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The Application of Implicit Runge-Kutta and Collocation
Methods to Boundary-Value Problems*

By Richard Weiss

Abstract. The solution of a nonlinear system of first order differential equations with

nonlinear boundary conditions by implicit Runge-Kutta methods based on interpolatory

quadrature formulae is examined. An equivalence between implicit Runge-Kutta and

collocation schemes is established. It is shown that the difference equations obtained have a

unique solution in a neighbourhood of an isolated solution of the continuous problem, that

this solution can be computed by Newton iteration and that it converges to the isolated

solution. The order of convergence is equal to the degree of precision of the related quadra-

ture formula plus one. The efficient implementation of the methods is discussed and

numerical examples are given.

1. Introduction. We investigate the application of certain implicit Runge-

Kutta methods (cf. Butcher [2]) to the numerical solution of nonlinear boundary-

value problems of the form

(1.1a) y'iO- f(t,yit)) = 0,        a^ tub,

(1.1b) giyia), yib)) = 0.

Here, y, j and g are vector valued functions of dimension N. It is clear that most

two point boundary-value problems can be reduced to (1.1a, b).

The schemes will be used to obtain approximations to y(t) on grids -k¡,

ri = y0, h, • • • , tr.a = t0 < tx < ■■•  < </ = b;
(1.2) k

f, = /,■_, + A;-,, h = max A, ^ X min h¡\,
i i )

where X, the ratio between the largest and the smallest grid spacing, is uniformly

bounded for all families of grids to be considered. High order accuracy on the grid

irr will be obtained by introducing appropriately spaced intermediate points on each

interval of tr,. Using interpolatory quadrature based on these intermediate points

yields implicit Runge-Kutta methods. Identical schemes are obtained if the inter-

mediate points are used for collocation with piecewise polynomials.

We shall now introduce the Runge-Kutta schemes. Collocation will be discussed

in Section 2.
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Let

(1.3) 0 = «, < u2 <•••<«„= 1

be a fixed set of points and define

(1.4) w(t) = it - ux)it - u2) ••• (f - «„),

(1.5) Lkit) = «(*)/((< - ukWiuk)),       k = I, ■■■ ,n,

(1.6) wik =   I     Lk's) ds,        k = 1, • • • , n; j = 1, • • • , n.
Jo

This leads to the set of quadrature rules

(1.7) /     <pis) dstt £ wiktpiuk),        j = 1, ■ - - , n.
•>0 k-l

Now introduce a subgrid of (1.2), viz.

(1.8) U, = f, + Ujhi,       j = 1, • • • , n; i = 0, - - - , / - 1,

and, for i,, G (it, *,-+,], rewrite (1.1a) as

(1.9) yita) - yit,) -   f '    fiti + s, yit, + s)) ds = 0.
Jo

The use of (1.7) to approximate the integral term in (1.9) then leads to the numerical

method

(1.10a)
hiN.Yu m   Ya -   y,_,,„ - hi ¿ wikfitik, Yik) = 0,

j = r, • • • , n; i = 0, • • ■ , I — I,

(1.10b) g(K_,,„,  Yr-X,n) = 0,

where

r =  1     if w, > 0,

= 2    if ux = 0,

T,, represents an approximation to X^.i) and ¥"_,,„ is an approximation to Xa)-

If m, = 0, then y,,, = F,-,,„, i = 1, ■•■,/— 1. Equations (1.10a, b) represent the

desired finite difference scheme for (1.1). We have (n + 1 — /•)/+ 1 relations for the

(n + 1 — r)/ + 1 unknowns F_i,„, 7,,. Only the approximations to X*¿)» 7 =

7(-i,„, i = 0, • ■ ■ , /, are of interest. The values 7,,, j = r, ■ ■ ■ , n — 1, are auxiliary

quantities.

