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LACUNARITY OF SELF-SIMILAR AND
STOCHASTICALLY SELF-SIMILAR SETS

DIMITRIS GATZOURAS

Abstract. Let K be a self-similar set in Rd, of Hausdorff dimension D, and
denote by |K(ε)| the d-dimensional Lebesgue measure of its ε-neighborhood.

We study the limiting behavior of the quantity ε−(d−D)|K(ε)| as ε → 0. It

turns out that this quantity does not have a limit in many interesting cases,
including the usual ternary Cantor set and the Sierpinski carpet. We also study
the above asymptotics for stochastically self-similar sets. The latter results
then apply to zero-sets of stable bridges, which are stochastically self-similar
(in the sense of the present paper), and then, more generally, to level-sets of
stable processes. Specifically, it follows that, if Kt is the zero-set of a real-
valued stable process of index α ∈ (1, 2], run up to time t, then ε−1/α|Kt(ε)|
converges to a constant multiple of the local time at 0, simultaneously for all
t ≥ 0, on a set of probability one.

The asymptotics for deterministic sets are obtained via the renewal theo-
rem. The renewal theorem also yields asymptotics for the mean E[|K(ε)|] in
the random case, while the almost sure asymptotics in this case are obtained
via an analogue of the renewal theorem for branching random walks.

1. Introduction

Consider the following construction of a Cantor set on the real line. Start with
the unit interval I = [0, 1] and divide it into n ≥ 3 equal subintervals, each of
length r = n−1. Let N be an integer with 1 < N < n and keep any N of the
n subintervals Ii = [in−1, (i + 1)n−1], say Ii1 , . . . , IiN , and discard the remaining
ones. Next divide each of the intervals Iik kept in the first step into n equal
sub-subintervals, of length r2 = n−2 now, and keep only N of these within each
Iik , always according to the same pattern as in the first step of the construction.
Continuing ad infinitum, this construction leads to a Cantor set K on the line,
of Hausdorff and Minkowski (or box) dimension equal to lognN . Alternatively,
K =

{∑∞
1 xjn

−j : xj ∈ {i1, . . . , iN}
}

.
Now consider two particular cases, both with r = 1/16 and N = 4, but different

patterns. For the first construction keep the two leftmost and two rightmost of the
subintervals in each step. For the second construction use the pattern in which the
four subintervals kept are uniformly spread out; i.e., we keep the 1st, 6th, 11th

and 16th. In both constructions the limit set has dimension D = 1
2 but according

Received by the editors September 8, 1998 and, in revised form, March 4, 1999.
2000 Mathematics Subject Classification. Primary 28A80, 28A75, 60D05; Secondary 60K05,

60G52.
Key words and phrases. Cantor set, ε-neighborhood, Minkowski content, branching random

walk, renewal theorem, stable process.

c©2000 American Mathematical Society

1953



1954 DIMITRIS GATZOURAS

0
2
16

1 0
1
16

1

Figure 1. Two Cantor sets with D = 1
2 .

to Mandelbrot ([19], page 313) these two limit sets look quite different (see Figure
1): the outcome of the first construction looks like a ‘few points’, hence ‘mimics
the dimension D = 0’, while the outcome of the second construction looks like a
‘full interval’ and hence ‘mimics the dimension D = 1’. He calls the set of the first
construction a set of ‘high lacunarity’ and the set of the second construction a set
of ‘low lacunarity’.

In an attempt to give a numerical measure for lacunarity Mandelbrot considers
the length of the ε-neighborhood, |K(ε)|, of the limit set K. It is well known that
|K(ε)| ≈ ε1−D, in the sense that

lim
ε→0

log |K(ε)|
log ε

= 1−D ,

giving the Minkowski or box dimension D ofK. Mandelbrot observes that in ‘many’
cases one has the stronger relation |K(ε)| ∼ Lε1−D, in the sense that the ratio of
the two sides tends to 1 as ε→ 0; he calls L the ‘prefactor’ and proposes L−1 as a
numerical measure of lacunarity, provided of course it exists.

To put it in a different way: the asymptotic ratio of the logarithms of |K(ε)|
and ε gives some crude information about K, relating only to its dimension; by
considering the more delicate direct ratio |K(ε)|/ε1−D one hopes to capture more
refined information about K, also relating to its finer topological structure.

In this paper we give sufficient conditions for L to exist, i.e., for ε−(d−D)|K(ε)|
to converge to a limit as ε → 0, for self-similar sets K ⊂ Rd; by self-similar
here we mean both strictly self-similar and stochastically self-similar sets, i.e.,
random sets which are only self-similar at the level of distributions. As a mat-
ter of fact, for such K, we obtain exact asymptotics for |K(ε)| as ε → 0. It
turns out that limε→0 ε

−(d−D)|K(ε)| does not exist in many interesting cases, like
for example the usual ternary Cantor set (see section 4.1). However, the limit
limT→∞ T

−1
∫ T

0
e(d−D)t|K(e−t)|dt always exists for self-similar sets and one may

use this quantity instead as a measure of lacunarity, if one is to summarize this
information into a single number (compare with Bedford and Fisher [1]). We stress
that our aim is to prove results on existence; the question of whether the proposed
quantities are ‘good measures of lacunarity’ is a different issue, requiring separate
investigation.

We remark in passing that the asymptotics of |K(ε)| are also directly related to
the concept of ‘Minkowski measurability’. A compact set K ⊂ Rd, of Minkowski
dimension D, is Minkowski measurable precisely when ε−(d−D)|K(ε)| has a limit
L ∈ (0,∞), as ε→ 0; L is then the Minkowski content of K in this context. (Thus
Mandelbrot defines lacunarity as the reciprocal of Minkowski content, when this is
defined.) Minkowski measurability and Minkowski content have attracted interest
in recent years, because of the central role they play in a conjecture of Lapidus
([14]), and related work of Lapidus and Pomerance ([15], [16]), pertaining to the
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Weyl-Berry conjecture on the distribution of the eigenvalues of the Laplacian, on
domains with ‘fractal’ boundaries.1

Our main tool for studying the aforementioned asymptotics for |K(ε)| is the
renewal theorem from probability theory and one of the objectives of this paper
(besides obtaining the results themselves) is to emphasize the suitability of renewal
theory as a tool in the study of self-similar sets. The first application of the (stan-
dard) renewal theorem to (strictly) self-similar sets is due to Lalley, who applied
it in [12] to obtain the exact asymptotics for the packing and covering functions of
such sets. Later, in [13], he used similar methods for fractals with some approx-
imate self-similarity, such as limit sets of Kleinian groups; for the results of the
latter paper he actually had to develop suitable analogues of the standard renewal
theorem. We stress the fact that in both papers of Lalley mentioned above and also
in section 2 of the present paper, pertaining to strictly self-similar sets, the renewal
theorem is applied to study deterministic sets. One can use similar methods for
stochastically self-similar sets and this is done in section 3 below. Results which
hold in mean, for such random sets, are obtained by use of the ordinary renewal
theorem, while almost sure results are obtained via an analogue of the renewal
theorem for branching random walks, due to Nerman ([22]).

The rest of the paper is organized as follows. In section 2 we deal with strictly
self-similar sets; the main results there are Theorem 2.3 and its companion, Theo-
rem 2.4. In section 3 we deal with stochastically self-similar sets. In particular, in
subsection 3.1 we describe the kind of random sets we are considering and state the
main results concerning them, Theorems 3.1 and 3.2. In subsection 3.2 we state
Nerman’s theorem in the language of branching random walks and in 3.3 we give
the proof of Theorem 3.1. Subsection 3.4 deals with ‘mean convergence’ and in
subsection 3.5 we prove Theorem 3.2. Finally, in section 4 we discuss some ex-
amples and applications. One of them pertains to level-sets of stable bridges and
stable processes, for which ε−(d−D)|Kt(ε)| converges and the limit is local time at
0; here Kt is the zero-set of the process, run up to time t, and the convergence
holds simultaneously for all t ≥ 0, on a set of probability one (Theorem 4.1). We
thus reprove a result which follows directly from results of Fristedt and Taylor ([9]).
(Our proof, however, does not assume a priori existence of local time and we thus
obtain local time as originally envisaged by P. Levy.)

After proving Theorem 2.3 (deterministic sets), we learned of Falconer’s paper
[7], which also contains versions of Theorem 2.3 (i), but with the additional as-
sumption that K is totally disconnected. He also uses renewal theorems, but his
approach is, to a certain extent, different than ours. We decided to include Theo-
rem 2.3 here because: 1) it covers basic examples, like e.g. the von Koch snowflake
or the Sierpinski carpet, which Falconer’s result does not; 2) its proof conveys the
basic idea of the approach better, as it lacks certain technicalities which are present
in the random case.

Acknowledgments. The author wishes to thank B. Mandelbrot, Y. Peres, who drew
his attention to the problem, by pointing out that ε−(1−D)|K(ε)| does not have a

1Note added in proof: After submitting the final version of this paper we also learned of
[26]; conjectures 3 and 3r there relate directly to the results in this paper and the conjecture in
section 5.
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limit, as ε → 0, for the usual ternary Cantor set, and S. Lalley, who had indepen-
dently obtained a renewal theorem for branching random walks, and from whom
the author first heard about such a theorem.

2. Strictly self-similar sets

2.1. Background and statement of results. Let {φ1, . . . , φN} be a finite set
of similarities of Rd; i.e., each φi satisfies

|φi(x) − φi(y)| = ri|x− y| ∀ x, y ∈ Rd ,
for some constant ri. Assume 0 < ri < 1, for each i ∈ {1, . . . , N}, i.e., each φi is a
contraction, and let D be the unique real number for which

N∑
i=1

rDi = 1.(2.1)

A well known result of Hutchinson ([10]) asserts that there exists a unique nonempty
compact subset K of Rd which is invariant with respect to {φ1, . . . , φN}, i.e.,

K =
N⋃
i=1

φi(K).(2.2)

The set K is then a (strictly) self-similar set and is in many cases a ‘fractal’.
The examples in the introduction, which include the usual ternary Cantor set,
the von Koch snowflake and the Sierpinski carpet, all arise in this manner (see
[10]). We may, for example, obtain the ternary Cantor set by taking φ1, φ2 : R →
R, φ1(x) = x/3, φ2(x) = x/3 + 2/3. For the von Koch snowflake we may take
φ1, . . . , φ4 : R2 → R2, where φi is the unique similarity, with positive determinant,
mapping the interval A1A5 to AiAi+1 in Figure 2. In both cases, K may then be
visualized as (formally, the limit is in the Hausdorff metric)

K = lim
n→∞

⋃
i1,... ,in

φi1 ◦ . . . ◦ φin([0, 1]) .

