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Conditioning of Quasi-Newton Methods for Function
Minimization

By D. F. Shanno

Abstract. Quasi-Newton methods accelerate the steepest-descent technique for function

minimization by using computational history to generate a sequence of approximations to

the inverse of the Hessian matrix. This paper presents a class of approximating matrices as

a function of a scalar parameter. The problem of optimal conditioning of these matrices

under an appropriate norm as a function of the scalar parameter is investigated. A set of

computational results verifies the superiority of the new methods arising from conditioning

considerations to known methods.

I. Introduction. Newton's method for minimizing a function i(x), x an «-vector,

is to generate a sequence of points,

a) xik+l) = xik) -«'«[/"rV",

where g(k) = VF(x(k)), Jm = [d2 j/dx.dx¡], the Hessian matrix of F evaluated at

xw, and aik) is an appropriately chosen scalar. Quasi-Newton methods use an initial

estimate and computational history to generate an estimate H(k) to [7<4)]"x at each

step rather than performing the computational work of evaluating and inverting Jik).

The sequence (1) then becomes

(2) x(t+1) =x(t) -awHwg{k).

Here aa) is chosen to minimize / along —H(k)g(k). Some well-known techniques of

this type are the Fletcher-Powell modification of Davidon's method [1], [2], Broyden

methods [3], [10], the Barnes-Rosen method [4], [5], and Goldfarb's method [11].

The Fletcher-Powell and Barnes-Rosen methods share the computational feature

that, if j(x) is a positive definite quadratic form, the sequence (2) converges in n

iterations. This feature is also true of Broyden's method defined in [10], but not of

those devised in [3] (see [6]).

Further, the Fletcher-Powell technique guarantees that the matrix, H(k), will

always be positive semidefinite, expediting the search for a(k) at each step.

This paper will develop a family of matrices, Hik\ as a function of a scalar param-

eter, /, all of which can be shown to possess the quadratic convergence property of

the Fletcher-Powell and Barnes-Rosen techniques. It will further be shown that both

the Fletcher-Powell and Barnes-Rosen matrices are special cases of this parametric

family, and that positivity depends only on proper choice of the parameter.

A problem which arises in connection with quasi-Newton methods occurs when

the smallest eigenvalue oiHlk) goes to zero. This is the so-called conditioning problem.
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This paper will investigate the conditioning of the family of matrices as a function of

the scalar parameter, and derive an explicit formulation for the best conditioned

matrix under an appropriate norm at each step.

Finally, a series of computational results showing marked superiority of alterna-

tive choices of the scalar parameter to the Fletcher-Powell and Barnes-Rosen choices

will be given.

II. Generation of Approximating Matrices. The technique for generating a

series of approximations, H<h), to the inverse of the Hessian at the points, x(k\ can be

described as follows:

Assume f(x) is a positive definite quadratic form, Hm the current approximation

to the inverse of the Hessian, and Jw the approximation to the Hessian (note that

here the Hessian is a constant matrix). Then if Jm is an exact approximation,

(3) g(k+1) = gik) + /»V*\

where again g(x) = VF(x), <x(t) = -amHa'gm, and jc(*rt> = xfk) + </*'. Here

again aa) is chosen to minimize / along — Hik)g<k). Multiplying (3) by H(k\ we obtain

(4) #<4y*+" =  Hwgw + <7(t'.

Let ym = g(k+l> - gm, and (4) becomes

(5) H(k)ya) = <r<w.

Since (5) in general will not be satisfied, assume the error lies in Hik) rather than in the

assumption that f(x) is a quadratic form. We then correct H{k) by

(6) (H(k) + Dlk))y{k) = <r(t),

or

(7) Dik)y{k)  = <r(t) - H{k)/k>.

If we let H(k+1> = Hw + D{k\ and D(k) is chosen to satisfy (7), we then have

(8) //<*+iy*> = „<*>.

The algorithm for determining a minimum of f(x) can now be described as follows:

Choose initial estimates xw, Hm. Let*'" = -Hwgw. Finde/*' 3f(xw - atk)sw)

is a minimum. Note that a necessary condition for this is that g(k+u'Hik)gM = 0.

Let atn = amsm, and x<k+u = x(h> + am. Select a Dw satisfying (7), and set

jjik+ii _ jjw _|_ £)<« Repeat the process until a minimum is obtained. It remains

to select the matrix Dlk).