We also consider the case when un in (1.3) is < 1. Then (1.10) has to be replaced by

Yu - Yt - hi ¿ WiklOik, Y,k) » 0, ; - r, •   • , n
jt-i

(1.11a)
n

7, + , -  Yi - hi X) wkfitik, Yik) = 0
t-1

(1.11b) giYo, Y,) = 0,

/ = 0, •■■,/- 1,
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where

wk =   /   Lkis) ds,        k = 1, • • •  , «.
•>0

If M, = 0,then 7, = 7„/ = 0, • • • ,/- 1. Equation (1.11) yields I'n + 2 - r) + 1
relations for the I'n + 2 — r) + 1 unknowns 7, 7,,, y = r, • ■ ■ ,n;i- 0, • • • , / — 1,

and 7,.
The purpose of this paper is to investigate the convergence properties and com-

putational aspects of (1.10) and (1.11). In Section 2, we shall present the alternative

derivation of the schemes using collocation. The stability of the methods for linear

equations (1.1) will be established in Section 3. The results of Section 3 will be used

in Section 4 for the treatment of the nonlinear case where it will be shown that, for

sufficiently small h, (1.10) (or (1.11)) has a unique solution in a neighbourhood of

an isolated solution of (1.1), that this solution can be computed by Newton iteration

and that the finite difference approximations converge to the isolated solution.

The order of convergence is at least n. The results of Sections 3 and 4 are derived

using the theory of Keller ([7], [8]). In Section 5, we refine the error estimates and

show that the order of convergence is, in fact, equal top + 1, where/? is the degree of

precision of the quadrature formula

1 71 ,.1

tp(s) ds £ü X, <p(Uk) I   Lkis) ds.
k-l Jo

This implies that convergence of order up to In can be obtained for suitably chosen

points (1.3). We conclude this section by showing that the use of Lobatto points is

computationally most efficient. Convergence results similar to those derived in

Section 5 have been established by Axelsson [1] for the initial value problem for

ordinary differential equations, by de Hoog and Weiss [5] for Volterra integral

equations of the second kind and by de Hoog [4] for certain integro-differential

equations. Finally, in Section 6, efficient ways of solving the linear systems arising

in the implementation of Newton's method are discussed and numerical examples

are given.

Although we only treat two point boundary-value problems, the schemes and

the analyses can be extended to multipoint boundary conditions as considered in

Keller [8, Appendix B]. Also, for linear equations, we can include the case of piece-

wise continuous coefficients and data if we proceed as in Keller [7].

2. Collocation. The alternative derivation of our schemes via collocation

proceeds as follows: Let Lin-,) be the family of jV-dimensional vector valued functions

v(t) E C[a, b] such that v satisfies (1.1b) and each component of v is a polynomial of

degree n on [/,-, /,+,], / = 0, ■••,/. — 1. We now collocate at t = ta, i.e., we require

that v(t) satisfies (1.1a) for t = r,,, j = I, ■ ■ ■ , n; i = 0, ■ • • , / — 1. If ux = 0, then

v'(tiX) is to be taken as the right derivative, and similarly, if un = 1, then v'(tin) is the

left derivative.

It is convenient to represent v as

n

(2.1)       vit) = Piit) =  £ clkit - t,f,       tiè t ^ i, + i; / = 0, • • • , / - 1.
k-0

.
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Then the above conditions become

(2.2a)  p'iitti) - Kfu, Piiti,)) =0,       j = 1, ••.,«;/ = 0, • ••, I - 1,

(2.2b) P,iti) - Pi-Xiti) =0,        i = 1, •••,/- 1,

(2.2c) gipoia), Pl-Xib)) = 0.

This is a set of (n + 1)7 relations for the (n + 1)/ unknowns cik, k = 0, • • ■ , n;

i = 0, ■■■ ,/- 1.
We shall now establish an equivalence between the schemes (2.2) and (1.10).

Theorem 2.1.   LetpfA), i = 0, ••■,/- 1, satisfy (2.1), (2.2) and define

P-i.n = Po(a),        Pa = Piiti,),        j = 1, • • • , n; i = 0, - - -  , / — 1.

Then p-x,„, Pa satisfy (1.10). Conversely, let 7_,,„, 7,, be a solution o/(1.10) and

denote by pi(t) the unique polynomial of degree n satisfying

PÁti) =   Yi,        P.ÍÍS,) =   Yu,        j =  1, ...  ,n,

ifux > 0, or

Piiti) =   Yi,       p'iiti) = /(?,, Yd,       Ptitu) =   K„,       y = 2, ••• , i,,

ifux = 0. Thenp,it), i = 0, •••,/- 1, sar/s/y (2.2).