Given a set of contracting similarities {φ1, . . . , φN}, one says that {φ1, . . . , φN}
(or the corresponding invariant set K) satisfies the open set condition, if there exists
a bounded open set G in Rd with the properties

φi(G) ⊆ G for each i ∈ {1, . . . , N};
φi(G) ∩ φj(G) = ∅ whenever i 6= j.

It is well known (see [10], [12], [21]) that if {φ1, . . . , φN} are contracting simi-
larities, with contraction ratios r1, . . . , rN respectively, satisfying the open set con-
dition, then the corresponding invariant set K has both Hausdorff and Minkowski
dimensions equal to the unique solution D of equation (2.1); this D is also referred
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Figure 2. One step in the construction of the von Koch snowflake.
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to as the similarity dimension of K. Furthermore, 0 < HD(K) < ∞, where HD
denotes D-dimensional Hausdorff measure.

Notation 2.1. Given an arbitrary compact set F ⊂ Rd we will denote by F (ε) its
ε-neighborhood,

F (ε) := {x ∈ Rd : dist(x, F ) < ε}.
Lebesgue measure—always d-dimensional in this paper, as the dimension of the
underlying space—will be denoted by | |. With these notations |K(ε)| is the length,
area, volume, etc. of the ε-neighborhood of K.

Notation 2.2. Given λ > 0 we write λZ := {. . . ,−2λ,−λ, 0, λ, 2λ, . . .}.

It is well known that

lim
ε→0

log |K(ε)|
log ε

= d−D ;

hereD should be regarded as the Minkowski dimension ofK. The following theorem
is a refinement of this.

Theorem 2.3. Let φ1, . . . , φN : Rd → Rd be contracting similarities, with sim-
ilarity ratios r1, . . . , rN ∈ (0, 1), and let K be the corresponding invariant set
(2.2). Assume that {φ1, . . . , φN} satisfies the open set condition and let D sat-
isfy

∑N
i=1 r

D
i = 1.

(i) If the numbers log r1, . . . , log rN do not concentrate on an additive subgroup
of R of the form λZ for some λ > 0, then the following limit exists and is
finite:

L := lim
ε→0

|K(ε)|
εd−D

.

(ii) The following limit always exists and is finite:

L := lim
T→∞

1
T

∫ T

0

|K(e−t)|
e−t(d−D)

dt .

Observe that the ternary Cantor set, the von Koch snowflake and the Sierpinski
carpet are all excluded from (i).

Note. The number L is always defined, by (ii); when the limit in (i) exists it nec-
essarily equals L.

Theorem 2.4. L > 0.

We defer the proof of Theorem 2.4 to section 2.4.

2.2. Proof of Theorem 2.3. Let Ki = φi(K), for i ∈ {1, . . . , N}, and observe
that

φi
(
K(ε)

)
= Ki(εri) ;

here Ki(εri) is the εri-neighborhood of Ki = φi(K). Since each φi is a similarity,

rdi |K(ε)| = |φi
(
K(ε)

)
| = |Ki(εri)|

or equivalently,

rdi

∣∣∣∣K ( ε

ri

)∣∣∣∣ = |Ki(ε)| ,
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for any ε > 0 and any i ∈ {1, . . . , N}. Let

R(ε) = |K(ε)| −
N∑
i=1

|Ki(ε)| ;(2.3)

we then have that

|K(ε)| =
N∑
i=1

|Ki(ε)|+R(ε)(2.4)

=
N∑
i=1

rdi |K(εr−1
i )|+R(ε) .

Notice here that in the totally disconnected case, i.e., when Ki ∩Kj = ∅ whenever
i 6= j, there exists a δ > 0 such that dist(Ki,Kj) > δ for i 6= j, and so R(ε) = 0 for
all sufficiently small ε. This is not true in the general case however, when distinct
Ki may intersect.

Set

w(t) =
{
e(d−D)t|K(e−t)| for t ≥ 0,
0 for t < 0,

and notice that (2.4) becomes

w(t) =
∑

t+log ri≥0

rDi w(t+ log ri) + z(t) ,(2.5)

where for t ≥ 0

z(t) = e(d−D)tR(e−t) +
∑

t+log ri<0

rdi e
(d−D)t|K(r−1

i e−t)|(2.6)

and z(t) = 0 for t < 0. Let F be the probability distribution function that puts
mass rDi at the point − log ri. Then (2.5) is equivalent to the renewal equation

w(t) = z(t) +
∫

(0,t]

w(t − s)dF (s) .(2.7)

Observe that the function R(e−t) is continuous (see (2.3)) and hence z has only
finitely many discontinuities at the points t = − log ri, coming from the second
term in (2.6). We also claim the following:

Lemma 2.5. There exist constants 0 < C <∞ and δ > 0 such that

|z(t)| ≤ Ce−tδ .

The proof of the lemma is deferred to the next section.
By the lemma and the paragraph preceding it, the function z is directly Riemann-

integrable and we may therefore apply the renewal theorem (see [8]). There are
two cases to consider.
Non-lattice case: If the numbers log ri are not all multiples of some λ > 0, then
F is non-lattice and

lim
t→∞

w(t) =

∫∞
0 z(t)dt

−
∑N
i=1 r

D
i log ri

.(2.8)

This shows Theorem 2.3 (i).
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To show (ii) in the non-lattice case observe that, since K is compact, the function
w is, by definition, bounded on any finite interval and hence by (2.8)

lim
T→∞

1
T

∫ T

0

w(t)dt =

∫∞
0 z(t)dt

−
∑N

i=1 r
D
i log ri

.

Lattice case: If there exists some number λ > 0 such that

{log r1, . . . , log rN} ⊂ λZ
and λ is the largest such number, then F is lattice with span λ and so the renewal
theorem asserts that for each s ∈ [0, λ)

lim
n→∞

w(nλ+ s) = λ

∑∞
n=0 z(nλ+ s)

−
∑N
i=1 r

D
i log ri

.(2.9)

We next turn to the proof of Theorem 2.3 (ii) in the lattice case. We begin
by observing that w is bounded. This is because w is nonnegative, {w(nλ)}n≥0

converges to a finite number, by (2.9) and Lemma 2.5, and, for any t ≥ 0 and
s ∈ [0, λ),

w(t+ s) = e(d−D)(t+s)|K(e−t−s)| ≤ e(d−D)(t+s)|K(e−t)| ≤ e(d−D)λw(t) .

Next let L(s) denote the limit on the right side of (2.9), for s ∈ [0, λ). By the
bounded convergence theorem and (2.9)

lim
n→∞

∫
[0,λ)

w(nλ + s)ds =
∫

[0,λ)

L(s)ds .(2.10)

Let b c denote integer-part and write

lim
T→∞

1
T

∫ T

0

w(t)dt = lim
T→∞

1
T

bT/λc−1∑
n=0

∫
(0,λ]

w(nλ + s)ds+ lim
T→∞

1
T

∫ T

bT/λcλ
w(t)dt.

The first term on the right here converges to λ−1
∫

[0,λ) L(s)ds, by (2.10) and Cesaro
averaging, while the second term tends to 0 by the boundedness of w. Hence again

lim
T→∞

1
T

∫ T

0

w(t)dt =
1
λ

∫
(0,λ]

L(s)ds =

∫∞
0 z(t)dt

−
∑N
i=1 r

D
i log ri

.

This proves (ii) in the lattice case and concludes the proof of the theorem.

2.3. Proof of Lemma 2.5. Recall equation (2.5) defining z. The second term
on the right is nonnegative, bounded on any neighborhood of 0 and vanishes for
t > max{− log r1, . . . ,− log rN}. Consequently, it suffices to show that there exist
0 < C <∞ and δ > 0 such that

|R(ε)| ≤ Cεd−D+δ

for all 0 < ε < 1. Now recall (2.3):

|R(ε)| =
N∑
i=1

|Ki(ε)| − |K(ε)| ≤
∑
i6=j
|Ki(ε) ∩Kj(ε)|

and it is therefore enough to show that for some 0 < C <∞ and δ > 0

|Ki(ε) ∩Kj(ε)| ≤ Cεd−D+δ(2.11)

for all i 6= j and 0 < ε < 1.
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Towards this end fix i 6= j and let ε > 0. Call a subset F of Ki ε-separated if
x, y ∈ F ⇒ dist(x, y) ≥ ε. Define Qij(ε) to be the maximum cardinality of an ε-
separated subset F of Ki, such that x ∈ F ⇒ dist(x,Kj) ≤ ε. Then, by Proposition
3 of reference [12], there exist constants 0 < γ <∞ and δ > 0, independent of ε, i
and j, such that

Qij(ε) ≤ γεδ−D .(2.12)

The results of reference [12] require that {φ1, . . . , φN} satisfies the strong open
set condition, i.e., that K ∩ G 6= ∅ for the set G of the open set condition. It is
now known however that the strong open set condition is equivalent to the open
set condition (Schief [23]).

Now fix 0 < ε < 1 and let F be a maximal 2ε-separated subset of Ki, such that
for each z ∈ F we have dist(z,Kj) ≤ 2ε. Then, using the maximality of F ,

Ki(ε) ∩Kj(ε) ⊆
⋃
y∈F

B3ε(y) ,(2.13)

where Bρ(y) denotes the ball with center y and radius ρ. Since cardF = Qij(2ε),
we have then by (2.12) and (2.13)

|Ki(ε) ∩Kj(ε)| ≤ cardF cd (3ε)d

≤ γ cd 3d 2δ−D εd−D+δ

= C εd−D+δ ,

where cd = [Γ(1/2)]d

Γ(1+d/2) is the Lebesgue measure of the unit ball in Rd. This shows
(2.11) and completes the proof of Lemma 2.5.

2.4. Proof of Theorem 2.4. We will actually show that ε(d−D)|K(ε)| is bounded
away from 0, for 0 < ε ≤ 1.

Since {φ1, . . . , φN} satisfies the open set condition, it also satisfies the strong
open set condition (cf. [23]); i.e., one can choose the open set G of the open set
condition so that K∩G 6= ∅. Fix an x ∈ K∩G 6= ∅ and δ > 0 such that Bδ(x) ⊂ G.

