithm I.  The first evaluates those 5-splines which are mesh independent, while the

second is for the splines whose values depend on / (where x G [x¡, x/+1)).

We do not exploit the symmetry of the collocation points or the error estima-

tion points; the saving is too small given the additional complexity.   Also, we do not

incorporate the nonconvex modification suggested in [30].   While it can save a

multiplication in the last Une of Algorithm I and our experiments have not yielded

a case where accuracy was significantly affected, the improvement in efficiency

proved small enough that we have decided to be conservative.
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B.   Evaluation of Spline Derivatives.   Given an approximate solution compo-

nent vn(x), as in (3.3), its derivatives are given by

o

(3.6)  VM(X) = (fc + mn - 1) • • ■ (fc + 777„ - T") £ <4+j,nNi+j,k+m-ÁX)'
.■ - ». — I      ..      I       4 **

where

(3.7)
c/').    =

i+l.n

<*i+j,n forr = 0,

a(r-l) -„(r-1)
ai+j,n      "i+/-l,n

ti+j + k+mn-r ~ h+j
for r > 0.

The fi-spline package in [6] contains a subroutine which prepares the divided dif-

ference table (3.7) (with «$, „ multiplied by (fc + mn - 1) • • • (fc + 777„ - r)). We

have written a similar routine which uses the particular form of (ti+/ + k+m  _r - ti+A.

T                *     f \      r         '              ("»i-!) ("»</-!)-, ,
To compute z(v) = (vl,vl, ...,vx ,v2.vd,...,vda     ) we only

need v%\x), r = 0, ...,mn - I, n = 1, ..., d.   There are several occasions where

evaluation of z(v) is necessary.  Values of z(v) are needed for setting up the equations

during the iterations on nonlinear problems and for the error estimation procedure.

Also, when COLSYS has terminated successfully the user can evaluate z(v) for the

final approximation.  Two efficient ways to evaluate z(v) are:

Algorithm II.  (a) Generate a^, i = I, ..., Nk + mn;r = 1, ..., mn - 1 ; n =

l,.-.,d,

(b) for x G ixj, xI+x), form the Yi(k + 777d)(fc + 777^ + 1) nonzero Ä-sphnes up

to order k + md,

(c) form vnr\x) (r - 0,...,m„ - 1;n - 1.d) by (3.6).

Algorithm II'.  (a) Generate v^\x¡), r = I, ..., k + mn - l;n = I, ...,d;i =

1, ..., N, by Algorithm II,

(b) forxG [xj, xI+x),

k+mn-l vV)fx)

(3-8) #>(*)=     Z       f—^(x-xI)i-r.

While Algorithm II' requires more than twice the storage and more initialization

than Algorithm II, it is many times more efficient when z(v) is required for a large

number of points.  For the collocation example in [6], Algorithm H' was used.

In [3] these algorithms are examined in our setting for two cases-when z(v) is

to be evaluated at

(i) Mx points irregularly distributed in [a, b] and (ii) Mx = M2N points, con-

sisting of M2 regularly distributed points in each subinterval.  The numbers of multipli-

cations plus divisions required for Algorithm II are approximately

(i)  (?7i* -d)(k + 2)TV + [(fc + 777d)(fc + md-l)+M]Mx,

(ii)   {(777* - dXk + 2)+ [2Í7772 - md) + M]M2}N,

and for Algorithm H',
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(i) and (ii)

Km* - dX* + 2) + kdik + 2) + 2(m2 -md) + M + ^k(k + 1)J TV

+ [M+ 2(fc + md- 2)] Mx,

where M = (fc + VA)m* + Vi E*=1 m2n.

For case (i) Algorithm II is more efficient when Mx < \N where, e.g., X = 2.5 if

ri=l,777 = 2, fc = 3 and X = 4.8 if d = 3, mx = l,m2 = m3 = 3, k = 4.  In general,

X grows with d.   In case (ii) Algorithm II is more efficient for most practical situations.

Consequently, we use only Algorithm II.