/Voo/.    Since the {wit} are weights for interpolatory quadrature of degree n

we have that
n f. t i i

hi Y, wikPitik) =   /      Pis) ds
k-\ Jti

for all Pit) which are polynomials of degree gn — 1 on [r,-, i,+,]. From (2.1),

Ptitu) - Piiti) =   /      p'iis) ds = hi X) wikp'iitik)
Jti k-l

77

= hi 2 wikfitik, Piitik)),
k-\

provided (2.2a) is satisfied. Thus, from (2.2b), the/?,, satisfy (1.10).

To establish the converse, note that

n

Piita) - Piiti) =  Yu -  Yi = hi £ w,hp'i(tiù.
k-\

It follows from (1.10) that
n n

(2.3) hi £ wikp'iitik) = hi Ys WfiK'a. /».(i.-t)).
»-i *-i

Since the matrix W7 = (wjk), j = r, ■ • ■ , n; k = r, ■ ■ ■ , n, is nonsingular, it follows

that

P'iita) = Kta, PiOa)),       j = 1, • • • , n.        D

In the same way, we obtain for the case un < 1:

Theorem 2.2.   LetpfA), i = 0, ■ • - , I — 1 sar/í/y (2.1), (2.2) and define

Pi = Piiti), "Pa = PiOa), "j = r, ■ ■ ■ . n; i = 0, • • - , / — 1 ; p¡ = P/-,(fz);
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then Pi, pa satisfy (1.11). Conversely, let 7,, 7,, be a solution q/" (1.11) and let /J,(i),

i = 0, ■• -, I — I, be defined as in Theorem 2.1. Then pi't) satisfy (2.2).

The equivalence of implicit Runge-Kutta and collocation schemes has been

observed for initial-value problems by Wright [12] and Hulme [6].

Collocation by piecewise polynomials as a tool for solving boundary-value

problems has been studied extensively. (For a bibliography, see Rüssel and Shampine

[10].) For m, = 0 and w„ = 1, our collocation procedure coincides with that of Rüssel

and Shampine [10]. For the remaining cases, our procedure is different since then

v(t) defined by (2.2) is not an element of C\a, b] in general but only of C[a, b]. We

have shown that for first order systems each such collocation scheme is identical

with an appropriate difference scheme.

The theory of Rüssel and Shampine [10] has recently been extended by deBoor

and Swartz [3]. For the case of a scalar equation (1.1a) with linear boundary conditions

(1.1b), their results coincide with ours.

Osborne [9] has considered a class of collocation procedures for linear scalar

differential equations which include the methods presented here and selected schemes

which have a minimal local discretization error. His theory is closely related to the

results of Section 5.

3. Stability for Linear Equations. In the remainder of the paper the analysis

will be presented only for the case «, > 0, un = 1. However, with slight notational

modifications, all results extend to the remaining cases.

We now investigate the stability of (1.10) for linear equations (1.1):

(3.1a) /(f) - A(t)y(t) - ait) =0,        a á t Ú b,

(3.1b) Bayia) + Bbyib) - ß = 0.

Theorem 3.1. LetAit)E C\a, b] and Ba,Bb be such that'3.1) has a unique solution

for all cdj) E C\a, b] and all ß. Then there exist constants h0, C, and C2 such that the

difference equations

n

(i in\        Vi' ~ "*-»•■ — hi 2- wikAitik)vik = hau,

j = 1, • • • , n; i = 0, • • • , / — 1,

(3.2b) Bav-X,n + Bbv,_x.n = 8,

have a unique solution for h g h0 and

(3.3)    max<||i;_,,n||,   max    max ||i>,,||f ^ C,(  max    max ||y.-.-||) + C2 ||i||.**

Proof   Introduce the block vectors

vf -(»«,'••, v,Tn)

(3.4) vj = (uf-,,„, ••• ,of-i.»)

7;   =  (7ii. •• •  .Tin)

/ = 0, •••,/- 1,

** Unless otherwise specified, 11 • 11 will denote the maximum norm in RN or the induced operator

norm.
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and the appropriate block unit matrix /and block matrices Ai, i = 0, • • • , / — 1,

so that (3.2a) can be written as

(3.5) iJ - hiÄ,yji =Di + hiyi,       i = 0,     -, I - I.

