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UPCROSSING PROBABILITIES
FOR STATIONARY GAUSSIAN PROCESSES

BY

JAMES PICKANDS IIIO

1. Introduction. Let {X(t), —co<t<co} be a separable, measurable version of

a continuous stationary Gaussian stochastic process. In what follows, it will be

assumed, without loss of generality, that

(1.1) EX(t) = 0,       EX2(t) = 1.

The probability measure associated with the process, then, is completely determined

by the covariance function

r(t) = EX(s)X(s+t).

By stationarity, of course, r(t) does not depend upon s.

Upcrossings and their properties have been studied by a number of authors.

They have used the following definition. An upcrossing of the level x is said to have

occured at t0 iff

X(t0) = x,   and   X'(t0) > 0,

where X'(t0) is the derivative of the realization X(t) at r0. Obviously, such a

definition is meaningful only if the realizations are everywhere differentiable with

probability one. A necessary condition for this is that

(1.2) r(t) = \-Ct2 + o(t2),

as í -> 0, for some finite positive constant C. See for example Cramer [5]. Many

processes considered in the literature do not satisfy (1.2). See, for example Slepian

[10]. In this paper we introduce a new but natural definition of an upcrossing. For

any e>0, we say that an "e-upcrossing" of the level x occurs at r0 if

X(t0) = x,   and    X(t) < x,

for all t such that t0 — e^t<t0. The advantage of this definition is that it is not

necessary to assume that X(t) is differentiable everywhere. It is only necessary to

assume that X(t) is continuous everywhere. In order that this be true with prob-

ability one, it is sufficient that there exist a ß> 1 such that

lim sup |log t\B(\— r(t)) < oo.
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See Belyaev [2]. In this paper, it is assumed throughout that

(1.3) r(t) = l-Ct" + o(ta),

as t -> 0 for some finite positive constant C, and a in (0, 2]. Of course a cannot be

greater than 2, since then r(t) would not be positive definite.

For upcrossings of the conventional type, it has been proved that

p. = EN(x, t)/t = VC exp (-x2,W2 tt,

where N(x, t) is the number of upcrossings in the interval (0, t]. As observed

above, this expression is only meaningful if a = 2. See Cramer and Leadbetter [6,

pp. 256-271]. In §2, a limiting form is found for p., when £-upcrossings are involved,

and (1.3) holds.

It was shown by Volkonski and Rozanov [11] that for any A, 0<A<oo,

(1.4) lim P{N(x, X/fi) = k} = e~KXk/k\,

for k = 0, I,..., provided a uniform mixing condition holds. That condition

involves the behavior of r(t) as / -> oo. It has been pointed out that the upcrossings

constitute a regular stationary stream of events. See [6, pp. 222-227]. It is well

known that in order that the number of events have the Poisson distribution, it is

necessary and sufficient that on any set of nonoverlapping intervals, the numbers

of events be mutually independent. This is, of course, not true for the upcrossings

of a stationary Gaussian process. It is heuristically clear, though, that if events far

removed in time tend to be less dependent, the independence condition may be

approached in the limit. Hence the result (1.4). The mixing condition referred to

above does indeed involve the weakening of dependence over time. However, it is

a rather strict condition and it is quite difficult to verify. Remarking that this is so,

Cramer [5] proved that this condition can be replaced by a simpler and weaker

one. He assumed that

(1.5) r(t) = 0(t-%

for some ß>0, as t->co. Heuristically, it would be reasonable to suppose that a

similar result would hold for £-upcrossings. That this is indeed so is the substance

of §3. The result is proved assuming (1.3) and a condition similar in kind to (1.5)

but still weaker.

In §4, it is shown that the limiting distribution of the waiting time is the Gamma

distribution. Some other general observations are also contained in §4.

By symmetry an £-downcrossing could be defined as follows. We say that an

e-downcrossing of the level x occurs at t0 if an £-upcrossing of the level x occurs at

— t0, for the process X(—t). Clearly then, those results which are presented in this

paper for e-upcrossings, hold for e-downcrossings as well. The most complete

compendium on problems involving upcrossings of the conventional kind is, of

course, the book by Cramer and Leadbetter [6].
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2. The expected number of upcrossings. In this section a theorem is stated and

proved which gives an asymptotic formula for EN(e, x, t) as x -*■ oo where, of

course, N(e, x, t) is the number of e-upcrossings of the level x, in the interval from

0 to /. First, we define the following quantities. Let

Ax(t)=   inf   \s\-"(\-r2(s))¡2,

(2.1) A2(t)=  sup  \s\-%\-r2(s))/2,
OSsSi

B(t) =   inf  r(s).
OSsSt

For any a, x, 0<a, x<co, let the probability measure Px(-) be defined on the

process {X(t), — oo<?<oo} as follows. For any integer k, the joint distribution of

{X(jax~2la), -k^j^k} is the same under Px(-) as under P(). For any t, let k be

the integer such that kax~2la^t<(k+ \)ax~2la. Then, under Px() with probability

1, X(t) = X(kax-2la).

Theorem 2.1. Let {X(t), — oo</<oo} be a separable measurable version of a

stationary Gaussian stochastic process with means 0, and covariance function r(t),

for which (1.3) holds. Assume also that

Then

where

(2.2)

inf   |r|-a(l-r(0) > 0.
OStSe

lim EN(e, x, t)/x2lax¥(x)t = CllaHa

Y(x) = (27r)-1'2x-1e-x212,

/•co

0 < 77a = lim T~x       espf sup   Y(t) > s\ds < oo,
r-.» Jo losisr J

and Y(t) is a nonstationary Gaussian process with mean and covariance functions

EY(t) = -\t\a,(2.3) w ' "

cov(y(fl), Y(t2)) = -|r1-r2|«+|r1|a4-|r2|a.

Before proceeding to prove the Theorem, several lemmas are stated and proven.

