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INEQUALITIES FOR HOLOMORPHIC FUNCTIONS

OF SEVERAL COMPLEX VARIABLES

BY

JACOB BURBEA1

Abstract. Sharp norm-inequalities, valid for functional Hilbert spaces of holomor-

phic functions on the polydisk, unit ball and C" are established by using the notion

of reproducing kernels. These inequalities extend earlier results of Saitoh and ours.

1. Introduction. In this paper we establish sharp norm-inequalities, valid for

functional Hilbert spaces of holomorphic functions on the polydisk, unit ball and

C", by using the theory of reproducing kernels. Several applications, notably in the

Dirichlet, Bergman-Selberg and Fischer spaces, are given. These inequalities con-

stitute an improvement and an extension of recent results of Saitoh [7, 8], which he

obtained by using methods different from ours. They also extend our earlier results

in [2, 3] for the one complex variable case. The proofs given here employ elementary

means and the results obtained may also be applied to various other situations where

the domain in question is one of the classical Cartan domains. However, in order to

avoid lengthy discussions, we shall not pursue the extensions here.

2. Preliminaries and notation. We consider the «-dimensional complex space C"

with the usual inner product

(*,!)= Ï4j     ('.fee)
v-i

and the associated norm |z|=(z,z)'/2. The unit ball B = Bn of C" is then the set

of all z E C" with | z |< 1. The boundary of B is the sphere S = Sn, the set of all

z E C" with | z | = 1. By P we denote the polydisk B". Sometimes it is convenient to

use the notation of Dp, p = 0,1, oo, to refer to P when p = 0, to B when p = 1 and

to C" when p = oo. The class of all holomorphic functions in Dp is denoted by

H(Dp). It is a linear space over C. The following standard multi-index notation is

employed: If a — (ax,...,an) E Z" (i.e., an «-tuple of nonnegative integers), then

| a | = a, + • • ■ +a„ and a!= a,! • • • a„!. In addition, for z E C", the notation z" is

an abbreviation for the holomorphic monomial zf1 • • • z"\ By ek E Z" (1 < k < n)

we mean the «-tuple that has 1 in the k th entry and 0 everywhere else.

Any/ £ H(Dp) can be represented as

f(z) = 2"aza-,       aaŒC,zEDp,
a
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where the series expansion converges absolutely and uniformly on compacta of Dp.

In this way we regard H(Dp) as the span of all za, a > 0, in the uniform topology of

We introduce a "derivation-operator" 3„: H(Dp) -» H(Dp) by

(2.1) 3„/(z) =  2*(a)aaz«-x.

The quantities in this sum are defined as follows: For a > 1, let ak ,... ,ak ,

1 ^ kx < • • • < km < « (1 < m < «) be the nonzero (> 1) components of a. Then

(2.2) z«-'=z^-'...z^-'

and

/   x      17 ir       \ (|«|+«-m)!l1/2
(2-3) -(a) = {(|,^)      (|a|-l)!     j     '       «>L

This derivation 3„ is a linear operator of H(Dp) into itself and constitutes the

«-dimensional generalization of the usual derivative 3 = 3, on H(Dp) when « = 1. In

fact, when « = 1,3,/ = /' for/ E H(Dp).

By da(z) we denote the Lebesgue measure on C" = R2", and by ds(z) we denote

the euclidean measure on the boundary 5 of B. For future reference we also record

the following elementary identities (see, for example, [6, pp. 16-17, 120-121]): For

q > 0 and a, ß E Z" we have

(2.4, ±fr^.^Mz)-.-^M-)Kt

and

(2.5) ¿//.2-SA(2) = _ü^L_V

3. Dirichlet and Bergman-Selberg spaces. For a fixed q > 0 we write

q(n)=(n+\)q/2.

The "(n, q)-Dirichlet space " is defined by

^={/E//(fi):/(0) = 0,||/|k„<0o},

where

Let/£ %q so that

/(z)=  2 aaza,       zEB.

By(2.1)-(2.4)and(3.1),

:^7-V 1   k(«)|2kr/z«-'z-«->da(z)
77 <7(") «>i -'s

I*.
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where ak,...,ak , 1 < kl < ■ • • <S km < « (1 < m < n) are the nonzero components

of a > 1. It follows that

(3.2) II*.
1

iOO.ti  (l«|-l)!

Moreover, by the Cauchy-Schwarz inequality

IAOI 2««¿"
a>l

<?(«)2
(lal-1)!
m      I_¿__ „a-a

a»l
a!

z z
,2

The quantity in the square bracket is —^(«)log(l — | z |2), as the computation below

shows, and therefore

|/(z)|<{-9(i.)log(l-|z|2)} 2\\'/2|| Ik.,.    *G b.

This shows that 9¡ is a functional Hilbert space of holomorphic functions f in B

with /(0) = 0. The space 6î>nq has a reproducing kernel kn q(-, ■) which may be

computed by means of any orthonormal basis of 6D/)  . Clearly the sequence

</>*(*) = {<?(«)(|« I-l)!/«!}'/2za,       o>l,

is orthonormal in 9)n  , and by (3.2) it is also complete. Therefore,

M*>£)= 2 ♦.u)^(ñ = 9(») 2 (|aL7ï)!*r
a»l aS«l

a!