A crucial point in the above algorithm is forcing Da) to satisfy (7), for this guaran-

tees the validity of (8). The importance of this can be seen from

Theorem 1. If f(x) is a positive definite quadratic form, and at each step (8) is satis-

fied, then the minimum of f(x) will be reached in at most n iterations.

Proof. The proof is identical to the proof of convergence in the quadratic case of

Fletcher and Powell [1], which depends only on the positive definiteness of f(x), the

fact that at each step (8) is satisfied, the optimal choice of a at each step, the choice

of <r(t) as -a(k)Hik)g(k\ and choosing D(k) to satisfy (7) in the way shown in Section III.
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III. Selecting the Matrix £>"'. In the previous section, we stated that the selec-

tion of the matrix, D{k) to satisfy (7) generates a sequence with the desired finite

convergence property when j(x) is a positive definite quadratic form. Taking into

account the symmetry of the true Hessian, the Barnes-Rosen choice is

ta\ r><*> _ (t      — H    y    )(o      — H    y    )
W O      - (tr(i) _ Hwymyyw

This is a correction of rank one as the matrix obviously has only one nonzero eigen-

value.

The Fletcher-Powell choice of DU) is a rank-two correction,

(10) Da) = —-g    *    y      "   -

Hence both matrices satisfy Eq. (7), the Barnes-Rosen considering the right-hand

side as a single vector, and the Fletcher-Powell considering the vectors o-'*' and

Hwyw separately.

A parametric separation of (7) is

(11) Dmym = taw + (1 - t)aa) - Hik)yw,

which with proper grouping then yields the solution,

ci-j-v nu' — í -_ j_(/'V" ((1  - ttf" - glw/")((l  - t)a"'  - g'"/'7

V,r~ (d ~t)o-w - ff'V*')'/   ".(*)'..<*)

Then t = 0 is the Barnes-Rosen choice, and t = 1 the Fletcher-Powell choice. Other

parametric separations are possible, and have been developed by Broyden [10] and

Goldfarb [11]. It is trivial to show this selection quarantees the validity of Theorem 1

for any value of t.

In order to gain insight into the significance of the parameter, /, we must first note

a weakness of the Barnes-Rosen correction. Suppose at some iteration k, a(k) = 1.

We then have

(13)        (ru) - Hwyw =  -HMgw + Hik)glk+,) + Hmgm  =  -Hwglk+U,

and (9) becomes
„<*> (*+i) u+i)' „(*)

g Hg

Computing, we find

(15) ffu+iy*+n =  H<k>g«+n + Dwga*D s Q>

independent of the magnitude of gi4fI). Hence the search vector vanishes when

g<ki11 pé 0, forcing a restart of the generation of the approximation to the Hessian.

Now consider the problem of scaling the matrix, Hlk), so that the eigenvalue of

Ha> in the direction of am is altered, while eigenvalues in all directions orthogonal to

a-'*' are unchanged. This is accomplished by

(16) Êw = Hw + t
Ak)     (*)'

<r    (7

CW'yM'
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Solving (16) for t which yields â(k) = 1 gives the solution

(17) t = aw - \/aik\

The formula (16) in a slightly different version was proposed by Davidon [2] with

t = 1 to double the length of s(k) when a > 1 was indicated. The idea has apparently

been carried no further in the modifications of his original work.

We may now consider the generation of rank-two correction matrices as the

composite sequence,

<«  <*>'
Hw = Hlk) + t a

(18)
ffc«y«

(t+i) _   ¿¡m _¡_ \<r n    y    )(c      — H    y    )
((7<*> _ ¿<»ywyym

Computation shows that the composition defined by (18) is identical to (12) for any

choice of t, yielding

,,q\   w(i+n _ „i«   i   . a    a        i   0.1 — r)g     — H    y    )((l — r)<r     — ti    y    )
(i») «      - //    -f- / ^w^tt) + ((1 _ iV<„ _ #<*y«yy«

From the above discussion of singularity in the Barnes-Rosen technique, it is ob-

vious that a choice of / should be restricted to t ^ (a{k) — l)/a(*'.