For 0 < ε ≤ 1, define

N(ε) =
{

(i1 . . . in) ∈ {1, . . . , N}∗ : ri1 . . . rin < ε ≤ ri1 . . . rin−1

}
.

First note that since
∑N

i=1 r
D
i = 1 we also have∑

(i1...in)∈N(ε)

(ri1 . . . rin)D = 1

and as each term in the sum is < εD, by the definition of N(ε),

cardN(ε) ≥ ε−D .(2.14)

We claim that

|K(ε)| ≥ cdεd cardN (ε/δrmin) ,(2.15)

where rmin := min ri. To see this write xi1...in = φi1 ◦ . . . ◦ φin(x), where x is fixed
above, and notice that, since Bδ(x) ⊂ G,

Bri1 ...rinδ(xi1...in) ⊂ φi1 ◦ . . . ◦ φin(G) .
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If i1 . . . in and j1 . . . jm are two distinct sequences in N (ε/δrmin), then ip 6= jp for
some p ≤ min{m,n}. This implies then that

φi1 ◦ . . . ◦ φin(G) ∩ φj1 ◦ . . . ◦ φjm(G) = ∅

and therefore

Bri1 ...rinδ(xi1...in) ∩Brj1 ...rjmδ(xi1...in) = ∅ .

But for any sequence (i1 . . . in) ∈ N (ε/δrmin) we have

ri1 . . . rinδ ≥
ε

δrmin
rinδ ≥ ε ,

so the balls Bε(xi1...in), (i1 . . . in) ∈ N (ε/δrmin), are disjoint. Inequality (2.15) now
follows.

Combining (2.14) and (2.15) we have that

ε(d−D)|K(ε)| ≥ cdδDrDmin > 0 ,

for all 0 < ε ≤ 1.

3. Stochastically self-similar sets

3.1. Background and statement of main result. In this section we describe
the kind of random sets we are considering and state our main result concerning
them. The construction below follows Mauldin and Williams ([20]) and can also be
found in Falconer ([6]).

Let J be a nonempty compact set in Rd and write G :=int(J). We assume that
G = J . Let S denote the set of all contracting similarities of Rd. We assume as
given a probability space, on which we have defined a random element Φ, taking
either the value e (for empty) or Φ = {φ1, . . . , φν}, where ν is an integer-valued
random variable (ν = 0 if Φ = e) and each φi is in S, and furthermore

φi(J) ⊆ J for each i = 1, . . . , ν;
φi(G) ∩ φj(G) = ∅ whenever i 6= j, 1 ≤ i, j ≤ ν.

(See the Appendix for matters of measurability.) We further write r for the constant
ratio |φ(x) − φ(y)|/|x − y|, x 6= y, for a similarity φ; r and φ will always be in this
relation in the sequel. Note that φ ∈ S ⇒ r ∈ (0, 1).

The random set of interest is defined by means of the family tree of a Galton-
Watson branching process. Let N∗ = {o} ∪

⋃∞
n=1Nn (o for ‘ancestor’) and for each

x ∈ N∗ let (Ωx,Fx,Px) be a copy of the above probability space. Set (Ω,F ,P) =∏
x∈N∗(Ωx,Fx,Px). On (Ω,F ,P) we then have defined independent and identically

distributed random elements Φx = {φx1, . . . , φxνx}, x ∈ N∗ (Φx = e if νx = 0).
Write G0 = {o} and inductively define Gn+1 = ∅, if Gn = ∅, and

Gn+1 = {(x, i) : x ∈ Gn, νx 6= 0, 1 ≤ i ≤ νx} ,

if Gn 6= ∅; observe that Gn+1 = ∅ if νx = 0 for all x ∈ Gn. For each n ≥ 0, Gn
represents the individuals in the n-th generation of a Galton-Watson branching
process with mean family size E[ν] = E[cardG1]. Write

P :=
∞⋃
n=0

Gn
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Figure 3. Two steps in the construction of a random set.

for the entire population. Writing x = x1 . . . xn for x ∈ Gn, the set

K :=
∞⋂
n=1

⋃
x∈Gn

φx1 ◦ φx1x2 ◦ . . . ◦ φx1...xn(J)

defines then a random compact set in Rd; K is a stochastically self-similar set.
It is well known (see for example [20]) that P(K 6= ∅) > 0 iff E[ν] > 1; we will

therefore assume throughout that

1 < E[ν] <∞ .(3.1)

We now identify a branching random walk naturally associated with the con-
struction, which will be key in the sequel. Set S0 = 0 and for n ≥ 1 inductively
define

Sx1...xn = Sx1...xn−1 + log r−1
x1...xn ,

where, recall, rx stands for the constant factor of contraction of the similarity
φx. Note that Sx is well defined whenever x ∈ P ; for notational convenience set
Sx = ∞ for x ∈ N∗ r P . {Sx : x ∈ N∗} is then a branching random walk with
positive step-sizes (since each φx is a contraction).

For θ ∈ R, set

m(θ) := E

[∑
x∈G1

e−θSx

]
= E

[∑
x∈G1

rθx

]
,

m′(θ) := E

[
−
∑
x∈G1

Sxe
−θSx

]
.

By our assumption (3.1) we have m(θ) < ∞ for all θ ≥ 0 and −m′(θ) < ∞ for
all θ > 0. The function m is a decreasing convex C∞ function on (0,∞), which
is continuous on [0,∞), with m(0) = E[ν] > 1 and m(∞) = 0. Consequently,
there exists a unique number D > 0 such that m(D) = 1. By a well known result,
obtained independently by Mauldin and Williams ([20]) and Falconer ([6]), the
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number D is then the Hausdorff dimension of the random set K, almost surely on
the event {K 6= ∅}. That it is also the Minkowski dimension of K (on {K 6= ∅})
follows easily from the results of the present paper and is a well known fact.

We now state the main result of this paper for stochastically self-similar sets.
Observe that the random set K is, probabilistically, uniquely determined by the
compact set J and the random set of similarities Φ = {φ1, . . . , φν}. Also recall that
G = int(J), that F (ε) denotes the ε-neighborhood of a compact set F (Notation
2.1) and that | | denotes d-dimensional Lebesgue measure.

Theorem 3.1. Assume of Φ and J that 1 < E[ν] <∞ and that

P(K ∩G 6= ∅) > 0 .(3.2)

(i) Assume that the measure A 7→ E
[∑

x∈G1
1A(Sx)

]
is non-lattice; i.e., it does

not concentrate on an additive subgroup of R of the form λZ for some λ > 0.
Then the following limit exists and is finite a.s.:

L := lim
ε→0

|K(ε)|
εd−D

.

(ii) The following limit always exists and is finite a.s.:

L := lim
T→∞

1
T

∫ T

0

e(d−D)t|K(e−t)|dt .

Note. As in the deterministic case, the random variable L is always defined by part
(ii) of the above theorem. When the limit in (i) exists, it necessarily equals the
limit in (ii); hence there is no ambiguity in using the same letter for both limits.

Theorem 3.2. Set M1 =
∑
x∈G1

rDx .

(i) If E[M1 log+M1] =∞, then L = 0 with probability 1.
(ii) If E[M1 log+M1] <∞, then P

(
L > 0|K 6= ∅

)
= 1.

Remark. Note that E[ν log+ ν] <∞ implies E[M1 log+M1] <∞.

We defer the proof of Theorem 3.1 to section 3.3 and that of Theorem 3.2 to
section 3.5.

3.2. Renewal theorem for branching random walks. Let {Sx : x ∈ N∗} be
the branching random walk associated with the construction of K and recall that
this walk has positive steps. Denote by ξ the random measure (point process)
ξ(A) :=

∑
x∈G1

1A(Sx), for Borel sets A in R. Since the walk has positive steps, ξ
is concentrated on (0,∞).

Recall that D is the unique solution to the equation E
[∑

x∈G1
e−DSx

]
= 1 and

set

Mn :=
∑
x∈Gn

e−DSx , n ≥ 0 .

A straightforward computation shows that the sequence (Mn)n≥0 is a non-negative
martingale (relative to the natural filtration associated with the successive steps of
the construction of K). Denote

M∞ := lim
n→∞

Mn .(3.3)

The following theorem is due to Biggins ([3]); see Lyons [17] for a conceptual proof,
following work by Lyons, Pemantle and Peres [18].
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Theorem 3.3 (Biggins). The following are equivalent :

(i) E
[
M1 log+M1

]
<∞;

(ii) P(M∞ = 0) < 1;
(iii) P (M∞ > 0 | non-extinction) = 1;
(iv) E[M∞] = 1;
(v) Mn −→M∞ in L1.

Recall that our underlying probability space (Ω,F ,P) =
∏
x∈N∗(Ωx,Fx,Px) is a

product-space. For each x ∈ N∗ let σx : Ω→ Ω be the shift, defined by

(σxω)y = ωxy ,

where, if x = x1 . . . xn and y = y1 . . . ym, then xy = x1 . . . xny1 . . . ym.
Let Z = {Zt : t ∈ R} be a stochastic process on (Ω,F ,P), which is jointly

measurable in (ω, t) and is separable and takes values in the space of functions
which possess both left- and right-hand limits and vanish on (−∞, 0). Given such
a process Z, write Zx = {Zxt : t ∈ R} for the process

Zxt (ω) = Zt(σxω) ,

for x ∈ N∗. So if Z is some process associated with the branching random walk
{Sx : x ∈ N∗} (or the construction leading to K), then Zx is the corresponding
process associated with that part of the population which emanates from individual
x. The following theorem is due to Nerman [22] and is an analogue of the renewal
theorem for ordinary random walks.

Theorem 3.4. Suppose that there exists a non-increasing and integrable function
h : [0,∞)→ (0,∞), such that

E
[
sup
t≥0

e−Dt|Zt|
h(t)

]
<∞ .(3.4)

(i) [Nerman] If the measure A 7→ E[ξ(A)] is non-lattice, then a.s., as t −→∞,

e−Dt
∑
x∈P

Zxt−Sx −→
M∞
−m′(D)

∫ ∞
0

e−DsE[Zs]ds .

(ii) If the measure A 7→ E[ξ(A)] is lattice, with span λ > 0, then for every s ∈
[0, λ), we have that a.s., as n −→∞,

e−Dnλ
∑
x∈P

Zxs+nλ−Sx −→
λM∞
−m′(D)

∞∑
n=0

e−DnλE[Znλ+s] .