í(»)2   ¿     2    ¿m!  z«r = 9(«) i
aS°l       '  \ m = |a| / m=l   "'  \|a|=m

1

«J!

2   ^T"m    ,,        a!

*0)2 ¿<*.f>".
m=l

whence

(3.3) *».,(*• f ) = -<?(«)log(i - (z, ?>);     *. f e *•

Another related functional Hilbert space is the so-called "(«, q)-Bergman-Selberg

space," which is defined by

%n,q={gEH(B):\\g\\„,q<oo},

where, for g E H(B) with

*(*) = 2 baz«,       z E B,

(3.4)
<*3»0

llslk? = r(?(«)) 2
a!

at0r(i(«) + |«|)lal
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Exactly as before one shows that %n   is a functional Hilbert space of holomorphic

functions in B whose reproducing kernel is

1        £     1 w ,  x .     J   ^    m\2   ^T(q(n) + m)(   2    ^T")
1 = 0 \\a\ = m I

"    T(q(n) + m) ,       .m

¿o    m\T(q(H))   KZ'i}   '

and, therefore,

(3.5) *„,?(z,n = (!-<*,or(n);   '.fe¿.

For q(n)> « (i.e., for g s* 2«/(« + 1)) the norm (3.4) of %    can be realized as

and

W2-., = -Í5¿íil/lf(*)|2*(*).     *(■) = ».
¿77 ^5

where in the last integral, g stands for the nontangential boundary values of the

holomorphic function g(z) in B. These representations follow from (2.4)-(2.5) and

(3.4). It thus follows that %n for q(n) = « is the ordinary "Hardy-Szegö space"

with the "Cauchy-Szegö kernel" (1 - (z, f ))"" [6, p. 38], and, for q(n) = « + 1,

%n is the ordinary "Bergman-space" with the "Bergman-kernel" (1 — (z, f ))_("+1)

[6, p. 36]. The space %n with q(n) > « is a natural generalization of the Bergman

space and was first studied by Selberg [9] for more general homogeneous domains.

For 0 < q(n) < n, the norm of %n does not admit such a simple integral represen-

tation, a fact which is not crucial, for we shall only use (3.4) as the norm of

g E XBi?, q > 0.
The Dirichlet-space 6¡>n    and the Bergman-Selberg space %n    are intimately

related. In fact, from (3.3) and (3.5) we have

K„Jz, 0 = txp[knq(z, 0] ;        q>0,zjGB,

which in some sense means that %n is the exponentiation of 6¡)n . The following

theorem is even more striking.

Theorem 1. Let f £ 6Dni?, ? > 0. Then exp/ E 9Cn>? <w¿

2 2
l|exp/||n.,<exp||/||o.

Equality holds if and only if fis of the form f = A;    ( •, Ç) for some {Efi, i«a? is

/(z) = -i(«)log(l-(z,f>),       zGB,

for some f £ B.
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The inequality and the sufficient condition in the equality statement of this

theorem constitute a simple consequence of a more abstract theorem in the general

theory of reproducing kernels (see Burbea [2] for details). The essence, therefore, of

this theorem is in the necessity of the equality statement. In the special case that

n = 1 and q > 1, a proof of Theorem 1 was given by Saitoh [7]. His proof, however,

is difficult and rather involved. In [2], Burbea has extended the result of Saitoh to

cover the case of 0 < q < 1 with a proof that is substantially easier and shorter than

that of [7]. The method of proof in Burbea [2] conceals in it the main ingredient for

establishing the present Theorem 1. This theorem will be proved as a special case of

a more general result, valid for entire functions and functions holomorphic in B or

P.

While the previous assertion relates two functional Hilbert spaces whose reproduc-

ing kernels are related via the exponential function, the next theorem gives a sharp

norm inequality in a functional Hilbert space whose reproducing kernel is the

ordinary product of reproducing kernels of other functional Hilbert spaces. Other

generalizations are possible. However, for clarity we shall confine ourselves to the

following case: For q] > 0,j = 1,... ,m, we write

qj(n)=(n+ \)qj/2,       j=\,...,m.

Theorem 2. Let q¿ > 0 andgj £ %n>1,j = \,...,m. Then H?=l gj E %„^+.

and
■+Vm

ru
■+1, y=i

ISjWn.q/

Equality holds if and only if either II J= x gj■ = 0 or each gj(\ ^j^m) is of the form

g7(z) = Cy.(l-(z,Or/n);        zGB,j=l,...,m,

for some (common) f £ B and some nonzero constants Cj (1 <j < m).

Again, this sharp inequality will be obtained as a special case of a more general

result. The last two theorems when combined yield the following interesting sharp

inequality.