Lemma 2.1. For all x>0,

(2.4) T(x)(l-x-2) ^ l-<D(x) = T(x),

where T(x) is given by (2.2), and

(2.5) <D(x) = O)"1'2 P"   exp(-t2/2)dt.
J — 00

Ti/r/Aermore

(2.6) lim (l-cD(x))/T(x) = 1.
JC-.00

Proof. The inequality (2.4) follows immediately by differentiation. The result

(2.6) is given in Cramer [4, p. 374],
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Lemma 2.2. For any a,0<a<co, provided that (1.3) holds with C= I,

lim Px{Z(nax-2la) > x}/T(x) = Ha(n, a)
.X-MX

(2.7) /»OO

1 +       espf max   Y(ka) > s\ ds < oo,
Jo \0SfcSn J

where {Y(t), 0 ^ t < oo} has the mean and covariance functions (2.3), and

(2.8) Z(t) =  sup  X(s).
OSsSt

Proof. Obviously, for any a,b,0<a,b<co,

Px{Z(nax-2ltt) > x} = Px{X(o) > x}+Px{b < X(o) 5j x,Z(nax-2la) > x}

+Px{X(o)û b,Z(nax-2la) > x}.

First, let us consider the third term on the right-hand side of (2.9). Clearly, it is

dominated by Px{Z(nax'2la)>x : X(o)-¿b}. As is well known, the conditional

covariance matrix for the variâtes X(kax~2la), l5¡A:5i«, given that X(o) = u is

independent of u, and the conditional means are r(kax'2la)u. But, by (1.3), for

sufficiently large x, the covariances are all positive, so that

Px{Z(nax-2la) > x : X(o) = «}

is a nondecreasing function of u. Therefore,

Px{Z(nax-2la) > x : X(o) ú b} Ú Px{Z(nax~2la) > x : X(o) = b}.

Furthermore,

Px{Z(nax~2Ui) > x : X(o) = b}

5i 2 P{X(kax~2la) > x : X(o) = b}
k=0

= 2 (l-®((x-r(kax-2la)b)/(l-r2(kax-2la))112)).
fc=0

But, evidently, (l-r2(kax-2la))ll2~^2(ka)al2x-1, as x^oo. Thus, for each k,

l-<b((x-r(kax-2la)b)l(l-r2(kax-2¡a))1!2) Ú l-<D(dx(x-è)) = o(l-Q>(x)),

for some positive finite constant Cl5 as x->co, where $(x) is given by (2.5).

Therefore, by Lemma 2.1,

(2.10) lim AÄ{A-(o) ú b,Z(nax~2la) > x}p¥(x) = 0.
X-*oo

Now, consider the second term on the right side of (2.9).

Px{b < X(o) g x,Z(nax-2la) > x}

= (27T)-1'2 rexp(-M72)AA{Z(«cx"2/û:) > x : X(o) = u} du.
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Let u=x + x'1s. Then

Px{b < X(o) = x,Z(nax~2la) > x}

= T(x) f       e-s~s2l2x2Px{Z(nax-2la) > x : X(o) = x+x^s} ds.

Let us define the process Yx(t)=x(X(tx'2la) - x). Given that X(o) = x + x~1s, the

mean and covariance functions for Yy(t) are

EYx{t) = x^tx-^Xx + x-^-x) = -x2(l-r(tx-2la)) + r(tx-2la)s

= -\t\a+s+o(l)

as x —> oo, and

cov (Yx(tx), Yx(t2)) = x2(r((t2-tx)x-2l")-r(txx-2la)r(t2x-2"*))

= |ii|a+|r2|a-|/i-ra|a+o(l)

as x->oo. See Anderson [1, p. 28]. Let Y(t)= Yx(t)-s. Then, as x-^oo, the

means and covariances of Y(t) approach limits which are independent of s, in

particular those given by (2.3). Evidently

(2.11) ATO = x-1(Y(tx2!a)+s) + x,

and the event

{Z(nax~2la) > x} = f max x_1(Y(ka)+s) + x > xX = / max  Y(ka) > -s\,
\0Skun J \0SkSn J

except on a set of Px() measure zero. So

Px{b < X(o) ^ x,Z(nax-2la) > x}

,.,., = T(x) f exp(-i-52/2x2)P/max  Y(ka) > -s\ds
(2AZ) Jx(b-x) \0SfcSn J

= Y(x)(XX     exp (s-s2/2x2)Pf max  Y(ka)> s\ds. \
Jo \0SfcSn J

Clearly, as i^oo, P{maxoSfcSn Y(ka)>s} = o(e~2s) as s^-oo. Thus it follows by

the Dominated Convergence Theorem (Loeve [8, p. 125]) that the integral on the

right side of (2.12) converges to the integral on the right side of (2.7). Recalling

(2.9) and (2.10) the result follows. The lemma is proved.

Lemma 2.3. Let X and Y be jointly normally distributed with means 0, variances 1,

and covariance r. Then

(2.13) P{X > x,Y> x} = (l+r^xKl-^x^l-rMl+r))1'2)),

where $(x) is given by (2.5) and Y(x) by (2.2).

Proof. By definition,
/»CO      /«CO

P{X > x,Y> x} = (27r)-1(l-r2)-1'2 exp(-(s2 + t2-2rst)/2(\-r2))dsdt.
J X     J X



56 JAMES PICKANDS III [November

Let to=x(l— r2)112, and consider the change of variables s=x + x~xu, t=x + x~1v.

Then

(2.14) P{X > x, Y > x} = (2tt)-1x-2 exp (-x2/(l+r))(l-r2)~ll2I(x, r),

where

7(x, r) =  r r exp (-(u + v)/(l+r)) exp (-(u2 + v2-2ruv)/2x2(l -r2)) du dv
Jo    Jo

¿J(x,r)= r f " exp ( - (u+v)/(l + r)) exp ( - (u - v)2/2to2) du dv.
Jo   Jo

Since 1/(1 + r)-1/2 = (1-r)/2(l+ r), by (2.14) above,

(2.15) P{X > x, Y > x} ^ (2tt)-1i2w-1 exp (-to2 ¡2(1+r)2)Y(x)J(x, r).

Now, let us evaluate J(x, r). Let s=(u + v)/(l+r), t = (u — v)/to. Then —co<i<oo

andw\t\/(l+r)^s<ao. The Jacobian \8(s, t)/8(u, v)\=2/to(l +r). So

ds dt = 2 du dv/to(l+r).