Remark. Recall our standing assumption 1 < E[ν] < ∞. Nerman’s theorem actu-
ally requires less than E[ν] < ∞; see [22] for the precise conditions needed. Fur-
thermore, the lattice case does not require Z to have sample paths which possess
right- and left-hand limits.

Proof. Assertion (i) is Theorem 5.4 of Nerman [22].
(ii) A close examination of Nerman’s proof reveals that the non-lattice assump-

tion is only used in two places: on page 384, Proof of Theorem 5.4 from Corollary
5.11 and in the second part of the Proof of Lemma 5.10 (establishing (5.53)). Of
these the first is irrelevant for the lattice case and his proof of Lemma 5.10 (with
obvious modifications) yields the following statement for the lattice case: If p ∈ N is
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such that E
[
ξ(0, pλ]

]
> 1 and (3.4) is satisfied (and given our standing assumption

1 < E[ν] <∞), then, for any t ≥ 0,

e−Dkpλ
∑
x∈P

Zxt+kpλ−Sx −→
λM∞
−m′(D)

∞∑
n=−∞

e−DnλE[Zt+nλ](3.5)

as k −→∞, on a set Bt with P(Bt) = 1.
Fix s ∈ [0, λ) and set As = Bs∩Bs+λ∩ . . .∩Bs+(p−1)λ. Then P(As) = 1. On As,

and given ε > 0, choose kε so that, for k ≥ kε, e−Dkpλ
∑

x∈P Z
x
t+kpλ−Sx is within

±ε from its limit for all t ∈ {s, s + λ, . . . , s + (p − 1)λ}. For an arbitrary n ∈ N
write n = k(n)p+ q, 0 ≤ q < p. Then, if n ≥ kεp+ p− 1,

e−Dnλ
∑
x∈P

Zxs+nλ−Sx = e−Dqλe−Dk(n)pλ
∑
x∈P

Zxs+qλ+k(n)pλ−Sx

is within ±ε from its limit

e−Dqλ
λM∞
−m′(D)

∞∑
m=−∞

e−DmλE[Zs+qλ+mλ] =
λM∞
−m′(D)

∞∑
m=−∞

e−DmλE[Zs+mλ] .

This proves the convergence asserted in (ii).

We close this section with a simple but useful fact. The sequence

M (θ)
n := [m(θ)]−n

∑
x∈Gn

e−θSx , n ≥ 0 ,

is a nonnegative martingale, for each θ ≥ 0, as then m(θ) < ∞. Hence M
(θ)
n

converges to a finite limit M (θ)
∞ . For θ > D we have 0 < m(θ) < 1 and therefore∑

x∈Gn e
−θSx −→ 0, as n −→∞. Consequently, with probability equal to one,

min
x∈Gn

Sx −→∞ , as n −→ ∞ .(3.6)

3.3. Proof of Theorem 3.1. Recall that |K(ε)| denotes the ε-neighborhood of
the random set K. Then

|K(ε)| =
∑
x∈G1

∣∣[K ∩ φx(J)](ε)
∣∣−Q(ε) .

Let Kx = K ∩ φx(J) and Kx = φ−1
x

(
K ∩ φx(J)

)
; observe that the set Kx has

the same distribution as K and that the Kx, x ∈ G1, are independent (given the
σ-algebra σ(Φ0)). Since each φx is a similarity,

|Kx(ε)| = e−dSx
∣∣Kx

(
εeSx

)∣∣
and so, with

Rt = Q(e−t)1[0,∞)(t)(3.7)

and

Wt = e(d−D)t|K(e−t)|1[0,∞)(t) ,

we have that

Wt =
∑
x∈G1

e−DSxW x
t−Sx + e−DtZt ,(3.8)
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where, for t ≥ 0,

Zt :=
∑
x∈G1

ed(t−Sx)
∣∣Kx

(
e−t+Sx

)∣∣ 1(t,∞)(Sx)− edtRt(3.9)

and Zt := 0 for t < 0. Then, upon iterating (3.8), we obtain

Wt = e−Dt
∑
x∈P

Zxt−Sx .(3.10)

Observe that the process Z = {Zt : t ∈ R} satisfies Zt = 0 for t < 0 and has
paths which are left-continuous with right-hand limits; as a matter of fact Z is
continuous except possibly at the points Sx, x ∈ G1. We shall apply Theorem 3.4
and to do so we need to verify that condition (3.4) holds. We will do this in two
separate lemmata whose proofs we postpone to the end of this section.

Lemma 3.5. There exists a non-increasing and integrable function g : [0,∞) →
(0,∞), for which

E

[
sup
t≥0

e−Dt

g(t)

∑
x∈G1

ed(t−Sx)
∣∣Kx

(
e−t+Sx

)∣∣ 1(t,∞)(Sx)

]
<∞ .

Lemma 3.6. There exists a non-increasing and integrable function h : [0,∞) →
(0,∞), for which

E
[
sup
t≥0

e(d−D)tRt
h(t)

]
<∞ .

It follows from (3.9) and the two lemmata that

E
[
sup
t≥0

e−Dt|Zt|
h(t) + g(t)

]
<∞ ,(3.11)

with h+ g non-increasing and integrable.
In view of (3.11) and the paragraph preceding Lemma 3.5, we may now apply

Theorem 3.4 to (3.10).
(i) Assume that the measure A 7→ E[ξ(A)] is non-lattice. Then by Theorem 3.4

we have that with probability equal to one, as t −→∞,

Wt −→
M∞
−m′(D)

∫ ∞
0

e−DsE[Zs]ds .(3.12)

This shows Theorem 3.1 (i).
(ii) Observe that, because T 7→ T−1

∫ T
0
Wt(ω)dt is continuous, for each ω, the

functions

ω 7→ lim sup
T→∞

1
T

∫ T

0

Wt(ω)dt and ω 7→ lim inf
T→∞

1
T

∫ T

0

Wt(ω)dt

are measurable and therefore the set of ω for which limT→∞ T−1
∫ T

0 Wt(ω)dt exists
is measurable. It therefore suffices to show that this set of convergence contains a
set of probability one.

Assume first A 7→ E[ξ(A)] is non-lattice. From (i) we have that

Wt = e(d−D)t|K(e−t)| −→ L , a.s. ,
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as t −→ ∞. As Wt(ω) is bounded on finite intervals (actually uniformly in ω, by
compactness of J), it follows that, as T −→∞,

1
T

∫ T

0

Wtdt −→ L ,

on the event {ω : Wt(ω) −→ L(ω)}, i.e., on a set of probability one.
We next turn to the lattice case. Assume that the measure A 7→ E[ξ(A)] is

concentrated on a lattice λZ and that λ is the largest such number.
By Theorem 3.4 (ii), for each s ∈ [0, λ), there exists a set As of probability one,

such that, on As, as n −→∞,

Ws+nλ −→ λe−Ds
M∞
−m′(D)

∞∑
k=0

e−DkλE[Zs+kλ] .

Call the limit on the right-hand side Ls and set A :=
⋂
r Ar, the intersection being

over all rational r in [0, λ). Then P(A) = 1 and

lim
n−→∞

Wr+nλ(ω) = Lr(ω) , for all ω ∈ A and r ∈ Q ∩ [0, λ) .(3.13)

For given s ∈ [0, λ) have sequences {rn} and {qn} in Q ∩ [0, λ) such that rn ↑ s
and qn ↓ s. Since for t, s ≥ 0 one has K(e−t−s) ⊆ K(e−t), it follows that

Wt+s ≤ e(d−D)sWt (t, s ≥ 0).

Using this and (3.13) we obtain that, for all ω ∈ A and all k ≥ 1,

e−(d−D)(qk−s)Lqk(ω) ≤ lim inf
n→∞

Ws+nλ(ω)

≤ lim sup
n→∞

Ws+nλ(ω) ≤ e(d−D)(s−rk)Lrk(ω) .(3.14)

Next observe that the function t 7→ E[Zt] has left- and right-hand limits. This is
so because the sample-paths of Z have this property and we can use the dominated
convergence theorem by (3.11). Consequently, the set C where this function is
continuous has full Lebesgue measure; as a matter of fact Cc is countable. Using
(3.11) again, we conclude that the function

t 7→
∞∑
k=0

e−DkλE[Zt+kλ] , t ∈ [0, λ) ,

is continuous outside
⋃∞
k=0(Cc − kλ), a countable set. Thus for Lebesgue-a.a.

s ∈ [0, λ) we have that Lqk(ω) −→ Ls(ω) and Lrk(ω) −→ Ls(ω), as k −→∞ (recall
the definition of Ls), and so by (3.14),

Ws+nλ(ω) −→ Ls(ω) (n −→∞)

for all ω ∈ A. Just as in the deterministic case now, we can conclude that

1
T

∫ T

0

Wt(ω)dt −→ 1
λ

∫
[0,λ)

Ls(ω)ds =
M∞(ω)
−m′(D)

∫ ∞
0

e−DsE[Zs]ds ,(3.15)

as T −→ ∞, for all ω ∈ A, i.e., on a set of probability one. This proves Theorem
3.1 (ii) in the lattice case and completes the proof of the theorem.

Proof of Lemma 3.5. Recall that cd denotes the Lebesgue measure of the unit ball
in Rd and observe that, for any x ∈ N∗,

|Kx(ε)| ≤ |J(ε)| ≤ cd[diam(J) + ε]d .(3.16)
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Hence, if Sx > t,

ed(t−Sx)
∣∣Kx

(
e−t+Sx

)∣∣ ≤ cd sup
ε>1

(
diam(J) + ε

ε

)d
= cd[diam(J) + 1]d .

It follows that, for g(t) = e−Dt1[0,∞)(t),

E

[
sup
t≥0

e−Dt

g(t)

∑
x∈G1

ed(t−Sx)
∣∣Kx

(
e−t+Sx

)∣∣1(t,∞)(Sx)

]
≤ cd[diam(J) + 1]dE[ν] <∞ .

Proof of Lemma 3.6. The proof is a probabilistic analogue of the proof of the key
estimate of reference [12]. It is rather long and we break it up into several steps.

Assume (3.2), that is,

P(K ∩G 6= ∅) > 0 .

For α > 0 and p ∈ N let

Gp(α) =
{
x ∈ Gp : ∃ v ∈ φx1 ◦ . . . ◦ φx1...xp(J) with dist(v,Gc) ≤ α

}
.

Claim 1. There exist p ∈ N and α > 0 such that P
(
Gp r Gp(α) 6= 0

)
> 0.

Proof. Let ∂P consist of all infinite sequences x = x1x2 . . . ∈ NN for which

x1 . . . xn ∈ Gn for all n ≥ 1 .