Since Ait) E C[a, b], there exists a constant C3 such that

max   \\Zt\\ g C3,
OSiSJ-l

where |||| is the operator norm induced by the maximum norm on RnN. Hence,

if h g A, < 1/C3, it follows from Banach's lemma that

(3.6) Vi = (7 + h,Ai + h2Ri)iVi + haù,       i = 0, •••,/- 1,

where

max   \\Ri\\ ú C,,,       d = const.
OSiSÍ-l

The last N equations of (3.6) take the form

ft

vin = Vi-i.n + hi Y w«kA'tik)Vi-x,n + h2RiVi-x.n

(3.7) "-1

+ «,7,„ + Ai5i7i,        i = 0, •••,/- 1,

where the linear operators R{, S, are uniformly bounded in i and h. Since, due to

consistency, Yl-i w«> m ï> Eq. (3.7) can be written as

(3 8)      *i'i*,'<» " Vi» ~ v<-t." * hiA'ti + «,/2)u,_,,„ — «ifß, + hiRi]Vi-x,n

= fl<T.n + Ai^iTi.        /= 0, •••,/- 1,

where ||g,|| g C56(h/2), C5 = const and Ö(«) is the modulus of continuity of A(t).

Equation (3.8) combined with (3.2b) are (/ + 1) equations for the (/ + 1) unknowns

p. „, 1 = -1 ,•••,/- 1. Multiplying the ith equation of (3.8) by (J - hiA(u + A,/2)/2),
where / is the (N, N) unit matrix, leads to a new difference operator

(3.9) Lh = Lk + Lh

where Lh is the difference operator obtained by applying the centered Euler scheme

to (3.1a), viz.

hiLhvin = v(» — P<_,,« — \hiA(ti + hi/2)(vin + f,-j,„)

and Lh is a linear perturbation satisfying

(3.10) \\Lh\\ ^ Co6ih/2),       C, = const.

Keller [7] has established stability for the centered Euler scheme. Thus, from (3.9)

and (3.10), the application of the Banach lemma in the standard way guarantees

stability for (3.8), (3.2b), viz. there exist constants h2, C7, C8 such that (3.8), (3.2b)

is uniquely solvable for 0 < h ^ h2 and

(3.11) max    \\v,n\\SC7   max    max ||7.,|| + C8||5||.
-ISiSI-l osisr-i  lSl'Sn

Clearly, (3.11) and (3.6) imply (3.3). D



IMPLICIT RUNGE-KUTTA AND COLLOCATION METHODS 455

4. Solution of the Nonlinear Difference Equations and Convergence. A

solution of (1.1) will be called isolated if the linear system

(4.1a) w'it) - Ait)wit) = 0,

(4.1b) B.w(a) + BMb) = 0

where

Ait) = U't, v(0), Ba = gv(a)iyia), y'b)),        Bb = gvWiyia), y'b))

has only the trivial solution.

In the sequel, we shall use the notation

(4.2) S,Wm - {z\zER\\\z- yit)\\ ^ p\ C RN

and

(4 3)        s'iy(ta)\ — {o-i.»J "a, j = 1, • • • , n, i = 0, • • - , / — 1

\v-unE Sp[yia)],ViiE W,i))} •

The main result of this section is summarized in

Theorem 4.1.   Let il.I) have an isolated solution y(i) E  Cn+1[a, b]   and let

f(t, z) E C+1{[a, b] X SJWf)]), g(v, w) E C2{SJy(a)] X SJtfb)]}   for some p > 0.
Then there exist constants p0 and h0 such that, for 0 < h ^ h0,

(i) Eqs. (1.10) have a unique solution {7,,} E S„{yitu)},

(ii) the solution can be computed by Newton's method which converges quad-

raticallyfor any initial iterate {Yt,<0>} E S„, [yitu)} provided p, and px/h are sufficiently

small,

(iii) ||y_,.„ - y(a)\\ g Dxh\ \\Yu - y(tu)\\ è Dlh\ j = 1, ■■■ ,n;i = 0,
■ • ■ , I — 1, Dx = const.

Proof. This theorem is the analogue of a result proved by Keller for the centered

Euler scheme [8, Main Theorem]. The techniques employed in [8] are not restricted

to this scheme but are a general tool for the study of finite difference methods for

nonlinear boundary-value problems.