Theorem 3. Let q} > 0 and f} E %q ,j- \,...,m. Then expSJL, fj
and

%n,1",

exp 2
7=1

fit%,exp 2 fj
-/-'        n,ZJ=lqj

Equality holds if and only if each fj (1 <j<m)is of the form

fj(z) = -<7y(«)log(l - (z,0);        ^ £ B,j=\,...,m,

for some (common) f E B.

4. Fischer spaces. For fixed p, q > 0 the "( p, q)-Fischer space " is defined by

^ = ^»-{/eJ5r(C"):||/lkM<oo}
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where

Let/ £ 9„ „ so that

f{z) = 1aaz°.
a

Using integration in polar coordinates [6, p. 13] and (2.5) we obtain

¿/   W)\2\zfP"\-^da{z)
IT     JC"

= 22 kj'^TTT^T r^W-Ve-^rdr
T(\a\+n)J0

= ö-(,+—)y u i2£Lr(lal+^ + "-1)
9 f10"1^ r(|a|+«)        '

and, therefore,

(a,\ IUII2 T(«) v   a!  r(|a|+/> + /!-!),     2
(4J) ll/ll^=r(^ + «-i)?^     r(|«|+«)     kl •

As before, (4.1) shows that 9    is a functional Hilbert space of entire functions

whose reproducing kernel is

k    r.  n-T(/>+ *»-!) y       ¿T(|«|+i.)        1
"•^'w r(«)      f r(| a 1 +/» + « - 1) «!   s

r(j> + n-l)   S     1        g"T(w + n)      /   v     nú     -a

T(n) ¿0mlT(m+P + n-l)\¿m  a!     <

_ r(/) + «-1) *    1       r(w + «) ,    , m

r(»)      ¿o'"!r(m+/> + «-i)l^z,i;j ■

Therefore

(4-2) *M(r, f) =,F,(«; p + « - 1; q(z,S))

where ,F,(a; /?; x) is the well-known confluent hypergeometric function [10, p. 35].

In particular,

(4-3) kUq(z, f) =xFx(n; «; q(z, ?>) = **<*''>.

The space 9XX = 9xx(n) is the ordinary Fischer space, a space studied by several

authors (cf. [1] and [5]) from various points of view.

Closely related to 9pq = 9p q(n) is another functional Hilbert space S     = S   (n)

of entire functions g in C with norm 11 g 11     and whose reproducing kernel is

(4.4) *,,(*, 0 = e-'expi.F.t«; p + n - 1; q(z, $))}.

In particular,

(4.5) /i:,,î(z,0 = e-,exp{exp(i(z,f))}.
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For clarity of the exposition we shall here confine ourselves to the case p = 1. The

more general case is deferred to §9. We first introduce the "Stirling numbers of the

second kind":

(4-6)

oo k
m

=  2   z=7>      fc = 0,l,...;
m = 0

w!

thus, s0 — e, sx — e, s2 = 2e, s3 = 5e and so on. The space &Xq is defined by

&hq={gEH{C):\\g\\l,q<co},

where, for g E H(C) with

(4.7)

*(*) = 2 Va,    * e c-,
a>0

Wi,« = i 2 -£r—\ajl2.
a»0   Q    s\a\

The expression (4.5) for the reproducing kernel of £,    may be verified with the

aid of (4.6) and (4.7) as follows:

Kl,<l(z,i) = e-i2^slAzT = e-^  (  2 9%)^'^
a>0 «5=0   X k = \a\ '  ""

= *"' 2   TT**J   2   ̂ r)=e-«l   ¿M*<*,f>*
k = 0

k\
\a\ = k k = 0

k\

oo        |     /    oo k \ °° i     /    °°        i \

2 TT   2 ^ /(z,0^--2 ¿2 ¿*V<*,f>*

oc

I 1
e ■ 2   —Te

m = 0

mq(z,r)

and (4.5) follows.

Analogous to Theorems 1 and 2 we have the following theorems.

Theorem 4. Letf E 5", q(n), q > 0, withf(0) = 0. Then exp/ E S, 9(«) and

l|exp/||i,?«exp||/|K„.

Equality holds if and only if fis of the form

f(z) = ei<z'V-\,       zEC",

for some f £ C".

Theorem   5.   Let   q, > 0   and fj<=9Xq(n), j=\,...,m.   Then   YlJ=x f}

ïïfj
7=1

< n u\\w
\,q,+   -+qm       7-1
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equivalently,

Jr*n
n ¿i*),-(ii + --+iM da(z)

,, + ...+,„,^n{/c.iiWi^-^)

Equality holds if and only if either Uy'=x fj = 0 or eachfj (1 <j < m) is of the form

fj(z) = CJe"J<2^,       zGC",

for some (common) f £ C and some nonzero constants C (1 <j < m).

A special case of Theorem 5, namely when n — 1 and ql = • • • = qm = 1, appears

also in Saitoh [8]. The proof of Saitoh for this special case is rather difficult and is

based on the theory of tensor products of reproducing kernel spaces of entire

functions. Also, it appears that the equality statement in [8] contains an error or a

misprint. The last two theorems will also be obtained as special cases of more

general results on spaces of square summable series.