By (3.6) and nestedness, we have that
⋂
n≥1 φx1 ◦ . . . ◦ φx1...xn(J) is a singleton for

each x ∈ ∂P , whose unique element we denote by vx; so K = {vx : x ∈ ∂P}.
Suppose now that P

(
Gp = Gp(α)

)
= 1, for all p ∈ N and α > 0. Then Ω′ =⋂

α∈Q+

⋂
p≥1{Gp = Gp(α)} has probability one. Now either K = ∅ or if v ∈ K, then

v = vx for some x ∈ ∂P ; then vx ∈ φx1 ◦ . . . ◦ φx1...xn(J) for all n ≥ 1. On Ω′ we
have x1 . . . xn ∈ Gn(α) for all n ≥ 1 and all α ∈ Q+ and so

dist(vx, Gc) ≤ e−Sx1...xn diam(J) + α ,

which, together with (3.6) again, implies that vx ∈ Gc. This shows that K ∩G = ∅
on Ω′, creating a contradiction.

From now on we fix a p and an α as in Claim 1. Let

G̃0 = G0, . . . , G̃p−1 = Gp−1, G̃p = Gp(α)

and for n > p let G̃n consist of those x = x1 . . . xn ∈ Gn which have the following
property: for each 1 ≤ i ≤ n − p + 1 there exists v ∈ φx1...xi ◦ . . . ◦ φx1...xi+p−1(J)
with dist(v,Gc) ≤ α. Set also P̃ =

⋃
n≥0 G̃n.

For t ≥ 0 let Pt consist of those x = x1 . . . xm ∈ P for which

Sx1...xm−1 ≤ t < Sx1...xm ;

for t < 0 let Pt = {o} and define P̃t accordingly.
For ε > 0, let Q(ε) be the maximum cardinality of an ε-separated subset F of K,

such that dist(v,Gc) ≤ ε for all v ∈ F . Finally, set s := logα−1 + log
(

diam(J)
)
.

Claim 2. With t = log ε−1 + log
(

diam(J)
)
, we have that for all 0 < ε ≤ α

Q(ε) ≤
∑

x∈P̃t−s

cardPxt−Sx .
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Proof. Let F be an ε-separated subset of K, such that dist(v,Gc) ≤ ε for all v ∈ F .
By the representation K = {vx : x ∈ ∂P} (see the proof of Claim 1), to each
point v ∈ F corresponds an element x = x1 . . . xm ∈ Pt, and different elements
of F have different representatives in Pt, because F is ε-separated. Now given
x = x1 . . . xm ∈ Pt let q = qx be the unique integer in {1, . . . ,m} for which

Sx1...xq−1 ≤ log
(α
ε

)
< Sx1...xq .

We claim that if x = x1 . . . xm ∈ Pt corresponds to an element vx ∈ F , then
x1 . . . xq ∈ G̃q. For if not, then for some 1 ≤ i ≤ q − p + 1 we would have that
dist(u,Gc) > α, for all u ∈ φx1...xi ◦ . . . ◦ φx1...xi+p−1(J), so

dist
(
φx1 ◦ . . . ◦ φx1...xi+p−1(u) , φx1 ◦ . . . ◦ φx1...xi−1(Gc)

)
= exp(−Sx1...xi−1) dist

(
φx1...xi ◦ . . . ◦ φx1...xi+p−1(u) , Gc

)
> exp(−Sx1...xi−1)α

≥ exp(−Sx1...xq−1)α ≥ ε ,
for all u ∈ J ; equivalently,

dist
(
u , φx1 ◦ . . . ◦ φx1...xi−1(Gc)

)
> ε ,(3.17)

for all u ∈ φx1 ◦ . . .◦φx1...xi+p−1(J) and so in particular (3.17) would be true for u =
vx. But as Gc ⊆ φx1 ◦ . . . ◦φx1...xi−1(Gc) we then would have that dist(vx, Gc) > ε,
contradicting the fact that vx ∈ F .

It now follows from the above that for 0 < ε ≤ α

Q(ε) ≤
∑
x∈Pt

1G̃q(x1 . . . xq) =
∑

x∈P̃t−s
cardPxt−Sx .

Now let D̃ be the unique solution to

E

∑
x∈G̃p

e−D̃Sx

 = 1 ;(3.18)

because P
(
Gp r G̃p 6= ∅

)
> 0, by our choice of p and α, we must have D̃ < D.

Claim 3. For any δ > 0 we have

E
[

sup
0<ε≤α

εD̃+δQ(ε)
]
<∞ .

Proof. Assume first that p = 1. Then {G̃n : n ≥ 0} corresponds to a Galton-Watson
branching process, just like {Gn : n ≥ 0}, and {Sx : x ∈ P̃} is a branching random
walk, just like {Sx : x ∈ P}, with different parameters however.

Recall the random measure ξ(A) =
∑

x∈G1
1A(Sx); then, for any θ ≥ 0 and t ≥ 0,

cardPt =
∞∑
n=0

∑
x∈Gn

1[0,t](Sx) ξx(t− Sx,∞) ≤ eθt
∑
x∈P

e−θSxνx .(3.19)

Set Vθ =
∑

x∈P e
−θSxνx and recall that Pt = {o} for t < 0. By (3.19) then∑

x∈P̃t−s

cardPxt−Sx ≤
∑

x∈P̃t−s

[
eθ(t−Sx)V xθ 1[0,t](Sx) + 1(t,∞)(Sx)

]
.
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Since x ∈ P̃t−s ⇒ Sx > t− s, we then have that∑
x∈P̃t−s

cardPxt−Sx ≤ e
θs

∑
x∈P̃t−s

V xθ 1[0,t](Sx) + card P̃t−s .(3.20)

Now assume t ≥ s and decompose P̃t−s as in (3.19) to obtain∑
x∈P̃t−s

V xθ 1[0,t](Sx) =
∞∑
n=0

∑
x∈G̃n

1[0,t−s](Sx)
∑
y∈G̃x1

1(t−s,t](Sxy)V xyθ(3.21)

≤ eζ(t−s)
∑
x∈P̃

e−ζSx
∑
y∈G̃x1

V xyθ

and

card P̃t−s ≤ eζ(t−s)
∑
x∈P̃

e−ζSx ν̃x ,(3.22)

for any ζ ≥ 0. Combining (3.20), (3.21) and (3.22) we finally have that

sup
t≥s

{
e−ζt

∑
x∈P̃t−s

cardPxt−Sx
}
≤ e(θ−ζ)s

∑
x∈P̃

e−ζSx
∑
y∈G̃x1

(V xyθ + 1)(3.23)

for all θ, ζ ≥ 0. We will now show that the right-hand side of (3.23) has finite
expectation for the choice ζ = D̃ + δ and θ = D + δ. This, in conjunction with
Claim 2, will prove Claim 3 in the case p = 1.

Let Fn = σ(Φx : |x| < n), for n ≥ 1, where here |x| denotes the length of the
finite sequence x. Write

E

∑
x∈P̃

e−ζSx
∑
y∈G̃x1

(V xyθ + 1)

 =
∞∑
n=0

E

∑
x∈G̃n

e−ζSx
∑
y∈G̃x1

(V xyθ + 1)


and condition first on Fn+1 to obtain

E

∑
x∈P̃

e−ζSx
∑
y∈G̃x1

(V xyθ + 1)

 = E[Vθ + 1]
∞∑
n=0

E

∑
x∈G̃n

e−ζSx ν̃x

 ,
since the V xyθ are independent of Fn+1 and all have the distribution of Vθ. Now
condition on Fn to obtain

E

∑
x∈P̃

e−ζSx
∑
y∈G̃x1

(V xyθ + 1)

 =
(
E[Vθ] + 1

)
E[ν̃]

∞∑
n=0

E

∑
x∈G̃n

e−ζSx


=

(
E[Vθ] + 1

)
E[ν̃][

1− m̃(ζ)
]
+

.

Similarly, E[Vθ] = E[ν]
[
1−m(θ)

]−1

+
. Since m̃(D̃ + δ) < 1 and m(D + δ) < 1,

E

∑
x∈P̃

e−ζSx
∑
y∈G̃x1

(V xyθ + 1)

 <∞
for ζ = D̃ + δ and θ = D + δ. This, in conjunction with (3.23) and Claim 2,
completes the proof in the case p = 1.
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If p > 1, then {G̃n : n ≥ 0} is not a Galton-Watson process anymore. However,
{G(p)

n : n ≥ 0} is, where G(p)
0 = {o} and, for n ≥ 1, G(p)

n consists of those sequences
in Gnp for which, for all 1 ≤ k ≤ n, there exists a v ∈ φx1...x(k−1)p+1 ◦. . .◦φx1...xkp(J),

with dist(v,Gc) ≤ α. Furthermore, G̃np ⊆ G(p)
n , for all n.

Inequality (3.23) is still valid and it only remains to show that the expectation
of the right-hand side of (3.23) is finite. Conditioning again first on Fn+1 and then
on Fn, we have successively

E

∑
x∈P̃

e−ζSx
∑
y∈G̃x1

(V xyθ + 1)

 =
(
E[Vθ] + 1

) ∞∑
n=0

E

∑
x∈G̃n

e−ζSx
∑
y∈G̃x1

1


≤

(
E[Vθ] + 1

)
E[ν]

∞∑
n=0

E

∑
x∈G̃n

e−ζSx

 .
Next observe that

∞∑
n=0

E

∑
x∈G̃n

e−ζSx

 =
∞∑
n=0

E

 ∑
x∈G̃np

p−1∑
k=0

∑
y∈G̃xk

e−ζSxe−ζ(Sxy−Sx)


≤

∞∑
n=0

p−1∑
k=0

[m(ζ)]kE

 ∑
x∈G(p)

n

e−ζSx


=

[m(ζ)]p − 1
m(ζ)− 1

∞∑
n=0

E
 ∑
x∈G(p)

1

e−ζSx



n

.

Now take ζ = D̃ + δ and θ = D + δ again, observe that

E

 ∑
x∈G(p)

1

e−ζSx

 = E

∑
x∈G̃p

e−ζSx

 < 1

for ζ = D̃ + δ, by (3.18), and conclude the proof as in the case p = 1.

We now conclude the proof of Lemma 3.6. Recall (3.7).