Thus

J(x, r) ^ HI +0/2) P   exp (-i2/2)( P e"s dr) dt

= w(l+r) r exp(-t2/2)exp(-to\t\/(l+r))dt
Jo

(2.16)
= to(l +r)       exp (-(i + co/(l +r))2/2) dt exp i>a/2(l +r)2)

= (2TT)ll2to(l +r) exp (oj2/2(1 +r)2)(l - 0>(«/(l +r))),

where (D(x) is given by (2.5). Combining (2.15) and (2.16), the result (2.13) follows.

The lemma is proved.

Lemma 2.4. If (1.3) holds, with C=l, and Ay(t)>0,

(2.17)   liminfA*{Z(r) > x}/x2'aX¥(x)t ^ a"1(l-4 V (1 - $((A(0(Ma/8)1,2))l
*-°° \ k=0 I

which is greater than 0 for all a, where Ax(t) is given in (2.1). The expression on the

right side of(2.17) is finite provided Ay(t)>0.

Proof. Clearly

A*{Z(r) > jc} ̂   2 P{X(kax-2la) > x}

(2.18)
-   2   P{X(kax~2la) > x, X(lax-2la) > x},

k*l = 0
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where m=[x2lat/a], and [x] is the greatest integer less than or equal to x. By

stationarity, the equation (2.18) can be rewritten

Px{Z(t) > x} = mP{X(o) > x}

(2.19) V1
v      ' -2^ (m-k)P{X(o) > x, X(kax-2la) > x}.

k=l

But by Lemma 2.3,

P{X(o) > x, X(kax-2la) > x} á 2xY(x)(l-^((Ax(t)(ka)aß)112)).

Recalling (2.19), then, the result (2.17) follows. Clearly a can be chosen so that

the expression on the right side of (2.17) is positive. The lemma is proved.

Lemma 2.5. 7/(1.3) holds with C=l and Ax(t)>0, then

(2.20) lim Px{Z(t) > x}/x2laXV(x)t = Ha(a)/a,
X-.cc

where

(2.21) 77a(a) = lim Ha(n, a)/n > 0,
n-* oo

T(x) is given by (2.2), and Ha(n, a) by (2.7). The function Ha(a) is bounded away

from 0 for all sufficiently small a.

Proof. For each positive integer k, let the event Bk={X(kax~2!a)>x}, and for

an arbitrary integer n, let Ak=(Jk2lk_1)n + x B,. Clearly,

<-[*2/<*(/na] +1

Px{Z(t) > x} = P|     (J^      Akj,

where [x] is defined to be the greatest integer less than or equal to x. By stationarity

P{Ak}=P{Ax} for all k, Jfc£l. Consequently

Px{Z(t) > x} Ú ([x2lat/na] + l)P(Ax) = ([x2lat/na] + l)Px{Z(naX-2la) > x}.

By Lemma 2.2, then,

(2.22) lim sup Px{Z(t) > x}/x2laXV(x)t Ú Ha(n, a)/na,
X-. oo

where Ha(n, a) is given by (2.7). On the other hand,

IxWninai IxWtlnal

Px{Z(t)>x}=     2    p(A*)-    2    p(Ak^AD
k = l k*l = l

IxWninal(ix-°i"tina¡ \

P(Ax)-   2   PU,r\Ak+M
Jc=l /

(n IxWtlnal >

P(Ax)-     2      P(BknB,)).
k=l,l = n + l I
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But x2(l -r2(ax~2lam))>2Ay(t)(ma)a where Ay(t), given by (2.1), is assumed to be

greater than 0. Recalling Lemma 2.2,

(2.23) liminf Px{Z(t) > x}/x2lay¥(x)t^ÍHa(n, a)- dik.,)/na,
*^°° \ k=l1t=n + l 'I

where

(2.24) dm = 2(1 - <S>((Ay(t)(maTßy>2)).

Clearly

(2 25) 2 4»<co>    2    4*-«- 2 (Î d\
m = l k-1,1-n+1 fc = i \l = k      I

But lim,-.,*, TÎ.T=kdi=0, by (2.25). But Caesaro convergence implies convergence.

So

(2.26) lim (      2      dik-n)/na = 0.
»-«   \fc = l.I = n+l //

Combining (2.22), (2.23), and (2.26), we get the result. It follows, by Lemma 2.4,

that there exist constants a0, ay, 0 < a0, ay < oo, such that for any a > a0, Ha(a) > ay

>0. For any a, there exists an integer m, such that am>a0. By definition (2.7) of

Ha(n,a), clearly Ha(n, am)^Ha(n,a). Hence Hct(a)>Ha(am)>ay. So Ha(a) is

uniformly bounded away from 0. The lemma is proved.

Lemma 2.6. Let Q(x, r, h) be the probability that X^x, and Y>x+h, where X

and Y are jointly normally distributed with means 0, variance 1, and covariance r,

and x, y > 0. Then

(2.27) Q(x, r, h) S xr~\l -rY'^fij^-xj^)1'2),

where

(2.28) R(x) = £° (l-®(s))ds,

and <I>(x) is given by (2.5), and Y(x) by (2.2).

Proof. Suppose that X and Y are jointly normally distributed with means 0,

variances 1, and covariance r. Then

A{A" 5i x : Y =u} = P{(X-ru)/(l-r2)112 ^ (x-ru)/(l-r2)112 : Y = u}

= H(x-ru)/(l-r2r2) = ^x{^jm + r^^j.

So

Q(x, r, h) = i»"i'2 £fc exp (-u2/2)^x{^'2+ r ¿X_r$m) du.
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Let u = x + x~1t. Then

Q(x,,,h) - TW £ e"P (-'-''^'^{"{j^f'-r x(1 _'f a),„) it

s TW£e-(,-*(ííríLF-,(lí:)"í)),,

Consider the function

(2.30) g(y)=  ¡™ e->(l-®(yt-c))dt.
Jhx

Let s=yt—c. Then,
/•oo

g(y) = y -1 exp ( - (s + c)/y)(\ - <D(s)) ds
Jhxy-c

y-l   [X (l-<S>(s))ds.
Jhxy-c

(2.31)

Jhxy-c

The result (2.27) follows, lettingy=r/x(\ -r2)112, c=x((l -r)/(l +r))m. The lemma

is proved.

