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1. Introduction. With linear integral equations of the second kind, an impor-

tant method for their numerical solution [l]-[4], [6], [7], [9], [10], is to replace the

integral operator with an approximating numerical integration operator. The

resulting equation is equivalent to a finite linear system, and linear systems are

relatively easy to treat. In [1], [2], the method is lifted into a functional analysis

framework, and in this setting a complete error analysis is given. More precisely,

the following are the basic assumptions of [1] and also of this paper.

Al. A1 and Kn, n- 1, are linear operators on Zinto A", where Xis a Banach space.

A2. Knx -> Kx as n -> oo, for all x e X.

A3. The sequence {Kn} is compact in aggregate, i.e., the set

{Knx | n = 1    and    ||x|| ^ 1,   for x e X}

has compact closure in X.

The method described in the first two sentences above is also used to find the

eigenvalues and eigenvectors of an integral operator K [3], [5], [6], [7], [14], and

the main purpose of this paper is to present a general theorem showing the con-

vergence of the eigenvalues and eigenvectors of Kn, n^l, to those of K. Such

results have been published before, but they have been limited to the cases of K

selfadjoint or normal [5], [6], [14]. Also, these papers dealt with the only continuous

kernels and generally limited themselves to the problem of the convergence of the

eigenvalues. Papers that should be especially noted are those of Wielandt [14]

and Brakhage [5].

The presentation given here is based completely on the hypotheses A1-A3 and

there is no explicit reference to integral equations. From the hypotheses, it follows

easily that (i) K is compact, (ii) the sequence of {Kn} is uniformly bounded, say by

B, and (iii) \\(K— Kn)K\\ and \\(K— Kn)Kn\\ tend to zero as n -» oo. From the compact-

ness of K, it follows that the spectrum of K, o(K), is a countable set of eigenvalues

with zero as a possible noneigenvalue and the only possible point of accumulation.

For the complex numbers A of the resolvent set p(K), (X — K) '1 is a bounded

operator from X onto X. Letting A0 be a nonzero point of o(K), the projection

operator E(X0, K) is defined by

E(X0,K) = ±-( (X-K)-idX
¿"l J|A-A0|=£
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where e is less than the distance from A0 to the remainder of a(K). Then

Range £(A0, K) = E(X0, K)X

is the set of all simple and generalized eigenvectors of K corresponding to the eigen-

value A0. For a general review of these results, see [8, pp. 566-580] and [12,

Chapter 5].

Using the above A0 and e, let an denote the part of a(Kn) which is within e of A0.

In Theorem 3, it is shown that E(an, Kn) can be defined for all sufficiently large n,

and that E(un, Kn)x -> x as n -> co, for all x e 7i(A0, K)X. The element E(an, Kn)x is a

linear combination of eigenvectors of Kn with respect to the eigenvalues contained

in ct„. Theorems 2 and 3 together give a complete convergence theorem ; Theorem 4

introduces a "somewhat computable" error bound.

2. Convergence theorems. The error analysis of [1], [2] is based on the hypoth-

eses A1-A3 and on the following theorem [1], [2], [4].

Theorem 1. Let X be a Banach space, S and (A — S) ~1 continuous linear operators

on X into X, X^O, and T a compact linear operator on X into X. Furthermore,

assume

(1) ¡(T-S)T\\ < |A|/H(A-S)-i||.

77zen (A — T) ~l exists with the bound

IKA-rn =

Also, for x e X,

i + ||7j KA-s)-1!!
-||(A-S)-i||||(r-S)r||

l(A-S)    x-(A-r)    x|| Ú ¡(X-S)    ||-|AH|(A_s)-i||||(r_S)7l-

Remarks. With S=K and T=Kn, the inequality (1) will be satisfied for all

sufficiently large n because \(K— Kn)Kn\\ ->0 as n->oo; thus Theorem 1 implies

the existence of (A — 7Q-1 for all sufficiently large n and the convergence of

(A-JQ-1* to (\-K)-lx for all x e X.

For 0 = i=l, define

(2) ^,, = (1-0*+^,

and note that Kn0 = K, KnA = Kn, and ||Afn>f|| =5. For each t, the operators Kand

Kn¡t, wall, can be shown to satisfy A1-A3, but this fact is not necessary for the

present development. The introduction of these operators was suggested by Turner

[13]. They provide a very neat way for proving Theorem 3, part of which the

author has not been able to prove in any other way.
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Lemma. Let F be a compact subset of p(K) with 0 £ F. Then there is a real

number M>0 and an integer N = 1 for which the following statements are true:

(a) ForallXeF, |(A—IT)"1! =AT

(b) For Oút-¿l andn^N, fe p(Kn¡t) and

¡(X-K^y'W = M, = 2(1+MB)/c0,

where c0 is the distance from F to the origin.