Rt =
∑
x∈G1

|Kx(e−t)| − |K(e−t)| ≤
∑
x∈G1

∑
y∈G1r{x}

|Kx(e−t) ∩Ky(e−t)| ,

where recall Kx = K ∩ φx(J). Let Qx(2ε) denote the maximum cardinality of a
2ε-separated subset Fx of Kx, such that dist

(
v, φx(Gc)

)
≤ 2ε for all v ∈ Fx. Then,⋃

y∈G1r{x}
Kx(e−t) ∩Ky(e−t) ⊆

⋃
v∈Fx

B3ε−t(v) ,

so that

Rt ≤
∑
x∈G1

Qx(2e−t)(3e−t)dcd .

Now, given that x ∈ G1, Qx(2ε) = Qx(2εeSx), where for β > 0, Qx(β) is the
maximum cardinality of a β-separated subset F x of Kx = φ−1

x (Kx), such that
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dist(v,Gc) ≤ β for all v ∈ F x. Furthermore, Qx(β) has the same distribution as
Q(β), for each β > 0. Hence

Rt ≤ cd3de−dt
∑
x∈G1

Qx(2e−t+Sx)

and therefore, for any 0 < δ ≤ (D − D̃)/2,

sup
t≥0

e(d−D+δ)tRt ≤ cd3d2−(D̃+δ)
∑
x∈G1

e−(D̃+δ)Sx sup
0<ε≤2eSx

εD̃+δQx(ε) .(3.24)

We will show that the expectation of the right-hand side of (3.24) is finite for any
such δ and this will prove Lemma 3.6 with h(t) = e−δt1[0,∞)(t).

Since J is compact and Kx ⊆ J , for all x ∈ G1, there exists a finite deterministic
constant C, such that Qx(ε) ≤ C for all ε > α and all x ∈ G1. Thus∑
x∈G1

e−(D̃+δ)Sx sup
0<ε≤2eSx

εD̃+δQx(ε) ≤
∑
x∈G1

e−(D̃+δ)Sx sup
0<ε≤α

εD̃+δQx(ε) + ν2D̃+δC ,

and since E[ν] is finite, it suffices to show that

E

[∑
x∈G1

e−(D̃+δ)Sx sup
0<ε≤α

εD̃+δQx(ε)

]
<∞ .

But, by conditioning on F1,

E

[∑
x∈G1

e−(D̃+δ)Sx sup
0<ε≤α

εD̃+δQx(ε)

]
= E

[
sup

0<ε≤α
εD̃+δQ(ε)

]
E

[∑
x∈G1

e−(D̃+δ)Sx

]

= E
[

sup
0<ε≤α

εD̃+δQ(ε)
]
m(D̃ + δ)

and this is finite by Claim 3.

3.4. Convergence in mean. Theorem 3.1 deals with the almost sure limiting
behavior of the quantities ε−(d−D)|K(ε)| and T−1

∫ T
0 e(d−D)t|K(e−t)|dt. One can

obtain results concerning the limiting behavior of the means of these quantities via
the ordinary renewal theorem, as in the deterministic case.

Recall (3.7), (3.8) and (3.9). The function w(t) = E[Wt] satisfies the ordinary
renewal equation

w = f + w ∗ F ,
where ∗ denotes convolution, F is the probability distribution function

F (t) = E

[∑
x∈G1

e−DSx1(−∞,t](Sx)

]
(3.25)

and f(t) = e−DtE[Zt].
Now assume the hypotheses of Theorem 3.1 hold. By (3.11) we have that

∞∑
k=1

sup
s∈[k−1,k]

|f(s)| <∞ .

Furthermore, f is continuous except at a countable number of points. This is
because the sample paths of Z have left- and right-hand limits and hence, by the
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dominated convergence theorem (use (3.11) to dominate), f has left- and right-
hand limits. It now follows that f is directly Riemann integrable over [0,∞). In
particular f is also bounded.

By (3.16), w is bounded on finite intervals and therefore w = f ∗ U , where
U =

∑∞
n=0 F

∗n. By the ordinary renewal theorem then

E[Wt] −→
1

−m′(D)

∫ ∞
0

e−DsE[Zs]ds ,

as t −→∞, if A 7→ E[ξ(A)] is non-lattice, while in the lattice case

E[Ws+nλ] −→ λe−Ds

−m′(D)

∞∑
k=0

e−DkλE[Zs+kλ] ,

as n −→ ∞, for each s ∈ [0, λ). As in the proof of Theorem 2.3 then, one always
has that, as T −→∞,

1
T

∫ T

0

E[Wt]dt −→
1

−m′(D)

∫ ∞
0

e−DsE[Zs]ds .

We summarize the above in the following theorem. Recall that M1 =
∑

x∈G1
rDx .

Theorem 3.7. (i) Under the hypotheses of Theorem 3.1

1
T

∫ T

0

e(d−D)tE[|K(e−t)|]dt −→ 1
−m′(D)

∫ ∞
0

e−DsE[Zs]ds ,

as T −→∞; if in addition A 7→ E[ξ(A)] is non-lattice, then also, as ε→ 0,

ε−(d−D)E[|K(ε)|] −→ 1
−m′(D)

∫ ∞
0

e−DsE[Zs]ds .

(ii) If in addition E
[
M1 log+M1

]
< ∞, then both, the convergence in Theo-

rem 3.1(i) (in the non-lattice case) and the convergence in Theorem 3.1 (ii),
hold also in L1.

Proof. Assertion (i) has already been established above. Under the additional as-
sumption E[M1 log+M1] <∞, we also have, by Theorem 3.3, that E[M∞] = 1 and
so E[Wt] −→ E[limWt], in the non-lattice case, where limWt denotes the almost
sure limit in (i) of Theorem 3.1. This, in the presence of the almost sure conver-
gence of Theorem 3.1 (i) and non-negativity of Wt, implies the L1-convergence in
the non-lattice case (see Billingsley [4], Corollary following Theorem 16.14).

Similarly, to establish the L1-convergence of T−1
∫ T

0
Wtdt to its a.s.-limit, ob-

serve that by (i) of the present theorem, Theorem 3.1 (ii) and the fact that E[M∞] =
1, we have

E

[
1
T

∫ T

0

Wtdt

]
=

1
T

∫ T

0

E[Wt]dt −→ E

[
lim

T−→∞

1
T

∫ T

0

Wtdt

]
.

Again this, in the presence of the corresponding a.s.-convergence and non-negativity,
implies convergence in L1.
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3.5. Proof of Theorem 3.2. (i) When E[M1 log+M1] =∞, we have thatM∞ = 0
with probability equal to 1, by Theorem 3.3, so L = 0 with probability equal to 1,
by the representation L = M∞×constant (see (3.12) and (3.15)).

(ii) Assume now E[M1 log+M1] < ∞. By our assumption (3.2), namely that
P(K ∩ G 6= ∅) > 0, there exist a δ > 0, and an event (i.e., a measurable set) Aδ,
such that P(Aδ) > 0 and

for ω ∈ Aδ ∃ v(ω) ∈ K(ω) s.t. Bδ
(
v(ω)

)
⊂ G ,

where, recall, Bδ(v) denotes the ball with center v and radius δ. Fix this δ for the
rest of the proof.

Next fix a > 0, to be specified later in the proof. We claim that, on Aδ,

|K(δe−t−a)| ≥ cd
(
δe−t−a

)d ∑
x∈Pt

1(t,t+a](Sx) ,(3.26)

where, recall,

Pt =
{
x = x1 . . . xn ∈ P : Sx1...xn−1 ≤ t < Sx1...xn

}
.

This is because, for distinct x = x1 . . . xn and y = y1 . . . ym in Pt, we must have
xp 6= yp for some p ≤ min{n,m}; then however,

φx1 ◦ . . . ◦ φx1...xn(G) ∩ φy1 ◦ . . . ◦ φy1...ym(G) = ∅ .
On Aδ, we may choose a point v ∈ K such that Bδ(v) ⊂ G, and then

Bδe−Sx (vx) ∩Bδe−Sy (vy) = ∅ ,
where vx = φx1 ◦ . . . ◦ φx1...xn(v) and vy = φy1 ◦ . . . ◦ φy1...ym(v). But if x ∈ Pt,
with Sx ≤ t + a, then δe−t−a ≤ δe−Sx , and so the balls Bδe−t−a (vx), x ∈ Pt with
t < Sx ≤ t+ a, are disjoint. This proves (3.26).

Now write ∑
x∈Pt

1(t,t+a](Sx) =
∑
x∈P

Zxt−Sx ,

with Zt = ξ(t, t + a], if t ≥ 0, and Zt = 0 otherwise, where recall ξ(A) =∑
x∈G1

1A(Sx). We may apply Theorem 3.4, since obviously supt≥0 Zt ≤ ν, and
condition (3.4) holds with h(t) = e−Dt1[0,∞)(t). We conclude that, in the non-
lattice case, with probability equal to 1,

e−Dt
∑
x∈Pt

1(t,t+a](Sx) −→ M∞
−m′(D)

∫ ∞
0

e−DuE
[
ξ(u, u+ a]

]
du.(3.27)

Write the limit above as M∞C, and notice that

C =
1

−m′(D)
E

∑
x∈G1

Sx∫
max{0,Sx−a}

e−Dudu


=

1
−Dm′(D)

E

[∑
x∈G1

{
(eDa − 1)e−DSx1(a,∞)(Sx) + (1− e−DSx)1(0,a](Sx)

}]
,

so

C > 0(3.28)

for whatever choice of a > 0 we make; so fix some a > 0 for definiteness.
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Now note that the convergence in (3.27) also holds in L1. To see this let x(t)
denote the expected value of e−Dt

∑
x∈Pt 1(t,t+a](Sx), for t ≥ 0, and note that it

satisfies the ordinary renewal equation x = f + x ∗ F , where F is the distribution
function defined in (3.25), and f(t) = E

[
ξ(t, t + a]

]
, for t ≥ 0. It follows, by the

(ordinary) renewal theorem that

e−DtE

[∑
x∈Pt

1(t,t+a](Sx)

]
−→ C .(3.29)

It now follows by (3.27), (3.29) and non-negativity, that the convergence in (3.27)
also holds in L1 (see Billingsley [4], Corollary following Theorem 16.14) and there-
fore we also have

ε−DtE

[
1Aδ

∑
x∈Pt

1(t,t+a](Sx)

]
−→ CE [M∞1Aδ ] .(3.30)

Note that, since Aδ ⊆ {K 6= ∅} and P(M∞ > 0|K 6= ∅) = 1, we have that M∞ > 0
almost surely on Aδ. Thus

E [M∞1Aδ ] > 0 ,(3.31)

since we chose δ so that P(Aδ) > 0. Combining this with (3.26), (3.28) and (3.30)
we then have that

lim
ε→0

ε−(d−D)E
[
|K(ε)|

]
≥ lim inf

t→∞
e(d−D)(t+a)δ−(d−D)E

[
1Aδ |K(δe−t−a)|

]
≥ cdδ

De−Da lim
t→∞

e−tDE

[
1Aδ

∑
x∈Pt

1(t,t+a](Sx)

]
= cdδ

De−DaCE [M∞1Aδ ] > 0 .