We shall therefore not present a detailed proof of Theorem 4.1, but shall proceed

only until the connection with the theory of [8] becomes obvious.

Consider the linear system (3.2) with A(t), Ba and Bb given by (4.1). Introduce the

(«jV, N) matrices

Ci =

Si.

where ■?, = J/hi, the (nN, nN) matrices

C, = [Ojc.J ,        ßi = h71J-Äi,        i = 0, •••,/- 1,

where J, A¿ are given by (3.5) and the (jV + nA7)-dimensional vectors

=   (i;-i.»,üo,   •••   ,V,-X), T     =   (5   ,7,,   •••   ,7i-l)
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with Vi, 7, defined by (3.4). Then, by (3.5), the system (3.2) can be written as

(4.4) £ V = r

with the (iV + nNI, N + nNI) matrix

Ba Ç\Bb

£ =

-Co       Do

-C,    D,    O

O ■C/_,  ¿V,

From Theorem 3.1, £ is nonsingular for h g h0 and

(4.5) ||JB_1|| é max{C,,C2} = C„.

Here ||• || is the operator norm induced by the maximum norm on RlN+nNI\

Now consider (1.10) and write it in vector form

(4.6)

where

and

*( Y) = 0,

Y      —   (/_,,„,    Y0X,   • " -    ,    Yon,   ■ • ■    >    Y7-1,1,   • • •    ,    Tr-1,71)

g(y_,,n, 77-,,„)

Nk Yox

(4.7) *(7) =

/V» 7o„

ivA y7-i,i

/V* Yi-i.»

With (4.4) and (4.6), we have reduced Eqs. (3.2) and (1.10) to the form used in

[8] for the treatment of the centered Euler scheme. Due to (4.5), we may proceed

as in [8, Section 3] and parts (i) and (ii) of the theorem follow by slightly changing

some of the details of the analysis of the centered Euler scheme.

To establish (iii), note that from the Taylor series expansion the local discretization

error t,, = —Nhyit¡j) satisfies

(4.8) lr.il I  ^   D.hn, j =  1, , n; i = 0, ,1-1, Do = const.

Part (iii) now follows from the arguments of [8, Section 4] with appropriate modifica-

tions resulting from (4.8). □
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is) ds = 0,       r — 0, ••• ,v — 1,

5. High Order Convergence. In this section, estimates for e¡ = 7, — y(t,),

i = 0, • - - , /, will be derived which are sharper than the bounds provided by Theorem

4.1.

We shall say that u(t) £ (P0 if Jo1 (A\s)ds ̂ 0 and that co(0 E ®„ v > 0, if

/      5 CiJ
JO

/    s'tj3's)ds 9± 0.
Jo

Clearly, n + v — 1 is the degree of precision of the quadrature formula

«I n

1    tpis) dsK.'Y wnktpiuk)
JO ¡t-1

if wit) E (P..

The following lemma which provides an estimate of the local discretization

error of (1.10) will be required further on.

Lemma 5.1.   Let co(r) E 9. and consider the initial-value problem

(5.1) x'it) - W, xit)) = 0,        0 ^ t ^ h, *(0) = xo,

where \p E C"+"+1{[0, h] X RN] and \p is uniformly Lipschitz continuous with respect

to x for 0 ^ t ^ h and ||;c|| < ». Then the implicit Runge-Kutta scheme

Xi — Xo — h Yj wjk\piukh, Xk) = 0,        j = I, ■ ■ • ,n,
*-i

has a unique solution if h is sufficiently small and \\Xn — x'h)\\ ^ D3h"*"+1, D3 =

const.

This lemma is a generalization of a result given in Axelsson [1, Section 3] and

can be proved by the technique used there. Alternatively, it may be established by

the arguments used in de Hoog and Weiss [5] and Weiss [11] for the treatment of

implicit Runge-Kutta methods for Volterra integral equations of the second kind

(cf. [5, Theorem 4.1] or [11, Theorem 2.1]).