Let us now consider the function R(x). By Lemma 2.1, and using integration by

parts,

R(x) = -x( 1 - <I>(x)) + O) -ll2 i" sexp(-s2/2) ds
J X

(2.32) = -x(l-4>(x)) + (27r)-1'2exp(-x2/2)

= (2tt) -ll2 exp ( - x2/2) - (2tt) - !'2x(x -* - x "3) exp ( - x2/2)

= (27r)-1'2x-2exp(-x2/2) = x-lx¥(x),

where T(x) is given by (2.2).

Lemma 2.7. For any a, b, y, 0<a, y<oo, 2~al2<b<l, provided(1.3) holds with

C=l,

limsupP{A-(o) ^ x-x-1y,Z(ax-2la) > x}/Y(x) ^ M(a,y),
A-* CO

where

M(a,y)^(a/2Y'22^a-Uim
(l.ii) fc=0

• R(y(\ - b)(a/2) " «'\2al2b)k - 2 " ll2(a/2)al22 " akl2),

and 'F(x), R(x), and Z(t) are given respectively by (2.2), (2.8), and (2.28).

Proof. The events Dk, k=0, 1, 2,... are defined as follows. Let

Dk = {   max    X(Jax'2la/2k) = x-x^y + x-^l-b)
(0S;'S2'c-l

fc-l N

■J V = x-x-1ybk,    max    X(jax-2la/2k + 1) > x-x'W*1 r-
/To 0S/S2*+1 J
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Clearly,

AV<z V2l^EUk,

where

Ej.k = {X(jax~2la/2k) <: x-x^yb*, X((2j+l)ax-2la/2k + 1) > x-x~1ybk + 1}.

Recalling Lemma 2.6,

P{Ei,k) = Q(x-x-1ybk,r(2-^k + 1)ax-2"'),x-1y(l-b)bk),

where Q(x, r, h) is given by (2.27). Consider the argument of the term on the

right side of (2.27).

hr Jl-rY12 _ yd-b)bkr ^u.^-'Y"
(1-r2)1'2      \l+r)     ~ x(l-r2)il2    {X   X   y   \l+r)

y(l-b)bkr       /l-r\1/2

= x(l-r2)1/2    X\l+r)

ä y( 1 - ¿>)A(2 "<* + "ax " 2/a)(2^2(2 "(k + »ax "2,a)) "1/2

• (a/2) - "'2(2al2b)k -(l+r(2~{k + 1)ax-2la)) ~1/2

• (A2(2 -<* + »ax - 2la))ll2(a/2)al22 " ak<2,

where A2(t) and B(t) are given by (2.1). Clearly lim(_0 B(t) = limt^0 2A2(t) = l.

So, by the Bounded Convergence Theorem, in the limit as x -^ oo, the argument is

y( 1 - b)(a/2) - °i2(2<"2b)k - 2 " ll2(a/2)al22 " ak>2.

Now consider the term by which the function on the right side of (2.27) is multiplied.

xr-^l-r2)1'2 5¡ (A(2-<fc + 1)ax"2"l))-1(2^2(2-('c + 1)ax-2,a:))1'2

.(2-c + Dfl)«/2^(2-*+1»û)«'2   asx^co.

It follows that

limsupA{AJifc}/T(x)
(2.34) *-"»

á (2 -<fc + »a)al2R(y( 1 - b)(a/2) ~ <"2(2al2b)k - 2 - 1/2(a/2)a/22 " akl2),

where R(y) is given by (2.28). But

(2.35) P{Dk} Ú   2 W.J = 2"A{A1>fc},
i=0

since P{Ej¡k} is the same for all j. But

CO

(2.36) A{A(o) 5¿ x-x-1y,Z(ax-2'a) > x} <  2 ^{AJ-
fc = 0

Combining (2.34), (2.35), and (2.36), we get the result. The lemma is proved.
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Lemma 2.8. Tor any a, 0<a<co, if (1.3) holds with C=l, then

lim sup P{X(o) ^ x,Z(ax~2ia) > x}/T(x) ^ M (a),
X-.cc

where

(2.37) M(a) =    inf   (M(a, y) + ey -1),
0<y< oo

^(x) is given by (2.2), and M(a, y) by (2.33). Furthermore

(2.38) lim M(a)/a = 0.
O-.0

Proof. Clearly, for any y, 0 < y < oo,

P{X(o) < x,Z(ax~2la) > x}

(2.39) "
á P{X(o) = x-x-1y,Z(ax-2la) > x} + P{x-x~1y < X(o) = x}.

By Lemma 2.1

(2.40) P{X(o) > x-x'V) ~ eyXF(x)

as x^oo. Combining (2.39) and (2.40), by Lemma 2.7, we get the result. It is

clear from the definition (2.33) of M(a, y), that (2.38) holds. The lemma is proved.

Lemma 2.9. Provided (1.3) holds with C= 1, ifAx(t)>0,

(2.41) lim P{Z(t) > x}/x2laX¥(x)t = Ha,
X-. 00

where

Ha = lim Ha(a)/a = lim J-^l + f™ esPf sup   Y(t) > s\ ds)
a-0 T-.00 \ Jo \0StSr J        J

C2'42) ,00

= lim J"1       esPS sup   7(0 > s\ds.
r->oo Jo \oSisr j

Proof. By Lemma 2.8,

lim sup (P{Z(t) > x}-Px{Z(t) > x})/x2/aT(x)í = Ha-(Ha(a)/a) á M(a)/a,
X-. oo

where 77a, Ha(a), and M(a) are given respectively by (2.42), (2.21), and (2.37).

Let 7* be an arbitrary finite positive real number, and let n = [T/a]. By Lemmas 2.2

and 2.8,

limsup(P{Z(«flx-2,a) > x}-Px{Z(nax-2la) > x})/na"¥(x)

= H'a(T)-(Ha([T/a],a)/a[T/a]) ^ M(a)/a,

simultaneously for all T, 0<7<oo, where, of course,

77^(7) = limsupP{Z(Kox-2,a) > x}/naY(x)

(2.43)
= limsupP{Z(rx-2/a) > x}/T(x)r.