However, by Theorem 3.7 and (3.12), and since we are assuming E[M1 log+M1] <
∞, we have that

L = lim
ε→0

ε−(d−D)|K(ε)| = M∞ lim
ε→0

ε−(d−D)E
[
|K(ε)|

]
and we conclude that L > 0 iff M∞ > 0 in the non-lattice case. The result follows
from Theorem 3.3.

For the lattice case choose a = kλ, where λ > 0 is the span and k is such that
P(Sx = kλ some x ∈ G1) > 0, but P(Sx = jλ some x ∈ G1) = 0 for all 0 ≤ j < k.
Theorem 3.4 implies that, for any fixed s ∈ [0, λ), as n −→∞,

e−Dnλ
∑

x∈Ps+nλ

1(s+nλ,s+nλ+a](Sx) −→ λM∞
−m′(D)

∞∑
i=0

e−DλiE
[
ξ(s+ iλ, s+ iλ+ a]

]
,

(3.32)
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with probability equal to 1. Write again the limit as M∞C(s); by our choice of a

C(s) =
λ

−m′(D)
E

∑
x∈G1

∑
max{0,Sx−a−s}≤nλ<Sx−s

e−Dnλ


≥ λ

−m′(D)
E

∑
x∈G1

1{kλ}(Sx)
∑

max{0,Sx−a−s}≤nλ<Sx−s
e−Dnλ


=

λ

−m′(D)
1− e−kDλ
1− e−Dλ E

[
ξ
(
{kλ}

)]
,

for s ∈ [0, λ). Let C denote the last expression above; then

C(s) ≥ C > 0 ,(3.33)

for all s ∈ [0, λ). As in the non-lattice case, the convergence in (3.32) also holds in
L1 and therefore, as n −→∞,

e−DnλE

1Aδ
∑

x∈Ps+nλ

1(s+nλ,s+nλ+a](Sx)

 −→ C(s)E[M∞1Aδ ] ,(3.34)

for each s ∈ [0, λ). Now

inf
s∈[0,λ)

lim
n→∞

e(s+nλ)(d−D)E
[
|K(e−s−nλ)|

]
= inf

s∈[0,λ)
lim
n→∞

δ−(d−D)e(s+nλ+a)(d−D)E
[
|K(δe−s−nλ−a)|

]
≥ inf

s∈[0,λ)
lim
n→∞

δ−(d−D)e(s+nλ+a)(d−D)E
[
1Aδ |K(δe−s−nλ−a)|

]
and we then have successively by (3.26), (3.34), (3.33) and (3.31)

inf
s∈[0,λ)

lim
n→∞

e(s+nλ)(d−D)E
[
|K(e−s−nλ)|

]
≥ cdδ

De−aD inf
s∈[0,λ)

lim
n→∞

e−(s+nλ)DE

1Aδ
∑

x∈Ps+nλ

1(s+nλ,s+nλ+a](Sx)


= cdδ

De−aDE[M∞1Aδ ] inf
s∈[0,λ)

e−DsC(s)

≥ cdδ
De−(a+λ)DE[M∞1Aδ ]C > 0 .

But by Theorem 3.7 again, and (3.15),

L = lim
T→∞

1
T

∫ T

0

e(d−D)t|K(e−t)|dt

= M∞ lim
T→∞

1
T

∫ T

0

e(d−D)tE
[
|K(e−t)|

]
dt

= M∞
1
λ

∫ λ

0

lim
n→∞

e(s+nλ)(d−D)E
[
|K(e−s−nλ)|

]
ds

≥ M∞ inf
s∈[0,λ)

lim
n→∞

e(s+nλ)(d−D)E
[
|K(e−s−nλ)|

]
and we conclude that L > 0 iff M∞ > 0 for the lattice case as well. By Theorem
3.3 this concludes the proof of the theorem. 2



LACUNARITY OF SELF-SIMILAR SETS 1977

4. Examples

4.1. Cantor set. As already mentioned after Theorem 2.3, one cannot apply part
(i) of this theorem to the usual ternary Cantor set. For this set r1 = r2 = 1/3 and
so {− log r1,− log r2} ⊂ λZ, with λ = log 3; here D = log3 2. Using (2.9), one can
actually compute the limits

L(s) = lim
n→∞

e(1−D)(s+nλ)|K(e−s−nλ)| ,

along sequences s+ nλ, s ∈ [0, log 3); one finds

L(s) =
{
e(1−D)s

(
3
2 + e−s

)
for 0 ≤ s < log 2,

e(1−D)s(1 + 2e−s) for log 2 ≤ s < log 3 .

Thus ε−(d−D)|K(ε)| does not have a limit in this case.
(For the usual ternary Cantor set this fact is well known and can be obtained by

direct computation, without the aid of Theorem 2.3; see for example [15]; see also
the Acknowledgments at the end of section 1.)

4.2. Fractal percolation (Mandelbrot’s canonical curdling). Let d ≥ 1 and
fix an integer N ≥ 2 and p ∈ (0, 1), with Ndp > 1. We consider the random set
K obtained as follows. Divide the unit (hyper)cube [0, 1]d into the Nd congruent
subcubes

∏d
k=1[ikN−1, (ik + 1)N−1], 0 ≤ ik < N , 1 ≤ k ≤ d, and keep each of

them with probability p (discard it with probability 1 − p), independently of all
other subcubes. Next divide each of the subcubes kept in the first step into the
Nd congruent subcubes of side-length N−2 it contains and keep each of these with
probability p, independently of all else. The set K is then obtained by continuing
this process ad-infinitum.

The set K is a stochastically self-similar set as described in subsection 3.1, with
J = [0, 1]d, G = (0, 1)d and Φ = {φ1, . . . , φν} such that each φi is one of the
similarities

ψi1...id(v) =
1
N

[v + (i1, . . . , id)T ] , v ∈ Rd , 0 ≤ ik < N , 1 ≤ k ≤ d ,

where T denotes transpose. In this case E[ν] = Ndp and this explains our assump-
tion Ndp > 1. The dimension of K, almost surely on the event {K 6= ∅}, is the
solution in D of the equation

1 = E

[∑
x∈G1

e−DSx

]
= N−DE[ν] ;

so D = d + logN p. Furthermore, the measure A 7→ E[ξ(A)] is lattice, with span
λ = logN , and Theorem 3.1 (ii) applies, as clearly

P(K ∩G 6= ∅) > 0 .(4.1)

Note that the assumption that we keep subcubes independently of one-another
is irrelevant to this discussion and we could have any other distribution for Φ,
provided (4.1) is satisfied (independence between successive steps is still required
however); the value of E[ν], and hence also of D, would then be different of course.

Note also that, because ν is bounded here, Theorem 3.7 (ii) also applies.
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4.3. Level-sets of stable processes. Let {Xt : t ≥ 0} be a real-valued stable
process of index α ∈ (0, 2], started at 0. This is a process with stationary and
independent increments (Levy process), which has the following scaling property:
for every s > 0, the process {s−1/αXst : t ≥ 0} has the same law (distribution) as
X itself. For α = 2, the process X is a constant multiple of standard Brownian
motion.

Let K = {s ≥ 0 : Xs = 0}, the zero-set of X , and Kt = K ∩ [0, t], t ≥ 0, the
zero-set of X up to time t. It is well known that, when 1 < α ≤ 2, K and each
Kt are nonempty closed perfect sets (because 0 is regular for itself, by the scaling
property), of Hausdorff dimension D = 1− 1/α ([5], [24]). When 0 < α ≤ 1 on the
other hand, K = {0}, as singletons are polar in this case (see [2]). We therefore
restrict attention to the case 1 < α ≤ 2 henceforth. We will explain how to apply
Theorems 3.1 and 3.7 to obtain the following statement: for each fixed t ≥ 0, the
limit

Lt = lim
ε→0

ε−1/α|Kt(ε)|(4.2)

exists a.s. and this convergence also holds in L1.
Fix t > 0 and let {Ys : 0 ≤ s ≤ t} be the corresponding stable bridge; this,

intuitively, is the process X |[0,t] conditioned to be 0 at time t. Denote by KY the
zero set of Y : KY = {s ∈ [0, t] : Ys = 0}. The set KY is then a stochastically
self-similar set in the sense of subsection 3.1, with J = [0, t] and Φ = {φ1, φ2},
where φ1 and φ2 are the similarities of R given by

φ1(v) =
τ1
t
v , φ2(v) =

τ2
t
v + t− τ2 ,

and τ1 = sup{s ∈ [0, t/2] : Ys = 0} and t− τ2 = inf{s ∈ [t/2, t] : Ys = 0}. Clearly,
condition (3.2) is satisfied, as, for example, τ1 ∈ K ∩ G. Also, the measure A 7→
E[ξ(A)] is non-lattice, as τ1 and τ2 have (actually identical) absolutely continuous
distributions. Finally, KY also has dimension 1 − 1/α. One way to see this is to
observe that

KY
L=
t

τ
Kt ,(4.3)

where L= means ‘equal in law’ and τ = sup{s ∈ [0, t] : Xs = 0}. This is because the
processes Y and {(τ/t)−1/αXsτ/t : 0 ≤ s ≤ t} have the same laws (i.e., the latter is
a bridge), by the scaling property (see [2], Theorem VIII.12). It now follows from
Theorem 3.1 that, with probability equal to one, the limit

LY = lim
ε→0

ε−1/α|KY (ε)|(4.4)

exists and this convergence also holds in L1, by Theorem 3.7. Statement (4.2) then
follows from this convergence, using the representation (4.3) and observing that

lim
ε→0

ε−1/α|Kt(ε)| = lim
ε→0

ε−1/α τ

t

∣∣∣∣( tτ Kt

)(
εt

τ

)∣∣∣∣
=

(τ
t

)1−1/α

lim
ε→0

(
εt

τ

)−1/α ∣∣∣∣( tτ Kt

)(
εt

τ

)∣∣∣∣ .
As a matter of fact, taking Ys = (τ/t)−1/αXsτ/t, 0 ≤ s ≤ t, as we may, we
obtain that Lt = (τ/t)1−1/αLY ; furthermore τ is independent of LY ([2], Theorem
VIII.12).
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Clearly, one can then deal similarly with the case where the starting point X0 is
an arbitrary point x ∈ R, by considering the first time the process hits 0 and using
the strong Markov property, and also with arbitrary level-sets Ky = {s ≥ 0 : Xs =
y} and Ky

t = Ky ∩ [0, t], t ≥ 0, y ∈ R, by considering the first time the process hits
y.