C. Derivatives of the B-Splines.   In order to generate the collocation equations

an algorithm is needed to evaluate the 5-spline derivatives.   Formulas (3.6) and

(3.7) could be used with a\°X n = 57 for the function N¡ + ¡ k +m (x), but a number

of savings can be made.  First, if mn = mn + x, there is no need to repeat the compu-

tations, so COLSYS initially isolates the set of strictly increasing orders and deals only

with them.  Second, the algorithm avoids performing (3.7) on the many zero coeffi-

cients (as is also done in [6]).  Third, the special form of (f|+/ + fc+m   _r - ti + A is

used.  The forth improvement arises from the fact that we have a system of differen-

tial equations.  If the 5-spline derivatives are evaluated Xox n = d then a number of

the oqrh n may be determined directly from

(3-9) <A7j,n
(r)       _

off)

c>) md<j<k + m„-r.

i+j + (md-mn),d'       ! <j<k-(md-m„)-r+ 1,

(r)
i+j,d'

D. Highest Order Derivatives.   Selecting a new mesh requires the values of the

piecewise constant functions vn       "      (x), 1 < 77 < d.   These are obtained by start-

ing with the values £*,- + ,"„     (~k < / < 0), which have been obtained in Algorithm II,

and repeatedly applying (3.7) with t{ +j + k+mn_r - ti +/= A/to get a¡ „  m"       =

vn    m"     (x) for x G [t¡, ti+x) = [xr, xI+x).

4.  The Nonlinear Iteration and the Linear System Solver.   In this section we

briefly discuss the handling of nonlinear problems and the implementation of the lin-

ear system solver.

A. Newton Iteration.   To solve (2.1), (2.2) we apply the Newton process of

linearization and iteration.   Specifically, choose an initial approximation v° G Pk+m

n C^m_1Ma> b].  Then, for s = 0, 1,2,... until a convergence criterion is satisfied,

solve by collocation the problem

(4.1) Ln(vs)w=fn,      n = l,...,d,

(4-2) P/v*)w = ?/.      j=l,...,m*,

Xox the solution vs + 1.   Here Ln, ß. are defined in (2.3a), (2.4a) and
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.      m*  bF„(-;rs)

(4.3) /„=/»(•; r') = F.(-; V') -£      " • z,(v'),      » = !,...,*
7=1 0Z7

(4.4) Ty s Tyív'O = £        ' ■ zfy-%)) - gßf, y'*),      / - 1, .... m*.
7=1 °Z'

Most advantages and disadvantages of the Newton method are well known.  Gen-

erally, if the initial approximation v° is close enough to v, the method performs very

satisfactorily.  However, when v° is far from v, the behavior of the algorithm is un-

predictable (cf. [9], [16]).  We are currently conducting an investigation to find more

reliable fast algorithms to handle nonlinearities, and intend to report the results else-

where.

Implementing the Newton iteration requires determining when the desired error

tolerances (2.18) are satisfied.   For a nonlinear problem, the error has two compo-

nents, Vs +1 - v and v - u, where Vs + ' is the Newton iterate which satisfies the con-

vergence criterion to be specified and is thus taken as the approximation to v =

linij^ooV^.   For any superlinearly convergent method,

llv, + 1-v*IL
lim-= 1

llvs-v|L

(see [15]), so that in the limit ys+1 - vs is a good measure for Vs - v.  Thus, the

convergence criterion for the nonlinear iteration in (4.1), (4.2) is

(4.5) ||Z/(vî+ ') - z,(v>)\L < TOLj,      I = LTOLj, / = 1, ..., NTOL.

To check (4.5) efficiently, recall that

(4.6) #>(*) = Z <*rXfc +«„(*)>      r=0,...,mn-l,n=l,...,d,
i "

where the cAfl in (3.6) are modified.  The TV/;- are normalized Ä-splines, so

(4.7) ||»j(f>IL<maxl4'2l-
i

The oij n = afn in (4.6) are precisely the coefficients computed when solving the linear

system in each Newton iteration. Thus, the nonlinear iteration convergence criterion is

as follows:

1. Having obtained af*1, compute ot<¡r£'s+1 Xox all i, r = 0, ..., mn - I, n =

l,...,d.

2. For / = 1, ..., NTOL, let / = LTOLf, and let (n, r) correspond to the coor-

dinate / of z(-).