(c) For O^t^l, x e X, Ae F, and n^N,

2M
\\(X-K)-ix-(X-Knit)-ix\\ í ^[¡(K-Kn,t)x\\ + M¡x\\ \\(K-Kn,t)Kn,t\\].

(d) For0^t,s^l, \s-t\-illABM,, n^N, and Xe F,

||(A-*„.,)-MA-A,.,)-1 II = 45M?|r-5|.

Remarks. Although the details may seem overwhelming, statements (a)-(c)

merely say that for each t, the remarks following Theorem 1 hold for {Knt},

uniformly with respect to A s F. Statement (d) shows the uniform continuity in t

of (A — Kn¡t)'1, uniformly with respect to A e F and n = N.

Proof, (i) Since (A — K) '1 is a continuous function of A on p(K) and since F is a

compact subset of p(K), the quantity (A — K) ~1 is bounded on F, say by M.

(ii) Theorem 1 with S=K and T=Knt will be used to establish parts (b) and (c),

and as a first step the inequality

(3) \\(K-Kn¡t)Kn,t\\ < IAI/IKA-*)-1!!

will have to be examined. Since

¡(AT-A^J S [\\(K-Kn)Kn\\+i\\(K-Kn)K\\]

for 0 ¿ t SI, pick N so large that for n^N,

\\(K-Kn)Kn\\+n(K-Kn)K\\ Ú c0/2M.

Then

0 < c0/2 ^ c0-M[\\(K-Kn)Kn\\ +i\\(K-Kn)K\\]
(4)

= |A| —RA-AT)-1!! \\(K-Kn,t)Knit\\

for A e F, n ̂  N, and 0 ̂  15j 1. Inequality (3) is satisfied, and Theorem 1 can be

applied in a straightforward manner to obtain (b) and (c).

(iii) To show the continuity in t of(X — Kn%t)'1, a well-known theorem based on

Neumann series expansion will be used [8, p. 584] and [12, p. 164]. For O^s, t^l,

n = N, and A s F,

\\(X-Kn,t)-(X-Kn,s)\\ = \t-s\\\K-Kn\\ ï 2B\t-s\.
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For \t-s\-¿\/ABMx,

\\(X-Kn,t)-(X-Kn¡s)\\ Ú l/2Mx ï 1/2\\(X-Kn,tyi\\

< l/iKA-^)-1!).

With this inequality, the theorem cited above can be used to give

WfX—K   \-1\\2\lk~   —K   II
\\(\       V    \-l      (\       Y    ~\ — 111   <-       || Va     "-n.t) \\lxn.t     Jvn,s||

\\(X-Kn,t)   ~(X-KnJ   11 = i-iîa-à^Uà^-ju

<; 2BMf-*\ = 4BM2x\t-s\. Q.E.D.
2

The following theorem says that no extraneous convergent sequence of eigen-

values is produced by the sequence of operators {Kn}. Taken with Theorem 3, it

will imply that for each A e a(K), A # 0, there is a sequence of sets on of eigenvalues

of Kn with the sets <rn converging to A as n -> co.

Theorem 2. Let R and e be arbitrary small positive numbers. Then there is an N

such that for n ä N, any eigenvalue X of Kn satisfying | A| £ R is within e of an eigen-

value A0 of K with \X0\^R.

Proof. Since B is a bound on K and Kn, n = 1, all eigenvalues of K and Kn are

within a circle of radius B about the origin. To avoid triviality, assume R < B.

Let A be the annulus about the origin defined by R^\X\^B, and then modify A as

follows. For all A0 e a(K) n A, remove from A all points A for which |A —A0| <e.

Call the resulting set A'. Since K is compact, o(K) n A is finite, and therefore only

a finite number of open sets are removed from A to form A'. This makes A' a

compact set, and in addition the construction implies A'<=p(K). By the Lemma

with t=\ and F=A', there is an N such that A'c^) for all n^N. Thus if

A e a(Kn) n A and n = N, A must be within e of some element of a(K) n A since

o(Kn)nA'=0.   Q.E.D.