Remark. Statement (4.2) is not new. In the case of Brownian motion, which is
stable with α = 2, it was already known to P. Levy, as can be deduced from section
2.2 of Ito and McKean ([11]); in particular, it follows directly from 5) and 6) on
page 43, reference [11]. The general case 1 < α ≤ 2, follows similarly from the
results in section 7 of Fristedt and Taylor ([9]). Furthermore, the results in [9]
imply that the limit Lt is a constant multiple of the local time at 0.

One can actually deduce a stronger statement than the a.s. convergence in (4.2)
from Theorem 3.1.

Theorem 4.1. Let {Xt : t ≥ 0} be a real-valued stable process, of index α ∈ (1, 2].
Then, there exists a set of probability one, on which ε−1/α|Kt(ε)| converges, as
ε→ 0, simultaneously for all t ≥ 0. Furthermore, the limit Lt, t ≥ 0, is continuous
in t.

Remark. It is plain that, given its existence, the limit {Lt : t ≥ 0} is adapted
and constitutes an additive functional. As such, and being continuous, it must be
a constant multiple of the local time of X at 0, by Proposition IV.5 of reference
[2]. Reversing the point of view, one can define the local time process by Lt =
limε→0 ε

−1/α|Kt(ε)|, t ≥ 0, without a priori knowledge of its existence.

Proof of Theorem 4.1. Fix t > 0 and consider the bridge Ys = (τ/t)−1/αXsτ/t,
0 ≤ s ≤ t, its zero-set KY and set KY,s = KY ∩ [0, s]. In the notation of subsection
3.1, we have that Gn = {1, 2}n, for all n ≥ 0, and P =

⋃∞
n=0{1, 2}n. Furthermore,

since P is countable, the limit

LxY = lim
ε→0

ε−1/α|Kx
Y (ε)|(4.5)

exists for all x ∈ P simultaneously on a set Ω′t of probability one, and one has the
following equality, for each x ∈ P and all n ≥ 0:

e−DSxLxY =
∑
y∈Gxn

e−DSxyLxyY ,(4.6)

with D = 1− 1/α. Define random functions {L(n)
Y,s : 0 ≤ s ≤ t}, by letting L(n)

Y,. be
the distribution function of the measure that spreads mass e−DSxLxY uniformly on
the interval φx

(
[0, t]

)
, for x ∈ Gn. By (4.6) then L

(n)
Y,t = LY , for all n ≥ 0.

It is plain that (see Figure 4)∥∥∥L(n+1)
Y,. − L(n)

Y,.

∥∥∥
∞
≤ max

x∈Gn
e−DSxLxY ,(4.7)

for all n ≥ 0. We next note the following lemma, whose proof we postpone to the
end of this section.

Lemma 4.2.
∞∑
n=0

E
[

max
x∈Gn

e−DSxLxY

]
<∞ .
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Figure 4. The functions L(0)
Y,., L

(1)
Y,. and L(2)

Y,..

It now follows from the lemma that on a set Ωt ⊆ Ω′t, of probability one, the
functions L(n)

Y,. converge uniformly to a limit LY,., which must be continuous. Be-
cause |KY,r(ε)| ≤ |KY,s(ε)|, for 0 ≤ r < s ≤ t, because the limit LY,. is continuous
and because, by (4.5),

lim
ε→0

ε−1/α|KY,s(ε)| = LY,s(4.8)

for those s ∈ [0, t] which are endpoints of the intervals φx
(
[0, t]

)
, x ∈ P , and because

such s are dense in KY , it follows that the convergence (4.8) holds simultaneously
for all s ∈ KY . Finally, because both sides of (4.8) are constant functions of s on
each of the intervals in [0, t] r KY , (4.8) holds for all s ∈ [0, t] simultaneously on
Ωt.

Using the representation (4.3) (which now holds pointwise and not just in law,
by our choice of Y ), we then have that, on Ωt,

Ls :=
(τ
t

)1−1/α

LY,sτ/t = lim
ε→0

ε−1/α|Ks(ε)|

for all 0 ≤ s ≤ τ ; defining Ls = Lτ , for τ < s ≤ t, one has that

ε−1/α|Ks(ε)| −→ Ls(4.9)

for all s ∈ [0, t] on Ωt. Finally, the set Ω∞ :=
⋂
n≥1 Ωn has probability one and on

it (4.9) holds for all t ≥ 0 and the function t 7→ Lt is continuous.

Proof of Lemma 4.2. First note that e−DSx ≤ 2−n(1−1/α) for x ∈ Gn. Hence

E
[

max
x∈Gn

e−DSxLxY

]
≤ 2−n(1−1/α)E2n ,(4.10)

where En denotes the expectation of the maximum of n independent copies of LY .
We will show that, for any ε > 0, there exists a constant 0 < Cε < ∞, such that
En ≤ Cεnε, n ≥ 0, and this, in conjunction with (4.10), will prove the lemma.

Recall the martingale Mn =
∑
x∈Gn e

−DSx and note that, since M1 ≤ 2, its limit
M∞ has finite moments of all orders, by Theorem 2.1 of reference [20]. Recall also,
from (3.12), that LY = M∞× const.; therefore LY has finite moments of all orders.
It follows from Markov’s inequality that, for any β > 0 and u > 0,

P(LY > u) ≤ u−βE[LβY ] .
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Fix β > 1 and let c = E[LβY ]1/β . Since En =
∫∞

0
{1− [1− P(LY > u)]n}du,

En ≤ c+
∫ ∞
c

[
1− (1 − cβu−β)n

]
du = c

[
1 + β−1

∫ 1

0

1− un
(1− u)1+1/β

du

]
.(4.11)

Using the beta-function,∫ 1

0

1− un
(1− u)1+1/β

du =
n∑
i=1

∫ 1

0

ui−1(1 − u)−1/βdu =
n∑
i=1

β

iβ − 1

i−1∏
j=1

jβ

jβ − 1
,

where, by convention,
∏0
i=1 = 1. Now, use the well known relation between sums

and products, to obtain∫ 1

0

1− un
(1 − u)1+1/β

du ≤ C
n∑
i=2

β

iβ − 1
[
(i− 1)β − 1

]1/β +
β

β − 1
≤ C′n1/β ,

for some finite constant C′, which, together with (4.11), prove the lemma.

5. Concluding Remarks

1. As should be clear from Example 4.1 (Cantor set), formulae (2.8) and (2.9)
can be used for explicit computations, at least in low dimensions (d = 1, 2
say).

2. We conjecture that the non-lattice condition of Theorem 2.3 (i) is also neces-
sary for ε−(d−D)|K(ε)| to converge to a limit as ε→ 0, at least in non-trivial
cases. To be more precise, let I denote the convex hull of K.

Conjecture. If

I r
N⋃
i=1

φi(I) 6= ∅ ,(5.1)

then ε−(d−D)|K(ε)| converges to a limit, as ε→ 0, iff

{log r1, . . . , log rN} * λZ for any λ > 0 .

Notice that (5.1) is not satisfied for the set of similarities φ1(x) = x/3, φ2(x) =
(x + 1)/3, φ3(x) = (x + 2)/3. The invariant set K for these similarities is
K = [0, 1], D = 1, and obviously ε−(1−D)|K(ε)| −→ 1, as ε→ 0. For specific
cases of ‘lattice self-similar sets’, one can verify the conjecture as in Example
4.1, but it would be nice to have a general argument. (Note added in proof :
See also the recent article [26] by van Frankenhuysen and Lapidus; Remark
5.2 there verifies the conjecture for a certain class of self-similar subsets of R.)

3. The methods of this paper rely heavily on the self-similarity of K, i.e., the fact
that each of the maps φi is a similarity transformation. One can consider the
same problem for fractals with some approximate self-similarity, like limit sets
of Fuchsian groups and Schottky groups, or hyperbolic Julia sets of rational
maps. The problem is considerably harder for such sets, but similar methods
apply.



1982 DIMITRIS GATZOURAS

Appendix

In subsection 3.1 we considered random elements Φ = {φ1, . . . , φν}, defined on
some probability space (Ω,F ,P). Here we consider matters of measurability.

Recall that S stands for the set of all contracting similarities of Rd and J is a
fixed compact set, with G = int(J) and G = J . Set SJ := {s ∈ S : s(J) ⊆ J} and,
for n > 1

S(n)
J :=

{
{s1, . . . , sn} : si(J) ⊆ J for all i and si(G) ∩ sj(G) = ∅ for i 6= j

}
.

Then Φ takes values in S∗J :=
⋃∞
n=0 S

(n)
J , where S(1)

J = SJ and S(0)
J = {e}.

Each element of S is of the form s(v) = rAv+ b, with r ∈ (0, 1), A ∈ O(Rd) and
b ∈ Rd. We may therefore endow S with a metric:

dist(s, s′) := |r − r′|+ ‖A−A′‖+ |b− b′| .
The resulting metric space is separable and complete and SJ is closed in it. We
may also endow each S(n), the set of all subsets of S with n elements, with a metric,
namely

dist(S, S′) = min
π

max
s∈S

dist
(
s, π(s)

)
,

where the minimum is taken over all bijections π : S → S′. Then, for each n ≥ 1,
S(n)
J is closed in S(n) and hence in B(n), the Borel σ-algebra of S(n). Therefore
B(n)
J := {S(n)

J ∩B : B ∈ B(n)} is a σ-algebra and we take

B∗J := {B ∈ S∗ : B ∩ S(n)
J ∈ B(n)

J for all n ≥ 0}

as our σ-algebra on S∗J , where B(0)
J := {∅,S(0)

J } is the trivial σ-algebra. We then
require of Φ that it be a map Φ : Ω→ S∗J , measurable with respect to F and B∗J .

Added after posting

In the Conjecture in section 5, [26] should read [25].
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