5. Square summable series spaces. We consider the space H(Dp), p = 0,1, oo. We

shall also use the notation of zf = (zxÇx,... ,z„f„) for z, f £ C". By 9(Dp) we denote

the class of all functions <> with an expansion

(5.1) </>(zz-) = 2ca(2zT;       ca>0,aEZ^,z£Z)p,
a

which converges on compacta of Dp, but <¡>(zz) = oo when z lies on the boundary of

Dp. Evidently, for any f E Dp, «f>( ■ ?) E H(Dp). Associated with any <í> E 9(Dp) we

consider the space

3C, = {/£#(£„): ||/|U<o>},

where, for

/(z) = 2^a;        f^H(Dp),z<EDp,
a

(5-2) ll/lll-2c-,kl

p i

2

For f £ Dp, we have

A« = laJ" = lc-x(aacar) = (/(),*(-f )),
a a

and, therefore,

l/tt)l<{*(ff)Hl/ll*;     /E0C„fEZV
This shows that %^ is a functional Hilbert space of holomorphic functions in Dp with

the reproducing kernel

(5.3) k¿z,S)=*(z¿);       z,fE£>p.
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The norm of %4> is given by (5.2) which also shows that {</>a}a>0 witn 4>a(z) = y^ö2"

is an orthonormal basis for %r

In the definition of <f> E 9(Dp) we may allow some of the coefficients ca to equal

zero. This corresponds to 4>(zf ) being the reproducing kernel of a functional Hilbert

space of holomorphic functions in Dp with certain (mixed) partial derivatives

vanishing at the origin. For example, if c0 = 0 then <f>(0) = 0 and %^= {/ £ H(Dp):

/(0) = 0, || /1|^ < oo}. Such a </> is said to belong to class %(Dp).

We note that ¿>, \p E 9(Dp) implies $if> E 9(Dp). With this observation we state

our basic lemma.

Lemma 1. Let </>, ^ E 9(Dp) andf E 3C^, g £ ^. r/ien/g £ 9C^ and

ll/glU<ll/ll*W*-
Equality holds if and only if either fg = 0 or f and g are of the forms /( z ) = C,<>( zf ),

g(z) = C2ip(zÇ); z £ Dp, /or jome (common) fGDp and some nonzero constants C,

and C2.

Proof. We assume that <¡>, f and 11/11^ are as in (5.1)—(5.2). The corresponding

quantities for %t¡/ will be given by

Hz)=2daz";       da>0,aGZn+,zEDp,
a

g(*)=2baz;       zGDp,
a

and

Wi=20da-
a

Under these circumstances,

a /8<a

/(2)«W=   2Aaz"> ¿« =     2   V«"/»'
a ;8<a

and

\\fgiU=2Ma-l\Aa\2.
a

The lemma, therefore, is completely equivalent to the following sharp inequality:

(5.4) 2Ma-IKI2<(2c-1k|2)(2da-'|6j2)

with equality if and only if either (i) aa = 0 or ba = 0 for all a E Z+ , or (ii)

aa — CxcJa and ba — C2dJa for all a E Z" , for some feDp and for some
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nonzero constants Cx and C2. In order to prove this inequality we let r = (/•,,... ,/-„)

£ [0,1)" and introduce

M{r) = 2Ma-x\Aa\2r",        Cir) = 2ca'|a jV,
a a

Dir) = 2d;x\bfr".

By the Cauchy-Schwarz inequality,

Kl 2 «*K-ßu"-ß
aßK-ß        , vl/2

icßd«-ß)l/2\l-ßu«~ß>

ß^a   icßda_ß)

ïW|(ï^)-|î
|sSa       cß aa-ß     /V/3«« ' \ß^a

M \ba-ß\2

Cß da-ß
Ma,

and so

(5-5) AC'M.1 < 2 Kl2   \ba-ß\

ß^a       Vß

a&Zl

This shows that

(5.6) Mir)^C(r)Dir),       r = (r„...,r„) e[0, 1)",

as formal power series. Letting r = (r,,... ,/•„) -> 1"= (I-,..., 1") in (5.6), inequality

(5.4) is obtained. In view of (5.4)-(5.6) and the fact that M(0) = C(0)D(0), equality

in (5.4) holds if and only if M(r) = C(r)D(r) for each r = (rx,...,rn) E [0,1)",

which is equivalent to having equality in (5.5) for every a E Z" . This is, obviously,

equivalent to an existence of A0 £ C so that

(5-7) Oßba-ß = *acßda-ß;       ß<a,ot(EZ"+.

Putting ß = 0 and ß = a in (5.7) results in

(5.8) Aac0da = a0ba,    \acad0 = aab0;        a E Z"+ .

On the other hand, summing up (5.7) from ß — 0 through ß — a yields

(5.9) Aa = XaMa,       aEZ"+.