We shall also require

Lemma 5.2.   Let

(5.2) u = hFhiu) + v,        u,vERM,

be a family of nonlinear equations depending on the real parameter h, with Fh satisfying

(53)        F„EC3[RM],        \\Fi'\u)\\ á L„

v = 0, • • ■  , 3, u E RM, 0 Ú h ^ h,        L. = const.***

Then, for 0 ^ h S h = min(Â, 1/2L,), (5.2) has a unique inverse u = uh'v) E C\RM]

which can be represented as

(5.4) u„iv) = v + hFk(v) + h2Rh(v)

where

Here 11 • 11 is the maximum norm on RM or the induced operator norm.
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(5 ||AÍ(B)|| è La,        \\Rl(v,) - Ri(p2)\\ g L,||i>, - Dï||,

v,vx,v2 E RM,        ¿4, L5 = const.

Proof.   The existence, uniqueness and differentiability of uh follow from the

contraction mapping principle and the implicit function theorem.

Using v as a starting iterate for the functional iteration, we have

(5.6) u„iv) = v + hrM

where
m

r„iv) = lim Fh(p + hFhiv + (•■•)■••)).

Clearly,

(5.7) IKGOII, ||ri(o)|| g U,       vE RM,        Ls = const.

Equating (5.2) and (5.4) leads to

RL(P) = [Fliuhiv))u'hiv) - F'hiv)]/h.

From (5.2),

uliv) = hF'hiuhiv))u'hiv) + /,

where J is the (M, M) unit matrix. Hence,

u'h(v) = (J - hF'kiuhiv))Y\

and, using (5.6),

R'kiv) =     Fl(uh(v)) - Fi<p) + hiF'hiuhiv))f ¿ (hFj,{uk(v)))m   /h
(5.8) L 77,-0 J/

=   Í   l=ï'(i) + shrhiv)) ds rhiv) + Fi(HA(»))2 ¿ {hF'k(ut(p)))m.
JO 771-0

Using (5.8) together with (5.3), (5.6) and (5.7), it is now straightforward to establish

(5.5). D
The main result of this section is

Theorem 5.1. Let wit) E (P. for v è n and jit, z) £ C*'+1{[a, b] X SPo[X0]}-

Then

\\Yi- yiti)\\ ^ D3hn+",        i = 0, ■■■ , I,        D3= const.

Proof. Let the function p(t, z) £ Cn+ *+1{[a, b] X RN) satisfy p(t, z) = 1, (t, z) £

[a, b] X S,.LX/)] and M(r, z) s 0, (/, z) £ [a, 6] X S„ ß > Po. Denote

}(t,z)  =   /(f, z)M(f, z).

If /(?, x) in (1.1) is replaced by f(t, y), then (1.1) has not been changed in [a, b] X

Sp.tXOj. Also, the approximations 7,, defined by (1.10) and Theorem 4.1 satisfy

n

(5 9a) y" ~   Y'~un ~ hi S "'»A»«.  Yih) = 0,

y = 1, •••,«; i = 0, •••,/- 1,
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(5.9b) giY.x.n, 1-7-1. J = 0.

The function fit, z) has compact support. Hence, from Lemma 5.2, there exists

a constant h3 such that, for 0 < h ^ h3, (5.9a) can be written as

71

7< im Yi' -   F«-»- ~ h' S "iklitik, 7<_,,„) - h2G\\Yi-x,n) = 0,
(3.1U) k-i

j = 1, ••• , n; / = 0, •••  , 7 - 1.

In particular, for j = n,

n

,. in 7, + , -   7, - A, £ ».»fa«. 7.) - Afäfty,) = 0,
(3.11) i_l

/  =   0,      ••   ,  / -   1.

From Lemma 5.1,

n

,. ...       X'. + i) - y(ti) - Ai Z «toft«. X'.)) - h2G'hniyiti)) = r„
(3.1Z) t_i

i = 0, ••• ,7-1.

where

lk.ll g  7>4An+'+1,        / = 0, • • • , 7 - 1,        L>4 = const.

Subtracting (5.12) from (5.11), applying Taylor's theorem and using Theorem 4.1(iii)

and Lemma 5.2, we obtain

n

hiVffii = e,+, — e, — hi £ »»»^('itVi — A2ßi(?, = er,,
(j.ijj t.i

i = 0, ••• , 7- 1,

where Ait) is defined by (4.1), g, is a linear operator with

(5.14) 110,11 á D».        i = 0, • • • , 7 - 1,        Z>5 = const

and

Ikill ^  Dshn+'+1,        i = 0, ••• , 7 - 1,        7>6 = const.