Ä->0O
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Recall Lemma 2.8, and in particular (2.7). Clearly

H'tt(T) = r-^l + C esPÍ sup   7(0 > s\ ds\-

Let £>0 be arbitrarily chosen. Let a be so chosen that M(a)/a<e/3. Let T' be so

chosen that if T>T then \(Ha(a)/a)-(Ha([T/a], a)/a[T/a])\ ^e/3. This is possible

by Lemma 2.5. Now

\Ha-H'a(T)\ ^ \Ha-(Ha(a)la)\ + \(Ha(a)/a)-(Ha([T/a],a)/a[T/a])\

+ \(Ha([T/a],a)la[T/a])-H'a(T)\

see
= 3+3 + 3 = £'

provided T>T'. So, since e was arbitrarily chosen limr-,„o H'a(T) = Ha. Thus the

result (2.41) follows. The lemma is proved.

Proof of Theorem 2.1. Let us begin by assuming that C= 1. Clearly there exists

an e'>0, such that |r|~a(l— r(0) is bounded away from 0 on (0, e+e']. Let the

events A and B be defined as follows. The event A is said to hold if A"(0 > x for

some r, -cgrgO. The event B is said to hold if AT0>* for some t, O^r^e'.

By stationarity and by Lemma 2.9,

P{A UB} = P{Z(e+e') > x}~ 77a(£ + e')x2/aT(x)

as x -> oo. Similarly, by Lemma 2.9,

P{A} ~ Haex2lax¥(x),

and

(2.44) P{B} ~ Hae'x2laY(x)

as x -* oo. But

(2.45) P{A nB} = P{A}+P{B}-P{A u B} = o(x2lttXY(x))

as x -> oo. By the definitions,

{N(e, x, e) = 1} C B C {N(e, x, e) = 1} U {A H J?},

so

P{/V(e, x, e') = 1} á P(£) ^ P{/V(e, x, «') = 1}+7>L4 n B).

Consequently P(B)-P(A n B)^P{N(e,x, e') = l}<P(B). Recalling (2.44) and

(2.45),

P{N(e, x, e') - 1} ~ 77ae'x2/aT(x)

as x -> oo. But, e' can be chosen to be smaller than e. Then there can be only one

e-upcrossing on the interval (0, e'], and

P{N(e, X, e') = 1} = EN(e, X, e').
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So the theorem is true if C— 1. Suppose that this is not the case. Let

(2.46) Xy(t)= X(tC-lla).

Then Xy(t) satisfies the conditions of the theorem with C= 1. An eC ~ 1,<2-upcrossing

of the level x by the process Xy(t) is an e-upcrossing of the same level by the

process X(t). Furthermore the former satisfies the conditions of the theorem if

and only if the latter does. Note that the result of the theorem is independent of

the choice of e. The theorem is proved.

3. The asymptotic distribution. In this section, it is shown that under very

general conditions, the Poisson limit theorem holds for "e-upcrossings" as it

does for upcrossings of the conventional kind. The main result of this section is

contained in Theorems 3.1 and 3.2. The latter simplifies the conditions for the

former.

Theorem 3.1. Let {X(t), —co</<co} be a separable, measurable version of a

continuous stationary Gaussian process, satisfying the conditions of Theorem 2.1.

Assume also that the following two conditions hold.

First, for any a, A, 0 < a, A < oo, and any positive integer n,

(3.1) lim Dn(a, A, x) = 0,

where

Dn(a, A, x) = max \PX(A)-PX(A)\,
A

the maximum being taken over all of the sets A which are unions of some of the sets

B¡, l^iSn, where B¡ is the event that an e-upcrossing of the level x occurs on the

interval ((i— l)X/np., iX/np.], P'X(A) is the product measure, and

(3.2) p. = A7V(e, x, t)/t,

which has the same value for all positive t. Specifically, for each i

PÁBi) = Px(Bi),

but under Px(-), the events Bx are mutually independent.

The second condition is that for any such a, A, and any e > 0,

(3.3)

where

(3.4) /

(3.5) m

(3.6) Qk(x)

(3.7) qk(x)

and

(3.8)

lim sup > Qk(x) ¿ X/aHa,
*-°°    k = i

= [ex2i°/a],

= [Xx2la/ap] ~ [X/aHaY(x)]   as x -> oo,

= (l+rk(x))(l-®(xqk(x))),

= ((l-'•*(*))/(l+oc«))1,2,

rk(x) = r(kax-2la).
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If both of these conditions hold, then, for any k = 0, 1, 2,...,

lim P{N(e, x, X/p.) = k} = e-ÁXk/k\.
X-* oo

Before proceeding to the proof of the theorem, some lemmas are stated and

proved.

Lemma 3.1. For any a, A, 0 < a, A < co, //( 1.3) holds with C=l, and the conditions

of Theorem 2.1 hold,

(3.9) lim sup Px{N(e, x, X/p) ^ 1} Ú <o(a),
X-KX>

where

(3.10) to(a) = XHa(a)laHa,

and p., Ha(a), and Ha are given respectively by (3.2), (2.21), and (2.42).

Proof. By definition {N(e, x, X/p.)^ l}<= \Jlkxíu¿ Ak, where Ak is the union of the

events {A"0ax-2,a)>x}, [Ârx2,7a]5i/5;[(Â:+l)x2,7û]. By Lemma 2.5 and Theorem

2.1, for all k, Hmx^«,P(Ak)/p = Ha(a)/aHa = to(a)/X. But P{N(e, x, X/p,)^ l}^

([X/p,] + l)P(Ay)~to(a), as x->-oo, where to(a) is given by (3.10). The lemma is

proved.

Lemma 3.2. If for any a, A, 0<a, A<oo, the condition (3.3) holds, if (1.3) holds

with C= 1, and the conditions of Theorem 2.1 hold,

(3.11) lim sup Px{N(e, x, X/p) ^2} S X2/a2H2,
X-* CO

where ¡x is given by (3.2), and Ha is given by (2.42).