If a0b0 = 0, then by (5.8), \a = 0 for all a E Z"+ . Therefore, by (5.9), Aa = 0 for all

a £ Zn+ which means aa — 0 or ba = 0 for all a E Z" . This covers item (i) of the

equality statement. We now assume that a0b0 ¥= 0 and define

anc.0C0   '
bnd~xo"o(5.10)

We also define

(5.11)

It follows from (5.8) that also

(5.12) £k = d0bet(dekboy\        Kk^n.

h = c0a Ac eaoy\        Kk<H.
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Clearly, CX,C2¥= 0. From (5.7)-(5.10) we have

(5.13) K = c2cx~xiaa/ca)da,     «ez;,

i0ba +     2     "ßba-fi + a«bo
a„b«"o

c„dn
2cßda_ß,    «ez:-{o|,

0<ß<a "«   0 ß^a

and, therefore,

(5.14) aab0icad0 + c0da) + cad0   2    <*ßba-ß = «A 2 cßda_ß,
0<ß<a ß<a

aEZ\- {0}.

We use induction on the weight | a | to show that with f = (f,,... ,f„),

(5.15) a.^cj«,   ba = C2d¿°;       aEZ"+.

Clearly, by (5.10)-(5.13), (5.15) is true for | a |= 0 and | a |= 1. Assuming (5.15) is

true for a, 0 <| a |< m — l,m>2,v/e find by (5.14) that for | a \= m,

aab0(c*d0 + c0da) + cad0CxCja    2    cßd„-ß = <¡A 2 cßda_ß,
O<0<« ß^a

and so, by (5.10),

aabo   2    cßda_ß = ClcJabQ   2    e/»«*«-/»,       |a|=iw>2.
0</3<« 0<ß<a

This shows that a„ = CxcaÇa, and, by (5.13), also ¿>a = C2dJa and (5.15) is proved.

Finally, f must lie in £>p because, for example, the value of the first factor on the

right-hand side of (5.4) for the solution in (5.15) is | C, |2<f>(£?) and, since the domain

of convergence of </>(ff ) is Dp (p = 0,1, oo), the assertion follows. This concludes the

proof.

An immediate consequence of this lemma is

Theorem 6. Let </>, E 9(Dp) and fJ E %%, j = 1,...,m. Then II JL, jj e 3C#1'.. .^
and

7=1

n ui,
with equality if and only if either II J=x ft■ — 0 or eachfJ is of the form fj(z) = Cj<bj(zÇ ),

z E Dp, for some (common) f E Dp and some nonzero constants C (1 </ < m).

An analogous sharp inequality with respect to the ordinary sum of reproducing

kernels is also available. In fact, one can directly verify the following theorem.

Theorem 7. Let </>, E 9(Dp) and^ E %+j,j= \,...,m. Then 2J=X fj E %u and

2fj
7=1

< 2 ii/j;
2*,       7=1

with equality if and only if each f} is of the form fj(z) = C<j>j(zÇ), z E Dp, for some

(common) f E Dp and some constant C.
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6. Exponentiation. Let aEZ"—{0} and let ak, 1 < k < n, be a nonzero compo-

nent of a. We then write

a- lk = i<xl,...,ak- l,...,a„);       ak>l,Kk<n.

Given an/ E H(Dp),f(0) = 0, with

(6.1) /(*)=2««*a       (/(0) = 0)
a>l

we consider its exponential transform

(6.2) g(z) = exp{/(z))=  2 baz°,
«>o

and hence bQ = 1. For an arbitrary k, 1 < k < n, (6.2) shows that

(3/3z,)g(z) = g(z)(3/3z,)/(z)

and therefore, by (6.1)-(6.2),

2  V>az«-'* = ( 2 baz")l  2 <W"-1*) =2Í2 ßkaßba_ß)z-\
ak>\ Va>0 «/c^l '        ak>\   V /3«£a '

This shows that

(6.3) 6„ = -J- 2/W«-/¡;     «* > i(*b=i),

a formula which is independent of k, 1 < k < n, with ak> I.

Let«i> E%(Dp)sothat

(6.4) *(«) =  2 ca(2i)a;       ca>0,aEZ^- (0), z E Z)p (<f>(0) = 0),
a»l

and consider its exponential transform

(6.5) iKzz) = exp{</>(zz)},       z £ £>p.

Clearly, ^ E ?P(Z)p) and, in view of (6.3), the coefficients of its expansion

(6.6) *(«) =  2 da(zz)a

satisfy

(6.7) da = -±- 2 /VyA-^       a, > 1 (d0 = 1).

This shows that de — e   (1 < A: < n) and, moreover,

Lemma 2. Lei ine notation of (6.4)-(6.7) ûp^(v. 77ien da = 1 /or a = 0, da = ca/or

I a I = 1 and da > ca for \ a \ > 2.

Proof. The lemma is obvious for | a | < 1. For | a \ > 2 we have, by (6.7),

da = ca + —   2 ßkCßda-ß,       aA> 1(1 <*<«).
ak   /?<„
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In particular, since da > 0 for any a > 0 and since the above sum contains the

ß = ek term we have

da > ca + (l/a*K/a-it > ca,

and the lemma follows.