Also, (1.1b), (5.9b) and the application of Taylor's theorem yield

Bae0 + Bbe, = i)

where Ba, Bb are given by (4.1b) and \\r>\\ g D7h2n, D7 = const. It follows from (5.14)

by an argument similar to that used in the proof of Theorem 3.1 that the difference

equations

L\ei = cti,        i = 0, • • • , 7 — 1,

Baea + .eVr = 8

are stable. This completes the proof. D

Corollary 5.1.   Ifv>0 andj{t, z) is as in Theorem 5.1, then

II Yi, - yitu)\\ g D.A"*1,  j = 1, ■■■ ,n - 1; t = 0, • • • , 7 - 1,   7>8 = const.
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Proof   Subtracting (1.9) from (5.9a), applying Taylor's theorem and using

Theorem 4.1, we obtain
n

re .ex       e<< ~ hi ^ wit Aitik, yitik))eik = e¡ + k,,,
(5.13; ,-i

j = 1,    •• , n; i = 0, ••• , 7 - 1,

where e,, = 7,, — AU ;) and

\\ku\\ á 7J9An+I,       y - 1, • •• , n; i = 0, • • • , I - 1,        Z>9 = const.

Writing (5.15) in matrix vector notation similar to (3.5) and repeating the arguments

following (3.5), we obtain

><f|| è Dxo(\\e,\\ + maxllic^ll),
\ ISiSn '

j   =    1, , n; i 0, ,7-1, Dt0 — const.    D

For fixed n, it is desirable to choose {«,, • • • ,un) so that the order of convergence

is as high as possible. For the cases (ux = 0, w„ = 1), (u, > 0, un = 1 or «, = 0,

un < 1) and («, > 0, w„ < 1) this leads to the Lobatto, Radau and Gauss points,

respectively. The orders of convergence are In — 1, In — 1 and In. When using

Lobatto points, we have to solve a system of order N(pl + 1) to obtain order Ip.

convergence. For Radau points, a system of order Nip.1 + 1) yields convergence

of order lp — 1 and for Gauss points, a system of the same size yields convergence

of order lp — 1. Hence, Lobatto points are more efficient than Radau points, which

again are more efficient than Gauss points.

The Lobatto points for n = 1,3, 4, are given below:

n = 1:   ux = 0, m2 = 1 (Trapezoidal rule),

n = 3

n = 4:

u¡ = 0, «2 = 5, m3 = 1 (Simpson's rule),

«i = 0, u2 = Kl - 1/V5), «3 = Ml + 1/V5), Ua

6. Computational Aspects and Numerical Examples.    In the case when (1.1)

has separated endpoint boundary conditions, viz.

\gi(v)
(6.1) giv, w) =

gÂw)}

where gx(v) is a /^-vector and g2(w) is a q = (N — p)-\ector, it is advisable not to

apply Newton's method to (4.7), but to rewrite (4.7) in the form

gi(Y.,,n)

NkY0X

/V»7i-,,

.»2(7/_l,.X

Then the matrices a" in the implementation of Newton's method
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(6.2) a'[Yt+i - n = -$(n

have a certain block-band structure. For 1=3, this structure is exhibited in the

schematic representation

(6.3)

^^

N,

t."Y
N

Here N, = N(n + \ - r) if un = 1 and Nx = N(n + 1 - r) otherwise. Only the

white fields within the dark lines contain nonzero elements.

Equation (6.2) can be solved by the following procedures:

#1: Gaussian elimination with partial pivoting. If the elimination is performed

with consideration of the zero-pattern in Q", then only the shaded fields in (6.3) are

filled and the amount of additional storage required is modest.

#2: A "mixed" pivoting strategy with column interchanges while eliminating

Yit i = 0, ■ • • , I, and row interchanges during the elimination of the other unknowns.

Here the zero-pattern of ft" is preserved. This procedure is slightly simpler to im-

plement than #1.

The leading terms in the operational counts are

#1:   I{Nx[Nx2/3 + NX(N + p)/l + Np]}.