If lla$£+ ' - a|r^ IL > TOLj, then go to step 4.

3. Dump £v(')>,s+1 onto a^'*, signal success, and exit the Newton iteration.

4. Dump c/ )'i+1 onto a^'s, set s = s + 1, and reiterate.
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In fact, steps 1 and 2 above are combined so that only the array «?!)'(.) is stored.

Since the computation in step 1 is always needed to evaluate the approximate solution

(see Section 3 and [2] ), it is not wasteful.   Finally note that the criterion is somewhat

pessimistic and is scaling-resistant [14].

B.  77ie Linear System Solver.   Here we consider the method for the solution of

the set of algebraic equations resulting from collocation applied to (4.1), (4.2).  With

xix, ..., xjk the fc Gaussian points in the rth subinterval I¡ = (x{, xi+x), 1 < / <TV

(cf. (2.5), (2.6)), write these equations as

(4.8) Lny(xtj) = fn(x,¡),      j=l,...,k,i=l,...,N,n = l,...,d,

(4.9) ¥=7j'      /=!. •••.«••

The total number of equations in (4.8), (4.9) is Nkd + m *, the dimension of the ap-

proximation space (or the number of parameters a¡ n to be determined).

Consider next the structure of the matrix obtained from (4.8), (4.9).  Fixing /

and 77, 1 < / < TV, 1 < n < d, there are mn nonzero 5-splines on /,•_, U I¡, k - mn

5-spÜnes which vanish outside /(- and mn which vanish outside I¡ U I. + x.  Giving

a = iain) the natural ordering axx,a2x, .. .,aNk + m^x,ax2, ..., aNk+t„dd causes

an inconvenient zero structure, since it is desirable to have all nonzero elements con-

centrated around the main diagonal.  Thus, we reorder the coefficient vector a in such

a way that, for each i, all the columns in the matrix which contain nonzero entries

corresponding to the 7th subinterval are adjacent.  This produces a block-structured

matrix whose /th block, 1 < i < TV, is characterized as follows:

Rows:  With l¡ side conditions given at points f/( x¡ < C¡ < xi+ x (when / = TV,

xn ^ f7 ^ xn +1 )> tnere are kd + l¡ corresponding rows.  (For each n, 1 < 77 < d, k

rows correspond to x(1, ..., x/fc.)  The numbering of the rows increases with the argu-

ment x.

Columns:   For each vn(-), 1 <«<£*", there are 777 n 5-splines which do not vanish

on I¡ U /,_,.  The corresponding columns, mn for each 77, will appear first in the order

mx, m2, ..., md, totalling 777* columns.  Then come fc - tt7j, fc - 7772, ..., fc - 777^

columns corresponding to the kd - m * 5-splines which vanish outside L.  The 777 *

columns of those fi-splines which vanish outside I¡ U Ii+X appear last, ordered the

same way as the first 777* columns.  The total number of columns is, therefore,

kd + 777* (note that 777* = SfL,^ and kd + m * > kd + /,.).

Initial Coordinates: The upper left element of the i'th block is the (iv i'2)th ele-

ment of the matrix, where

i-i
7j = (i - l)kd + £ lj + 1,    i2= (i - l)kd + 1.

7 = 1

As an example, take d = 2, ml = 1, m2 — 2, k = 3, fj = f2 =a, f3 = b, and

TV = 3.  Then the reordered collocation matrix has the form
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xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx

xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx

xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx

Figure 4.1

This is precisely the zero structure for the collocation method with fc • d = 6 points

per subinterval applied to a problem of one differential equation of order 777* = 3.

The matrix can be considered as banded (asymmetric), but this would almost double

the amount of nonzero entries.   It is better considered as almost block diagonal [8].

For the solution of the linear systems we have adopted the code developed in [8]

which performs Gauss elimination with scaled row pivoting.  This proceeds as follows:

For í = 1, 2, ..., TV do the following:

1. If 1 > 1, append the ^)-\h rows of the (i - l)st block, not used as pivotal

rows, to the beginning of the ith block, to form a block of kd + £#«],// rows-

2. Apply kd steps of Gauss elimination with scaled row pivoting, storing the re-

sulting factorization in place of the original data.