With the above notation, we may consider the functional Hilbert space

%l ={/£//(Z>p):/(0) = 0, U/H, <oo}

where for/ E H(Dp),f(0) = 0, given as in (6.1),

(6-8) ||/||2,= 2c-'|aJ2.
a3*\

This space has

(6.9) k¿z,S) = *izS)= 2ca(zna;       :,íeDp,
a>l

as its reproducing kernel. Also, {$„}„;, i with </>a(z) = Jc^z" is an orthonormal basis

for DC,0.

The new function \p of (6.5) determines another functional Hilbert space %¡¡i of

functions g,

a>0

holomorphic in Dp, with Il g II ̂ < oo where, in view of (6.6)-(6.7),

(6.10) ||g||2,=   ld-ax\bf.

As before, this space has

*,(*,*) = *(*i) = «p{*(tf )}
as its reproducing kernel.

The main theorem in this direction is

Theorem 8. Let <¡> E %(Dp) and thus 4> - exp <j> E <?(.£>,). Assume f E 3C°; r/ien

exp / E %^ and

llexp/H^expll/ll2,.

Equality holds if and only iffis of the form f(z) = k^(z, f) = <#>(zf), z £ Dp, for some

This theorem is completely equivalent to the following lemma.

Lemma 3. Let the notation o/(6.1)-(6.10) apply. Then

(6.11) 2^,W2<exp( 2^'kl
«>o '•«»l

// rne right-hand side is finite. Equality holds if and only if aa = cafa (a > 1) and

oa = dafa (a > 0) for some (common) f E Dp.
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Proof. For r — (rx,.. .,rn) E [0,1)", define

Air)= 2c-'|ajV,       ¿?(r)= % d?\bmfr'.
a>\ «»0

Let aEZ; -{0} with ak > 1, 1 < k < n. By (6.3), (6.7) and the Cauchy-Schwarz

inequality,

a

«XI
0«,   \ C0"a-/3

1/2

aßK  ßißkcßda-ß)
1/2

2
0«a

Ä M2IWW v ß   .   \
ßk~C~~d- 2   ßkCßda-ß)

Cß aa-ß     j\ß^a I

2/8*
l¿,a-ßl

and thus

(6.12)

This shows that

ß<Za

«kd~a\ba

'aß

lakda

2   At
\°ß\2\bg-ßf

cß      da_ß

id/drk)Bir)<Bir)id/drk)Air)

or that

(6.13) (3/3rJlog/3(r)<(3/3rJ,4(r),        1 *£ k *£ n,

as a formal power series. Note that if the right-hand side of (6.11) is finite then A(r)

converges for r E [0,1)" and, therefore, by (6.13), B(r) also converges for r E [0,1)".

Let 8 — (8X,... ,8n) E [0,1)" and choose a path rk = rk(t), where rk(t) is increasing

in t £ [0,1] and rk(0) = 0, rk(\) = 8k for 1 < k < n. Since ,4(0) = 0 and 73(0) = 1, it

follows from (6.13) that

\oèBi8)=J> ft logB[rit)]dt<0tA[rit)]dt = Ai8)

and (6.11) follows by letting 8 — 1". In view of the last inequality or (6.13), equality

in (6.11) holds if and only if for any r £ [0,1)" and any k, 1 < k < n, (6.13) is an

equality. This is equivalent to having equality in (6.12) for every component ak > 1.

This, in turn, is equivalent to an existence of Xa E C so that

(6.14) aßba  ß = Xacßda_ß,        K/3<a.

Putting ß = a in (6.14) results in aa = \aca. On the other hand summing up (6.14)

from all ß with | ß \ = 1 through ß with ß = a, and, using (6.3) and (6.7), yields

ba = ^«^a- Consequently,

(6.15) aa = cad-a\,       «3=1,

and with (6.3) this also shows

(6.16) aaida-ca) = ca-l-   2 ßk"ßba-ß,       ak> l il <k<n).
"k   ß<a
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We define f e (£„...,?„) e C" by

(6.17) tk = 3€$;l,       l^k^n.

We shall show that the only solution of (6.15) subject to (6.3) and (6.7) is

(6.18) aa = cja   ia>l),       ba = dja    (a>0).

This will be accomplished by induction on the weight | a \ . The case of | a \ — 0 is

trivial and for | a | = 1, (6.18) is true by virtue of the definition (6.17) and (6.15). We

assume that (6.18) is true for a, 1 <| a |< m. When | a |= m, there is a component

ak>\, 1 < k < n, of a so that (6.3), (6.7) and (6.16) apply. By (6.16) and the

inductive assumption,

a«(da - ca) = cja —   2 ßkcßda-ß-
*   ß<a

In view of (6.7) this may be written as

a*(da - ca) = cjaida - e.)       i\a\=m> 1).

However, by Lemma 1 we have da — ca > 0 for | a | > 1 and, therefore, aa = ca£".

With this and (6.15), (6.18) follows at once. Finally, the right-hand side of (6.11) for

this solution

expi 2 cM)"} = «p{*0f )}

is assumed to be finite. Since 0 < <H?f) < °° for every f E Dp (p = 0,1, oo) and

<MfD = °° when f is on the boundary of Dp, we must have f E Dp. This concludes

the proof.