#2:    I{p[p2/3 + p(Nx + q)/l + Nxq]

+ (Nx - p)[(Nx - p)2/3 + (Nx - pXN + p)/l + Np]}.
A simple calculation shows that #2 is faster than #1.

When the boundary conditions are not of the form (6.1), then the matrices <x"

in Newton's method for (4.7) have the following structure for 7=3:

N N
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Again, a" can be inverted efficiently by Gaussian elimination with partial pivoting.

The amount of fill-in introduced is indicated by the shaded areas in (6.4). The leading

term in the operational count is I{Nx[Nx2/3 + 3NXN/1 + IN2]}.

The scheme (1.10) with n = 4, Lobatto points (accuracy h6) and algorithm #2

has been used to solve the following problems:

(6.5X0 W'it) = exp(«(0),        «(0) = «(1) = 0.

The unique solution is

uit) = 2 lnjc sec(c(f ~ *>)} - In 2,

where c = 1.33605569490611. As a first order system, (6.5) takes the form

/ - y» - 0,

y'2 - expO>,) = 0,

>,(0) = J-i(l) - o.

A uniform grid was used. The starting values for the Newton iteration were obtained

from

v,<0) = (i - 0.5)2 - 0.25,        y20) = 2t-l.

The errors in u and u' for different gridspacings are shown in Table 1. Since u is

symmetric about t = ^, the values are only given for t = 0 and t = \. The iteration

process was terminated when the norm of the difference between two successive

iterates was ^ 10~14. For all h in Table 1 this was achieved in four iterations.

Table 1

u u'

h t = i r = 0 t = |

1/3 2.66 E-9 -3.66 E-8 -9.06 E-9
1/6 5.07 E-ll -5.96 E-10 -1.47 E-10

1/12 8.30 E-13 -9.42 E-12 -2.32 E-12

u"(t) + tu'it) - u't) = te   - |f|(6 - 12r + 2f2 - 3r3),

(6.6)(ii)
u(-l) = e'1 - 2,       i/(l) = e.

The unique solution to (6.6) is

uit) = e   - it3 - f4),        t = 0,

= e   + (/ - t4),        0^(.

Equation (6.6) was transformed to a first order system in the same way as (6.5).

We chose this example to demonstrate that, for linear equations, the results of Section

5 are not affected by jump discontinuities in A(t) and git) or their derivatives, if the

points of discontinuity are contained in ir7. We use uniform nets such that r = 0



IMPLICIT RUNGE-KUTTA AND COLLOCATION METHODS 463

is a gridpoint. The largest errors in u and u' occur at t = 0 and / = 1 respectively.

The errors in u and u' are given in Tables 2 and 3.

Rüssel and Shampine [10] used collocation in the smooth Hermite space 7/<3>(ir,)

to solve (6.6). The maximum of the absolute values of the errors obtained by this

procedure is given in the last columns of Tables 2 and 3. It must be noted, however,

that the operational count for our method in this example is about twice that re-

quired for the collocation procedure. So it is appropriate to compare our values for

lh with those of Rüssel and Shampine for h.

Table 2

u

h t - -i t = 0 t = \ Ew

1/2 -6.59 E-8 -9.81 E-8 -7.67 E-8
1/4 -1.01 E-9 -1.50 E-9 -1.16 E-9 3.40 E-6
1/8 -1.57 E-ll -2.32 E-ll —1.80 E-ll 2.17 E-7

1/16 -2.46 E-13 -3.62 E-13 -2.79 E-13 1.36 E-8

Table 3

u'

h       / = -1 t » -\ t = 0 t - i r = 1 Hw

1/2 -2.88 E-7 -2.70 E-7 -1.80 E-7 3.24 E-9 3.13 E-7
1/4 -4.45 E-9 -4.13 E-9 -2.67 E-9 2.76 E-10 5.34 E-9 1.00 E-5
1/8 -6.93 E-ll -6.42 E-ll -4.12 E-ll 5.26 E-12 8.54 E-ll 6.18 E-7

1/16 -1.04 E-12 -9.97 E-13 -6.67 E-13 8.97 E-14 1.34 E-12 3.85 E-8

All computations were done in double precision on the IBM 370/155 at the

California Institute of Technology.
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