To further restrict the choice of /, we first prove

Theorem 2. If Hik) is positive definite, Vt > (a<w - l)/a(i), #(*+1) is positive

definite.
Proof. Let /" = [ff"']-1, /(*+x) = [H(k+1)]~\ Now computation verifies the

well-known formula that if A = ¿T1, y|, 5 symmetric matrices, p a scalar, and z an

arbitrary vector, then

(20) [B + pzz'Y1 =  A - .   ,  P , A   Azz'A.
1 + pz Az

Applying (20) twice sequentially to (19) yields

Q     t u) g    g

1 +awta      g'«'/11

((*) \/        (t) V

.(*+!)_       .(*)      , <*        < (*)   g_g_

+

\l+alk>tg      +y    I"

We first note that for t > (a(k) - l)/a(W, a'*7(l + a(M0 < 1, and hence

1 + «">/ S      +y    )-\l+a<k>t8      ~g      +8        )
(21)

= (rg(t> + g"+,)),

where r < 0. Using the condition that a be optimally chosen, we then obtain

(22) (rgw + g<*+l>yV" = rgw'aw = -rgw'Hwgw > 0
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by the positive definiteness of Ha). Thus the second correction matrix in (19) is posi-

tive semidefinite. We now consider the matrix,

<23) a    = J    + 7+^«   ^y»-

Note that since

g«>y*> = -amg°*'Hmgmt        gm'vm < 0.

Hence if aU)r/(l + a(k)i) < 0, Am is trivially positive definite as it is the sum of a

positive definite and positive semidefinite matrix.

We now consider the case where a(t)r/(l + a(k)t) > 0. Let z be an arbitrary vector,

then

Z  ,4     z  - z  J     z -+-   ,     ,    _<*),« (t),   ,t)
1 + at

OA\ _* „/   r<*>,     I g       t ,1   jW        , <*)    (g        Z)

1 + awiZ J   Z+ 1+ awt \_z J   z + Ä(»y«J

Using the definition of s   , we see that

(2Sl ,,«     ■   (g("V_Z,/*V>gWgw-(gwz)2
SWV" gm'Hingw

Now, since HwJ(k) = / and .ff'*' is positive definite, //'*' has a positive square root,

as does /(W, and the product of these square roots is again the identity matrix. Hence,

letting r(W be the square root of Hw, Mik) the square root of J(k), we can rewrite (25)

as

z,jW +(j_j)_
(26) g     s

= (Mlk)zY(Mik)z)(Twgw)'(Twgw) - ((Twgw)'(MMz))2

gwHwgW

with the final inequality following from the Schwartz inequality. Thus Ja+U is posi-

tive definite, and so Hik+1) is positive definite, and for t = (aM - l)/alk\ Hik+U is

singular.

Since for t = (aw - l)/am - e, e > 0 and small, g»«>'#<*«y*«> < o, the

range of / for this study was restricted to t > (aik) — \)/a{k). The next section will

deal with the conditioning of the matrix H(k+U as a function of t in this range.

IV. Conditioning the Matrix H(k+U. As previously noted, computational diffi-

culties arise when the smallest eigenvalue of Hlk+1) becomes zero. The arguments of

the preceding section show that for t > (a — \)/a, Hik+U is positive definite, hence,

at no finite step does the smallest eigenvalue ever become zero. However, it is possible

that if \ is the smallest eigenvalue of Hik*u, lim^oo Ai = 0.

In this case, the iterative technique will degenerate as k —»°o .To attempt to

alleviate this difficulty, we may, at each step, choose t in such a way as to maximize
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the smallest eigenvalue of Hik+l). This is accomplished by choosing / to maximize

z'Ha+1)z for any arbitrary vector z.

A computationally better method of conditioning a matrix, A, is to minimize the

condition number of A, where, in general, the condition number, p, of a matrix, A,

is defined to be p = \\A\\ ||^_1|!. If ||-1| is the spectral norm, and A is symmetric

positive semidefinite, then p = \n/\u where Xn is the largest eigenvalue of A. This is

not considered heTe, but is discussed in detail in [12].

To establish that t which maximizes z'H(k+1)z, we first need the following lemma.

Lemma 1. For t > (am - \)/a(h), g<*+»'#<*+»g«+1> ¿s a monotonically increasing

function oft, andlim,^ g<k+v'H<k+vga+1) = g^'Hwga+1).