3. If í = TV (the last block is square of size kd + m *), apply 777 * - 1 more

elimination steps.

This produces an LU factorization of the original matrix.   For a given right-hand

side, the solution a is then obtained by a forward-backward substitution.

The permuted ordering in the solution vector a = (ax, cx2, a3, ..., oiNdk+mt)

is as follows:   For x G [x,., xi+x) and 1 < n < d, let pn = £"= j~ m,, and r¡n =

(n - l)fc - pn.  Then

"nW -   ¿1 a(i-l)kd+ß„+lN(i-l)kd+tin+l,k+mn(x)
1=1

k-mn

(4.14) +     2-     a(i-l)kd + r,n+m*+lN(i-l)kd + rin+m* +l,k+mn(X)

m„

¡=l °l'kd+ßn+l^ikd + un+l,k + mn(X)-

The package [8] implementing the above method is used in COLSYS because of
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its availability, stability, and its advantages over treating the system as merely banded.

There is, however, some amount of fill-in generated.  The ith block has SiC1, /,- rows

appended to it, and so the ratio of storage from fill-in to total storage is

1   N    Lj=xh

TV *-,  kd + L '
1 = 1 »

For the example in Figure 4.1 this ratio is about 1/5.  If TV is large and we consider

a two-point boundary value system with half of the boundary conditions at each end,

the ratio tends to 1Ám*/kd.   This is always less than lA since fc > md > md_x > •••

>mx, but the value lA is obtained when fc = md = mx.

A method which generates no fill-in has been proposed in [37].  Here row and

column pivoting are performed alternately.  A comparison between the above two

methods, regarding their efficiency and stability, is planned for the future.

5.   Numerical Examples. COLSYS has been tested on a large variety of problems,

and a representative selection of them to demonstrate the performance of the code is

available in [2].   Some comparisons with the codes in [35], [25] are also made in

[2] in order to gain a relative perspective.  For brevity, we examine only three exam-

ples here.

The examples were run in double precision (14 hexadecimal digits) on the IBM

370/155 at Simon Fraser University, using the Fortran Gl compiler.  Because of fluc-

tuations in the computing environment, variations of 5-10% in the run times are

meaningless.

In the examples below, the following notation is used:

u¡(x)—ith component of the exact solution.

£■(77^)—uniform error in u*/\x) (available when the exact solution is known).

est E(u^)~estimated uniform error in u^(x).

7/V9Z,(i7P)-absolute error tolerance for the component uV\x).  (COLSYS allows

the user to specify different tolerances for different components, and the mesh selec-

tion algorithm considers only those components for which tolerances are specified.)

time—the actual solution time in seconds (not including error checking time).

a ± b-a ■ I0±b.

fc—number of collocation poinflS per subinterval.

mesh sequence (iterations)—successive mesh sizes, i.e. numbers TV of subintervals

required, followed in parentheses by the number of Newton iterations performed on

each mesh for nonlinear problems.

The errors E(uy') axe approximated by measuring the error at 4 equally spaced

points in each subinterval.   Unless otherwise stated, the initial mesh for COLSYS is

uniform.

Example 1 [22].

ey" + xy' = -eu2 cosíroc) - (ttx) simjrx),      -1 <x < 1,

y(-l) = -2,   y(l) = 0,

77(x) = cos(ttx) + erf(x/v/27)/erf(l/\/2e).
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Figure 5.1.  (e = 10_6)

The solution has a spike at x = 0 (see Figure 5.1).  Results for various values of e are

given in Table 1 below.

e

.1- 1

.1 -1

.1 -3

Table 1

k   TOL(u)    E(u)     est E(u)   TOI.(u')    E(u')    est E(u')    time mesh sequence