Proof. By definition

m

(3.12) Px{N(e,x,X/p)^2}ú        2        P\i-Âx),
i,j=0,\\-j\il

where / and m are given by (3.4) and (3.5), respectively, and Afc(x) = A{A"> x, Y> x},

X and Y being normally distributed with means 0, variances 1, and covariance

rk(x) given by (3.8). By Lemma 2.3,

(3.13) Afc(x) Ú nx)Qk(x),

where T(x) is given by (2.2), and Qk(x) by (3.6). Recalling (3.12),

m

Px{N(e, x, X/p,) ̂  2} g 2mT(x) 2 Qk(x).
k=l

Recalling (3.3), (3.5), then the result (3.11) follows. The lemma is proved.
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Lemma 3.3. If for all a, X, 0<a, A<oo, the condition (3.3) holds, then, if (\.3)

holds with C=\, and the conditions of Theorem 2.7 hold,

(3.14) lim inf Px{N(e, x, X/p.) ̂  1} ^ u>(a)-X2/a2H2
X-* CO

as A -> oo, where co(a) is gwen oj (3.10).

Proof. Clearly
W/tf] [A/tf]

Px{N(e, x, A/tx) ê  1} ä   2 7»(A)- 2 P(A* n ^
fc = 0 ij=0, \i-j\Hl

m

= WAP(A,)-     2      pu->ito
1,7 = 0, |i-7|^i

m

= [À/^^o-ifiYw 2 e*w,
fc=l

where /, m, and ßfc(x) are given respectively by (3.4), (3.5), and (3.6) and the events

Ak are as defined in Lemma 3.1, by the reasoning of Lemma 3.2. Combining the

results of the previous two lemmas, we get the result (3.14). The lemma is proved.

Lemma 3.4. Let the conditions of Theorem 3.1 be satisfied. Then for any a, A,

0<a, A<oo, if C=\,

(3.15) lim Px{N(e, x, X/p) = k} = e-a"-a^k(a)/k\,       0 ^ k < oo,
X-. co

where <o(a), Ha(a), and Ha are given respectively by (3.10), (2.21), and (2.42).

Proof. Let n be an arbitrary positive integer. Let a and A be so chosen that

0 < a, X < oo. Let the events Bh 1 g i á n be defined as in the statement of the theorem.

Let A^(l, n) be the number of the events Bt which occur. That is, A^l, n) is the

number of subintervals on each of which at least one £-upcrossing occurs. The n

subintervals are, of course, the intervals ((i—l)X/np., iX/np.], l^i^n. Under the

measure Px(), the generating function for A^l, n) is

(3.16) Q'x(s) = Et?*** = fi (1 +P'x(Bi)(s-1))",
i=i

where of course E'x denotes expectation with respect to the measure P'x(■ ). Since

the events Bx are finite in number, if n is held fixed, by the condition (3.1), for

all s,

(3.17) lim \Qx(s)-Q'x(s)\ = 0,
X-.CO

where Qx(s) is the same generating function, but under Px(). But, by Lemmas 3.1

and 3.3, for any i, l^i^n

(3.18) lim inf P(B,) = («(a)/») - 0(co(a)/n)2
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as « —> oo, and

(3.19) lim sup A(A¡) í (w(a)/ri),
X-* oo

where to(a) is given by (3.10). By Lemma 3.2,

(3.20) AA(2, «) = nO(to(a)/n)2,

where N(2, ri) is the number of intervals on each of which at least two e-upcrossings

occur. Recalling all of these conclusions, the result (3.15) follows. The lemma is

proved.

Proof of Theorem 3.1. First, assume C= 1. Let the event A be the event that the

two measures A() and Px() assign different values to N(e,x,X/p.). Clearly

A^ KJk=oBk, where Bk is the event that X(kax~2la)^x, and X(t)>x for some t

in the interval (kax-2la, (k+l)ax-2la). But P(A)^ 2k=o P(Bk) = (m + l)P(By), by

stationarity, and, by Lemma 2.8,

lim sup P(A) 5i XM(a)/aHa -> 0
X-* OO

as a ->- 0, by (2.38), where M(a) is given by (2.37). Recalling (2.42), it follows that

lima^o to(a) = X, where to(a) is given by (3.10). The theorem is proved, provided

C=l. It follows in general by the transformation (2.46). The theorem is proved.

Theorem 3.2. The conclusion of Theorem 3.1 is valid if (I. I) and (1.3) hold, and

either

(3.21) lim r(t) log t = 0
(-.00

or

(3.22) P   r2(0 dt < oo.
J — 00

The proof of this theorem is essentially contained in the following sequence of

lemmas.

Lemma 3.5. Let c be any real positive finite quantity, and let P() and P'() be

two normalized multivariate Gaussian measures. That is P() and P'() are measures

under which the components are jointly normally distributed with means 0, and

variances 1. Let the covariances be, respectively, r¡j and r{¡. Then

iDn=   2 \ru-r'ti\<p(c, \r"u\),
i,f = i

where

(3.23) <p(c, \r'u\) = (l-r?/)-1/a exp {-c2/(l + |/f,|)}

p{Ùi(Xk > c)}~p'{Ùiçx*> c)}

and r"j=max (rtj, r[j).
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This lemma was originally proved by Berman [3] for the case in which both

measures are stationary. The present lemma was first given in [9].

Lemma 3.6. Simultaneously for all m^\ if (1.3) holds,

(3.24) I 2 WOI = ̂  f KOI dt + o(ax-2*),
m ic = l 2   Jo

as x ->- oo, where rk(x) is given by (3.7) and T=max~2la.

Proof. By definition (3.7),

m m

2 \rk(x)\ = 2 V(kax-2'°)\
k=l k=l

= (x2la/d) £ „ ds\r(kax-2^)\
k=lJ(k-l)ax'2"'

"•     ¡"kax-2!"