Proof. From (8), Ha+Vyw = a™. Hence,

(27) g<*+i>'.ff<*+iy*> = a<*>y*+,> = o,

and we have

nil „<*+!>' tr(* + l)„(t+l) (¡fc+l)'  Tjik+l)   Ak)    _    n
(28) g Hg —g H        g       —  0,

yielding

(29) (t + l)'„(t+l)     (*+l>    _.       <*>' rr<*+l>     «+1>

Applying (29) to (19), and recalling that aa)'g(k+1) = -ag(k+1)'Hwga) = 0, we have

g H        g

(30) gay((\ - t)o-lk) - ff(*y»)((l - t)aa) - Hik)y(k))'ga+1)

((1 - t)aw - Hwyw)'yw

Substitution and computation then yields

t    (k) ,     ,       . <*)..    <*)'„<*)<*)     <t+l)'rr(i)     (t+1)
.... <*+i)'„(*+n   <*+n  _       (a     r + I  — a     )g      H     g    g Hg_

*■        ' ^ ^ ,    (*),   _r       I (*)\    <*)' u<*>„<*>    _|_    „<*+»' !/(*>     (* + l)"(a    t + l — a    )g      Hg      + g Hg

Differentiating (31) with respect to t yields

dg(k+i)'Hík+i)g(k,D

(32) dt

aw gw' Hw gm(g(k+1)' H(k) g(k+l))2

((a    r + 1 — a    )g     H    g      +g //g       )

Thus g(k+1)'fjík+1)gik+1) is a monotonically increasing function of t, and from (31),

lim,^ g<k^'H(k+ug{k+1) = g^»'Hlk)g'k+l\ and the lemma is proved.

We may now show

Theorem 3. Let z be an arbitrary vector. Then z'H(k+1)z is a nondecreasing function

of t, fort > (aw - \)/aw.

Proof. Since Hw is positive definite, and g'k+1)'Hlk)gm = 0, 3 a basis for FT com-

posed of ga), gik+1), and n — 2 vectors {,, • • • , £„_2 which are mutually J5Ttw orthogonal

to g(t), g(t+1) and to each other. Now since t[HwgM = frff'V**1' = 0, trivially
£#<*«>£ = o for i ^ ¿ Further, ¡¿H{h+1)g(k+l) = ^Hík+1)gíh) = 0, and £i/('+I)£(

is independent of /. All of these may easily be verified by using (19). Finally, since
^H«+l)gik+D   =   gjytt+iy»   =   0; we have

(33) £;ff<t+iyt+i) - %Hik+usM = íí/*-"*1'/*' = -o.
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Further, since for / > (a(k) - 1 )/«'*', H(k+1) is positive definite, and since

g»«i'jjflt»;(ii = 0j the f,'s, together with g(k+u and /*>, form a basis for £n. Hence,

let
n-2

(34) z =   2^ a,£, + a„-ig + a„.y    .

Then

(35) z'Hik+1)z =  g 02&Hlt+% + a2n.l8lk+iyH(k+1)gik+1) + aWty H{k+Uyw',

i-l

where

2 a%H'k+l)^ =   ffl;0"t

and, hence, is independent of /. We now note that

(36) yikyH

independent of t. Hence,

(36) /k>'H(k+nyw = <7(WyW = awgikyHwgw,

(37)- = <£_,
dz'H{k+l)z 2     dglk+,yH(k+1)g{k+v

dt ""' dt

and, by Lemma 1, this is greater than 0 if an^ ^ 0. This proves the theorem.

We have thus shown that the condition of Hik+1) improves monotonically with /.

This necessitates finding a closed form representation of Hik+1) for r = œ,

Theorem 4. Let H(k+V be defined by (19), and let

¿kyyw

</*>'_/*> + ylk)'Hwyw

Then

lim /7<t+1)

<*) , t7<*>„<*)\/-„<*) ,.U<*>„<*>V rjik)    (k)    (k) ' rjik)
,(*) (V" - /•//""/" )((/"' - rHK,yw)'   ,    . 1S i/1"/   /     tf

Proo/. As in Theorem 2, apply (20) sequentially to (19), again yielding

,<*+!>     _ r(t)        I «_L <*>    ̂

1 -fa1"? ga)Vu)

(38) ll +«'"<*      +y    ){l+aWtg      +y    )
i        ii-\ \ .

a ik)      | (k) \       (*)
—*n g     r y    \ <yT*

,1 + a1'1"'?