.1 - 1

.1 -5

.1-5

.45-4 .19-4

.22-8 .18-8

.16-7    .19-8

.1-54     .1-5     .48-9    .43-9

.1-1      .22-2     .12-2     1.1        8,16

.1-5      .24-6     .15-6    8.16     8.16,15,30,17,34,68

.1-5      .67-5     .25-6     25.9     8,16,32,64,35,70,35.70,

35. 70, 140

.1-5     .23-6    .45-7    68.23   8,16,32,64,128,128,128,

128,256, 128,256, 128,256

As e gets smaller, the problem gets tougher, and the mesh selection algorithm

has to use more mesh points in order to resolve the difficulty.   In fact, if we choose

a good initial mesh (concentrated around x = 0) which contains only a few points,

the mesh selection algorithm often produces worse meshes at first, because the error is

very much different from the assumed asymptotic form.   In order to allow use of

knowledge about where the region of fast variation is located (as many special purpose

methods do) COLSYS has an option for choosing an initial mesh and repeatedly halv-

ing it until the tolerances are satisfied.  Doing so for e = 10 ~10, TOL(u) = 10-7,

TOL(u') = 10"2, and the initial mesh -1, -.1, -.01, -.001, -.0001, -.00001, 0,

.00001, .0001, .001, .01, .1, 1 has resulted in a final mesh of 384 subintervals, with
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E(u) = .30-8, est E(u) = .30-8,E(u') = .61-2, est E(u') = .98-2.  A large amount

of storage, however, is necessary, and special methods such as expansion techniques

[21], [22] for singular perturbation problems with very small e will obviously be

superior in many situations.

Example 2 [20].  Perhaps the greatest relative advantages of COLSYS is in solv-

ing problems in which the coefficients in the differential equations may contain singu-

larities.  These problems commonly arise when reducing partial to ordinary differential

equations by physical symmetry [34], [20], [28].  Unlike other general purpose

codes, no matching of the numerical solution to an analytic expansion in the neighbor-

hood of a singularity is necessary.

As a simple example consider the equation

y" = l-y'-(ljp, y'(0)=XD = 0,

which has the solution u(x) = 2 log(7/(8 - x2)) [20].

Results with the initial guess u = 0 axe tabulated below

Table 2

fc  TOLiu)    £•(«)    est Eiu)   TOL(u')    E(u')    estEiu')   time  mesh sequence

4    .1-5     .33-8    .24-8      .1-5     .77-7    .90-7     .56        2(3), 4(1)

We have also solved more complicated singular problems such as the Ginsburg-

Landau equations [28] with little difficulty.  This will be reported in more detail

elsewhere.

Example 3 [26]. The last example arises when considering the flow between

two counter-rotating infinite plane disks. The equations which describe the motion

can be cast into the form

eG" + HG' -H'G = 0,
-1 <x < 1,

eHw + HH'" + GG' = 0,

and

C7(-l) = ju,    G(l)=l,   Hi-l) = H\-l)=Hil)=H'il) = 0

with p = -1 for the case where the disks are counter-rotating at the same speed. In

this latter case, there exists an odd solution [26]. This solution has boundary layers

near both ends and varies smoothly in between.

Various investigators have computed solutions to this problem (see references in

[26], [27] ) with conflicting results.  The problem becomes very ill-conditioned for

small values of e > 0.  In [27], the antisymmetry for the particular case p = -1 is

used to solve the problem on the half interval [0, 1] with G(0) = 0 and T7(0) =

//"(0) = 0 replacing the boundary conditions at -1.  This improves the condition of

the problem significantly, enabling the authors to obtain solutions for e = 10~4.
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We solve the problem with u = -1 and e = 10-3 on [-1, 1], obtaining the

odd solution without using antisymmetry.  This enables us to demonstrate the stability

and reliability of COLSYS.   By comparing values of the obtained solution at points x

and -x (with the final mesh being nonuniform) we get an idea of how well the error

estimates do.

For fc = 5, TOLiG) = TOLQI) = TOLiH') = .1-5, and the initial guess G = x3,

H = -x(x - l)2(x + l)2, the results are listed in Table 3.  Tests based on the sym-

metries of the solution support the error estimates.

Table 3

estTJÍG) est £{(7') est EiH) est EiH') est EiH")  est EiH'")   time       sequences

.78-6     .11-3     .79-8     .22-6      .15-4       .33-2     56.45   10(10), 5(4),

10(5), 20(2)

The computed curves of G and H axe plotted in Figures 5.2 and 5.3, respectively.
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