The last theorem ties in with a more abstract theorem, proved in Burbea [2], in the

general theory of reproducing kernels. In fact, let k = k( ■, • ) be a positive definite

kernel on A X A where A is an arbitrary nonvoid set. As is well known, there exists

a uniquely determined functional Hilbert space Hk of functions on A such that k is

its reproducing kernel. Also, let F be a nonconstant entire function with nonnegative

coefficients. Clearly, K(■, • ) = F[A:(-, ■ )], being itself a positive definite kernel on

A X A, uniquely determines another functional Hilbert space HK of functions on A

such that K is its reproducing kernel. It follows that iifEHk then F ° f E HK and

\\F°f\\2K<F{\\f\\2k)

and equality holds if/is of the form/(z) = A:(z, f ) for all z E A and some f £ A.

As a particular case of this result we take A — Dp and Ac = Ac, as in (6.9) with

</> £ %(Dp). Then Hk = %° with norm as in (6.8). We also let

OO

n0=  2 Ktm       iXm>0,m = 0,l,...),
m=0

and hence \p = F ° </> E 9(Dp), K= K^ and HK — %V Let the expansion of \p be

given as in (6.6). Consequently, if/ E 3C° then F ° / E %¡ and || F ° /1|2 < F(|| /1|2 )

or

2 0ft«l2<W 2ca-'k|2),
a>0 »a^O '
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with equality if / = <¡>( ■ f ) for some f£Dp (see also [2]). The inequality of Theorem

8 and (6.11) are obtained when choosing F(t) = exp(i).

Theorems 6 and 8 when combined yield the following sharp inequality.

Theorem 9. Let ty E %(Dp) and, thus, xpj = exp </>7: E 9(Dp),j — l,...,m. Assume

thatfj E 3C°,/ =l,...,m. Then explf=l f} E %njUltj and

m

exp 2 fj
7=1

Equality holds if and only if each fj(Kj < m) is of the form fj(z) = <i>(zf ); z E D ,

j — 1,...,m, for some (common) f £ Dp.

7. Applications. Many interesting norm-inequalities are deductible from Theorems

6-9 by specifying the functions of 9(D) and Dp with p — 0,1, oo. For example,

Theorems 1-5 are obtained by such a specification. Before so doing, however,

several remarks are in order on the class 9(Dp) (or 90(Dp)) and reproducing kernels

k(-, ■) on DpXDp.

We first recall a couple of definitions (see, for example, Donoghue [4]), valid for

any domain D in C. A kernel k( ■, ■) defined on D X D is called sesquiholomorphic

in D if for any f £ D, k( ■, f ) and A;(f, • ) are holomorphic in D. This means, in view

of Hartog's theorem, that the function F(z, f) = k(z,l¡) is holomorphic in both

variables (z, f); (z, f) £ D X D. A kernel k(■, ■) which is positive-definite on

D X D and sesquiholomorphic in D is called a Bergman kernel. Such a kernel gives

rise to a unique functional Hilbert space %(D) of functions holomorphic in D for

which Ac( ■, • ) is its reproducing kernel. Moreover, for any orthonormal basis

{hJZ=xoi%(D),

kizA)=   2 hmiz)hjj);       zAED,
m=\

where the bilinear sum converges absolutely and uniformly on compacta of D. In

particular, when D = Dp (p = 0,1, oo),

hmiz) = 2dlm>z°;       zEDp,aEZ\,
a

and, therefore,

(7.1) kiz,0= 2   (  2 di"»~df~Az'P;       zjEDp.
a,ß  \ m=\ I

We now further assume that the nonnegative function Ac(z, z), z £ Dp, depends

only on (| z, | ,..., | z„ |) £ Dp. This imphes, in view of (7.1), that

ldam^ = ca8aß,       ca>0,
m=\

and so

(7.2) Ac(z,0 = 2c<>í Y;        z,$EDp.
a

< exp 2
*. 7=1

fU
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To avoid degenerate cases we also assume that A:(z, z) = oo for z on the boundary of

Dp. This corresponds to requiring that ca > 0 for infinitely many a in an indexed set

A of Z" and thus the function <¡> with $izz) = A:(z, z) is in 9iDp). In an obvious

way this means that %^ = %iD) and that the monomials {za} are orthogonal in

%q with c~', a £ A, as their moments. The reproducing kernel of %^ is then

(7.3) kiz,S) = 4>(4);       z,^EDp.

We note that Dx G D0 E Dx (recall that D0 = P,DX = B and Dx = C") and that

(7.3) means that <l>(zz), z £ Dp, depends only on (| z, |.| zn |). It is, therefore,

natural to also require

(7.4) ^zz-)=F1(|z1|2)..-F„(|z„|2),       z = izx,...,zn)ED0,

and

(7.5) <f>(zz-) = F(|z|2),       zEDx,

where Fx,...,Fn and F are holomorphic functions in the unit disk Bx of C and have

this disk as the domain of thier convergence. In the case of Dx = C the two

representations in (7.4) and (7.5) are possible, but now the corresponding functions

are required to be entire in C. It is now also clear that the corresponding reproduc-

ing kernels for the cases of (7.4) and (7.5) (with Dx included) sre now

(7.6) Ac(z,n = F1(z1f1)..-Fn(zX);        z, ? E Dp (p = 0, oo),

and

(7.7) kiz,£) = Fi(z,£));       z, f E Dp (p = 1, oo),

respectively.