Then
(*)     U>' (k)     (*)'

^10\ i;„    ,U+i>   _     ,«)     ,        «>  g      g i    J'     J'(39> llm J -  J     +a       <«-   <*, +    a,-  ,»"
i-» g     <r y     o-

Now apply (20) to

r       v{k)vw'i

S     *  1/     + </"'>,">_! '
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then again to

r(t+l)    _.     ç(*>      I <*>   g       g

„(t)'     (t)    '
g      o-

and the result follows.

It should be noted that this representation for Hlk+1) has been derived by Goldfarb

[11] from other considerations.

V. Discussion. Section II showed that matrices of the form (19) have the desired

convergence property for all values of t. Section III showed that the desired positive

definiteness is maintained for all t > (a(W — \)/aik). We first note that this is a

reverificationofthe Fletcher-Powell proof of stability of H(k), for 1 > («<*' - \)/aw

for all a(k). However, this also points out the weakness of the Fletcher-Powell method,

for, as a(k) becomes large, Hik+1) becomes ill-conditioned, slowing the process of

convergence. Section IV shows that / = °=> yields maximum stability. However,

it is not necessarily the case that this provides convergence to the desired optimum

in the minimum number of iterations. To this end, it may prove optimal to choose t at

each step as a function of a'*\ To accomplish this, the relation, tm = (2aik) — \)/aik\

was tried computationally along with r = °°, t = 1, and t = 0, on a variety of prob-

lems. The results are documented in Section VI.

Finally, note that t{k) = (2a"' - l)/aik) satisfies tw > («<M - l)/a(i). Also, tw =

(2a(k) — \)/aik) has the significance of being the value of tlk) obtained by optimally

scaling

(i)
âw = hw + —

(t)      _<«'..<*> '
«        <r - y

and then updating, using the Fletcher-Powell-Davidon technique, substituting Ñ<k)

for H<k) and giving

„(*+i) _    A(t)   i   <r    <r       _ H    y    y      H

aw'yw yikyHik)ylk)

VI. Computational Results. The methods corresponding to t = °°, / =

(2a(i) — \)/a{k), t = 1, and t = 0, were tested for various initial estimates on four

functions. They are the sum of two exponentials documented by Box [7], and defined

by

(40) /(*,, *,) =  £ [fr—'« - *—") - (e~li - e-10")]2.

where U ranges from .1 to 1 in steps of .1; Rosenbrock's function with the initial

estimates suggested by Leon [8], and defined by

(41) /(*!, x2) = lOOfc - x2)2 + (1 - Xlf;

Wood's function as documented by Pearson [9], and defined by

(42) /to, x2,x3, Xi) = lOOfe - ^)2 + (1 - Xl)2 + 9Q(Xi - x\)2 + (1 - x3f

+ 10.1[(x2 - l)2 + (jr4 - Dl + 19.8(*2 - l)(xt - 1);
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and finally the Weibull function, defined by

(43) t(xu x2, x3) =  ¿ ^exp y-— (t, - xa)"J - y,J ,

where the y(" and r<0 are perfect data generated for the 99 points corresponding to

y = .1 to .99, in steps of .01, for the values Xi = 50, x2 = 1.5, x3 = 25. The initial

estimates are those suggested by Dale Fimple.

Box's three-parameter exponential problem was also tried, but nonuniqueness of

the optimum caused different methods to converge to different optima, invalidating

comparisons.

In all cases, convergence was determined when \<r\k)\ Ú lO"6^.*'! and \g\k)\ ^

10~'|*SWI- Further, the search for a{k) terminated when g(k+1)'a(k) < 10~3S, where

5 = Sî-i |g!i+1)| ki*'!/«- Finally, approximations to a(k> were found by the cubic

quadrature devised by Davidon [2]. In the table, the number of iterations is the num-

ber of times Hik) was updated, and the number of evaluations, the true number of

function evaluations used.

The results in the table make it obvious that the Barnes-Rosen method is quite

unstable. Further, in virtually all cases, the t = a and t = °° methods outperformed

t = 1, and the difference became more notable as the complexity of the function

increased.

Finally, the relative performances of t = °° and / = (2a(i) — \)/aik) are similar

enough to indicate that an optimum a sensitive strategy would outperform the

maximum conditioning strategy, but perhaps only marginally.
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