ï m(x2>°/a) 2 „ ik*)I *

m      [•kax-ïl"

+ (-)(x2la/a) 2 |r(5)-r(/cax-2'«)|a5.
Jc=l   J(k-l)OX    2"*

But by the increments inequality (Loeve [8, p. 195]), and by stationarity

rkax-^l" fax-2!"

|r(j)-r(Â:ax-2'a)| ds = 2 (1 -r(i)) <&.
J(k-l)ax   2/" Jo

Therefore

i      m rmax-2'" /•aje-2'"

¿ 2 1^(^)1 -(x2la/am) \r(s)\ ds   = 2 (1 -r(í)) * = o^x"2")
"* kïi Jo Jo

as x -*■ oo, uniformly in m. The lemma is proved.

Lemma 3.7. 7/j""«, r2(0 i/r<oo, rAerj lim^«, r(0=0.

This is Lemma 4.8 of [9].

Lemma 3.8. In order that the condition (3.1) hold, it is sufficient that either (3.21)

or (3.22) hold.

Proof. Let/(x) be a nonnegative function such that

(3.25) lim f(x) = oo,        lim x2"*/(x)T(x) = 0.
X-* CO X-. CO

Let e > 0 be arbitrarily chosen. For sufficiently large x,

f(x)/(X/Hax2laX¥(x)) - Hax2laf(xyY(x)/X g *.

By Lemma 2.9, then lim sup*^«, P{Z(f(x)) > x} g e. Since £ was arbitrarily chosen,

(3.26) lim P{Z(f(x)) > x} = 0.
Ä-KJ0
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By stationarity, it follows that, in the limit as x -» oo, the probability approaches

0 that X(t) > x on any of the intervals

((j- l)X/kHax2'°V(x), ((;- l)X/kHax2'^(x)) +/(x)),       j = 1, 2,..., k.

Hence the same is true under Px(-). We can, then, "chop out" the above intervals,

without loss of generality. So, by Lemma 3.5,

m

Dn(a, A, x) 5¡ m 2 Vk(x)\4>(x, \rk(x)\),
te= 1

where /is the largest integer, such that lax~2la^f(x), that is 1= [x2laf(x)/a], m is

the largest integer, such that

(3.27) max-2la ^ XiHax2laX¥(x),

that is

(3.28) m = [X¡aHJ¥(x)],

and t/>(x, r) is given by (3.23). The condition (3.21) obviously implies that

(3.29) lim r(t) = 0.
(-.00

By Lemma 3.7, it also follows from (3.22). Recalling (3.25) it follows that

(3.30) sup    |rfc(x)|^0
lSfcSoo

as x-^oo. So, without loss of generality, we can replace the term (1— r2(x))~112

with any constant Cy which is greater than 1. That is, for sufficiently large x,

m

Dn(a, A,x) 5; Cym 2 KWl exp -x2/(l + \rk(x)\)
k=l

m

= Cym 2 \rk(x)\(exp -X^2)2K1 + K^^
k=l

m

= C2m 2 |rfc(x)|x2,(1 + |r*:<JC)l)(,F(x))2,(1 + |r^)l),

where C2 is another finite positive constant. Recalling the definition (3.27) of m,

there exists a finite constant C3, such that for all sufficiently large x,

m

(3.31) Dn(a, X, x) á C3W-1 2 |rfc(x)|x2,(1 + |r^)l)/«2|r<£(JÍ)l/<1 + ir^)i).
Jc = l

First, suppose that (3.21) holds. Let

8(t) =   sup   |r(j)|.
íás< CO

Then

(3.32) 8(t) log / á    sup   r(s) log s -> 0
Í^S< co
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as r->co. But

m2ir,(*)i/<i + irfc(*)i) = exp(21ogw|rk(x)|/(l + |rk(x)|))

= exp (28((l+ l)flx-2,a) log m),

for all ^/+1. But

(3.34) 5((/+ l)ax-2'0 log m ^ C4 8(f(x)) log (1/T(x)),

for some finite positive constant C4. The function f(x) is arbitrary in the sense

that any function can be chosen which satisfies the restrictions (3.25). Let

f(x) = (T(x))-1'2.

It is clear that the conditions (3.25) are satisfied. But

(3 35) 8(/('T)) l0g (lmX)) = 8(/(X)) l0g i{f(x)r)

= 28(f(x))\ogf(x)^0

as x -> oo, by (3.32). Clearly,

(3.36) x2ia + r*(x)) S x2 = o(logm)

as x -^ oo. Recalling (3.31) through (3.36),

1 ~y \r (x)|x2/<1 + |r'c(JC>l)ffi2|''''(*)"a + |r''(*)l)

S 8(f(x)) log ((f(x))2)o(log m) exp 8(f(x)) log ((/(x))2) -> 0

m
fc-i

as x-^ oo. So, it has been shown that the condition (3.21) is sufficient.

Now consider the condition (3.22). Let ß, 0<|3<l/2 be arbitrarily chosen.

Provided x (hence/(x)) is sufficiently large, by (3.30) suplák<a) \rk(x)\^ß, and

supxak<xx2ia + ír«MÍ)m2írK(x)Ua + ír«(xWSme. So, by Lemma 3.6,

Dn(a, X,x) ^ Cxm"-1 2 K(x)\ = (x^'/afT»-1      \r(t)\ dt + o(ax-2la)1-'s
k=i Jo

g J2Í-1 T |r(/)| dt + o(ax'2la)1-0.

So it is sufficient to prove that there exists a ß>0, such that

lim 7s"1 Í   |r(0| dt = 0.
r-.« Jo

But, by the Cauchy-Schwarz inequality,

It0-1 f   \r(t)\dt\   S 725"1 f   r2(t)dt^O

as T-^ oo, for any ß,0<ß< 1/2. The lemma is proved.
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Lemma 3.9. If

(3.37) lim Î2JLI f r(t) = o,
T-co        1        Jo

and

(3.38) lim r(t) = 0,
(-.00

then the condition (3.3) of Theorem 3.1 «oWs.

Proof. Let e' > 0 be arbitrarily chosen. Let t0 be so chosen that if t ̂  r0, r(r) < e'.

This is possible, since it is assumed that (3.37) holds. Let m' be the smallest integer

such that (m'+l)ax2ltt^t0. That is

(3.39) ml = [x2lat0/a].