We now discuss Theorems 1-5 as special cases of Theorems 6, 8 and 9 and in light

of the above remarks.

That Theorem 1 follows from Theorem 8 is quite straightforward. This is accom-

plished by taking

0(") = g(")2    (M71)!(^)">        zEDx=B,

and thus <t> E90(DX). Also, <¡>(zz) = -q(n)log(l — | z |2) and we are in case (7.7).

Further, the space %° is now %¡q, ^(zz) = exp{<Hzz)} = (1 - | z |2)-«<"> and 3C^ is

%n  . Theorem 2 is obtained from Theorem 6 by taking

«|»/.(zz-) = (l-|z|2P<");       zeDl(Kj<m),

and thus %<jt, is %„„.. In a similar fashion Theorem 3 follows from Theorem 9.

Theorem 4 follows from Theorem 8. However, the latter implies the following

stronger version of the former.

Theorem 4*. Letf E 9pq(n),p, q > 0, withf(0) = 0. Then exp/ E &p¡q(n) and

llexp/IU^expll/H^,.

Equality holds if and only if fis of the form

/(z)=,F1(n;/7 + n-l;a(z,0)-l

for some f £ C".
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This follows on taking

<¡>izz) = xFx(n; p + n - l;q\z\2) - 1,       z £ C",

so that <f> £ 90iDx) and we are in case (7.7). Also, 9C° = {/£ 9p q(n): f(0) = 0}.

Further,

$izz) = exp{</>(zz)} = ex exp{xFxin; p + n - 1; o|z|2)}

and %^ = &p q(n). This also shows that Kp q( ■, ■ ) in (4.4) is indeed the reproducing

kernel for &p q(n).

A stronger version of Theorem 5, where 9X (n) is replaced by 9 (n), pJt q} > 0

ij = \,...,m), follows from Theorem 6. Note that the reproducing kernels in

Theorem 5 are of both cases (7.6) and (7.7). In a similar manner the following

version, analogous to Theorem 3, is at once deduced from Theorem 9. Let q} > 0

andjf E 9lq (») withj^O) = 0, / = 1,... ,m. Then exp S*= ,/^G^ with
m

*(zz ) = e"m J] exp(exp qj \ z |2)

7=1

and

2

exp 2 JÍ
7=1

5li,
♦ 7='

<exp 2

Equality holds if and only if eachj^ (1 *£/ < m) is of the form

¿(z) = e«7<*.J>_i; ZEC",/=1,...,W,

for some (common) f £ C".

Other norm-inequalities valid for functions holomorphic in Dp are obtainable from

Theorems 6-9. We shall conclude the present discussion with a polydisk version of

Theorem 1 which may also be regarded as a corollary of Theorem 8. The proof is

quite straightforward and therefore omitted.

Let A(P) be the subclass of H(P) consisting of all functions/of the form

(7.8)     fiz) = 2 fjizj);       z = izx,...,z„)EP = B"x,
7=1

fjEHiBx),j=l,...,n.

We shall write q > 0 for q = (a,,... ,qn); qj > 0,j = 1,... ,n, and we introduce the

"q-Dirichlet space"

% = {/£ A(P):fj{0) = 0, Kj < «, Il/h, < oo },

where for/ E A(P) as in (7.8),

11/11^2 j(\f;iz)\2doiz).

This is a functional Hilbert space with the reproducing kernel

*,(*•*) = -2 flyfciO-'Ä);    ^e^
7=1
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Analogously, we define the "q-Bergman-Selberg space "

3Cq={gE//(/>): ||g||q<*o},

where for g E H(P) with g(z) = 2a>0 baza, z E P,

(7.9)        mi = ( n ix*,)) 2 ,.. r;! , ,, \ba\2.
\j=i J a>0 (TLj=iT(qj + aj))

Again, this is a functional Hilbert space of holomorphic functions in P whose

reproducing kernel is

K,izA)= ñ (i-^P;     i,fep.
7=1

As before, when q > 1 (i.e., when oy > 1 fory = 1,... ,n) the norm (7.9) of %q can

be realized as

wfi=¿( n («y- i))¿w*)ia( n (i-NTr2)*><*).   «>*.

and

W^TTv/  Hz)\2dsxizx)---dsxizn),       q=l,
(277 )    'Sf

where in the last inegral, g stands for the nontangential distinguished-boundary

values of the holomorphic function g(z) in F.

Under these circumstances, the polydisk version of Theorem 1 is

Theorem 10. Letf E \, q > 0. Then exp/ £ %q and

|e«P/li < «Pl/K-
Equality holds if and only if fis of the form

n

/(*) = -2 iylogO-'yfy).      zGP'
7=1

for some f E P.
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