Then, we decompose the sum (3.3) as follows.

m m tn

(3.40) 2 ß*(*> = 2 ß*w+ 2 ß*(*).
Jc = l k = l k = m' + l

where /, «?, and m' are given respectively by (3.4), (3.5), and (3.39). By the assump-

tion (3.37)

(3.41) 8 =   sup  r(t) < 1.
e^i< oo

Then

(3.42) f ß*W = (^'"('o - «)/«] + 1X1- *(*«)) -> 0

as x -> oo. Now consider the second term on the right side of (3.40). Let 6 be any

real number, 0 < 0 < 1. By Lemma 2.1, if x > 0,

(l-<D(0x)) 5; T(0x) = e-W-iÇVWf ú e-1jc9-\l-9(x)Y(l-x-,t)-e

5; e-1(i-^(x))e(i-x-2)-e.

Consequently,

2 Qk(x)ú(i+e) 2 o-w*00

m

= (1 + e')((X/aHa) + o(l)) + (l-<D(x))    2    «! -«W)'*00-'- O

as x -> 00. But since e was arbitrarily chosen, it will suffice to prove that

m

lim (1 - 0)(x))    2    (í1 - *W)'"te>~ ' -1) = 0.

But, clearly, there exists a finite positive constant Cy which is such that, recalling
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the definition (3.7) ofqk(x), (1 - ^(x))^M"1 -1 ^ d(-log(l - fl>(x))K(x), provided

rk(x)^8, where 8 is given by (3.41). But then it is sufficient to prove that

(3.43) lim !^p J r«*0 = °>
*-»   m    k=i

where m is given by (3.4). But by Lemma 3.6, the condition (3.43) is equivalent to

(3.37). The lemma is proved.

Lemma 3.10. If either of the conditions (3.21) or (3.22) holds, then the conditions

(3.37) and (3.38) hold.

Proof. First, assume that (3.21) holds. Clearly, then, (3.38) does. Now, it is

shown that (3.37) follows. Consider the fact that

(3.44, liaise) . !51Ij;'rW„+!2£l£r(,„,

Consider the first term on the right side of (3.44).

as T-> oo. Now consider the second term. Let £>0 be arbitrarily chosen. Clearly

if T is sufficiently large r(0 < e/log t, whenever t>y/T. So

8 ™ f' f r(0 dt Ú S-^jß f A/log i
Jjt J       Jvrl-JT ± JJT

= e(T- y/T) log 777 log V7 Ú 2e.

But £>0 was arbitrarily chosen. So (3.37) holds.

Now, assume that (3.22) holds. By Lemma 3.7, (3.38) holds. By the Cauchy-

Schwarz inequality

¥j>*3F(j>«r>
as T-+ 00. The lemma is proved.

4. Discussion and special cases. Let Tk be the waiting time until the kth e-

upcrossing. The event {Tk S t/p} is the event that at least k e-upcrossings will have

occurred during the interval (0, t/p.). Therefore

lim P{Tk ^ t/p-} = Fk(t),
JC-.00

where p. is given by (3.2) and Fk(t)= \—e~l ^flo t*ljl, provided that the conditions

of Theorems 3.1 and 3.2 hold. By differentiation

^-iFülJ/"1*"'*
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which is the Gamma distribution function. This reasoning is essentially the same

as that giving the analogous result for upcrossings of the conventional type. See

Cramer and Leadbetter [6, pp. 272-273].

It is natural to wonder whether the conditions (3.21), and (3.22) can be sub-

stantially weakened. Might the results of Theorems 3.1 and 3.2 hold if (1.3) is

true and (3.38) holds. A similar question was raised and answered negatively for

stationary Gaussian sequences in §2 of [9]. For that reason, it is strongly conjectured

that (3.38) is not sufficient.

Comparing Theorem 2.1 with Lemma 4.4 of [9], it is obvious that Hy = l. The

referee has pointed out that this can be verified as follows. When a=l we can

write Y(t)= — t+^/2 W(t), where W(t) is a standard Wiener process. That Hx= 1

is evident from well-known properties o'' W(t).

Suppose a = 2. Assume, also, that additional conditions are satisfied, which are

sufficient in order that the number of conventional upcrossings has the Poisson

distribution in the limit as x^co. Since both types of upcrossings are "widely

spaced" in the limit it is obvious that in the limit as x -s* oo, the probability that a

given e-upcrossing is also a conventional one approaches 1, as does the probability

that a conventional upcrossing is an £-upcrossing. But the exact expected number

of conventional upcrossings is

A/vYx, t) = (2"1,2//77) exp (-x2/2).

See Cramer and Leadbetter [6, pp. 194 and 197]. So H2 = 1/-\/tt. It was pointed

out by the referee that this is an obvious consequence of the fact that when a = 2,

Y(t)= —t+2ll2Ut where U is a standard Gaussian varíate.

The above equivalence confirms the unsurprising fact that the results do not

depend on e. Suppose that 0 < £y < e2 < oo. Then an e2-upcrossing is certainly an

Ei-upcrossing, but in the limit as x -> oo, the probability approaches 1 that an

¿i-upcrossing is also an e2-upcrossing, if Theorem 3.1 holds.

The conditions considered in this paper are of two types. The condition (1.3) is

a "local condition" in that it involves the behavior of r(t) as r->0. The other

conditions, in particular (3.21), (3.22), and (3.38) are "mixing conditions" in the

sense that they involve the behavior of r(t) as t -> oo. All of the conditions have

been expressed in terms of the covariance function r(t). It is of interest to consider

conditions in terms of the spectral distribution function F(to) defined by the

relation

/»CO

r(t) = cos tot dF(to).
J — co

In order that the local condition (1.3) hold for 0 < a < 2 it is necessary and sufficient

that there exist a positive finite constant Cy, such that

lim toa(l-F(to)) = lim toaF(-to) = Cy.
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See Kolmogorov and Gnedenko [7, pp. 180-182]. If a = 2 it is necessary and

sufficient that

P    to2 dF(to) < 00.
J — CO

The relationships between the mixing conditions, and conditions on F(to) are

discussed at the end of §4 of [9]. That discussion suffices for this work as well.

From the discussion of the "uniform mixing condition", we can conclude that it is

sufficient for the result of Theorems 3.1 and 3.2.
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