Let A0 e a(K), Aq^O, and let e>0 be less than both |A0| and the distance to the

remainder of a(K); denote the circumference |A — A0| =e by Cx. Denote by C2 some

simple closed rectifiable curve which is away from Cx and which contains both the

origin and the set a(K) ~ {A0} in its interior. Denote by F the set of points which are

(i) on Cx or C2, or (ii) outside both Cx and C2 as well as satisfying | A| á 35/2; Fis a

compact set in p(K). Recall that <y(Knt) is contained inside the disk | A| á 35/2 for all

n^l andO^/^1.

Now apply the Lemma to the set F. For all sufficiently large n^N and for

Oár 5 1, F^p(Knt); thus o(Knt) is contained in the interiors of Ci and C2. Denote

by an,t the part of <j(Knt) contained in the interior of Cx; anA = an and ct„,o = {A0}.

The projection operator

7íKí;7:n>t) = ¿.£ (x-Kn,tyi dX
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is well defined for n - N and 0 ;£ / ¿ 1. The additional results of applying the Lemma

to the set F will be used in proving the following main theorem.

Theorem 3. With respect to the preceding remarks, the following statements are

true for n^N

(a) Dimension E(on, Kn)X=E(X0, K)X, thereby showing on to be nonempty and

of the correct multiplicity.

(b) For every x e E(X0, K)X,

(5) \\x-E(on, Kn)x\\ Ï ^ [\\(K-Kn)x\\+M\\x\\ \\(K-Kn)Kn\\];
Co

this proves that E(on, K„)x —> x as n—>co.

Proof, (i) First it will be shown that E(ont, Kn¡t) is a continuous function of t,

0^t=l. Recall the application of the Lemma to the set F (which includes d),

and use part (d) which shows the continuity in rof (A—A"n>()-1. For |í—i| ¿l/4BMu

n^N, and AeQ,

\\E(o,,¡t,Kn¡t)-E(on¡s,Kn¡s)\\ ú ^ f    KA-A^^-ÍA-A-^)-1!! \dX\

^ ^-(45A/ï|î-j|)(2t7£) = 4BM2e\t-s\,
Lit

thus showing the desired continuity.

A standard theorem of functional analysis [11, p. 268] states that if the difference

of two projections is of norm less than 1, then their ranges are of equal dimension.

With this theorem, use the finite dimension of E(X0, K)X and the continuity in t of

E(ont, KnA) to deduce the result (a).

(ii) Inequality (5) follows from using part (c) of the Lemma with t=l. For

x e E(X0, K)X,

||x-£(an,A-n)x|| = ||£(A0,A-)x-£(<7n,A-n)x||

= \yi f    [(A-K)~ix-(X-Kn)->x] d\\

Ú ̂  [\\(K-Kn)x\\+M||x|| ||(A-An)A„||].       Q.E.D.

The interpretation of this theorem with respect to the eigenvalues and eigen-

vectors of Kn should be fairly evident. However, the theorem says nothing about

separating simple eigenvectors from generalized ones. More precisely, if x is a

generalized eigenvector of K, are the approximating vectors E(on, Kn)x made up of

simple or generalized eigenvectors of the Knl

3. A somewhat computable error bound. Suppose that in solving (A —A"n)x=0

for several different values of n, we think a certain group of eigenvalues of the Kn
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corresponds to some eigenvalue of the original operator K. For a particular n,

let trn={A1,..., A,} be the eigenvalues which are thought to correspond to some

eigenvalue of the original operator K. In their listing in on, let them be repeated

according to the number of corresponding linearly independent eigenvectors they

possess, and then let these eigenvectors be <f>x,..., (f>q with each having norm 1.

Do not repeat a listing of an eigenvalue for its generalized eigenvectors.

In a somewhat arbitrary manner, define

If ,
A0 = - > A¡   and   77 =   Max    A0 —A¡ .

?|Ti 1-1.«

A test will be constructed to determine if there are eigenvalues of K within e of

A0, where e>0 is a given small number satisfying the conditions (i) s>r¡, (ii) the

only eigenvalues of Kn which are within e of A0 are the members of vn, and (iii)

(A-AT)-1 and (A-ATJ-1 exist on the circumference |A0 —A| = e. Define

Also define a=a(K) n {A : |A-A0| <e}; this is the set of eigenvalues of K which

are within e of A0.

Theorem 4. With respect to the preceding remarks, the following are true state-

ments.

(a) IfR(e, n)< 1, then <j¿ 0.

(b) Let R(e, n)< 1. Then for each eigenvector 0¡ of Kn, there is an element 0¡

from E(a, K)X such that ||0i|| = 1 and ||0i —0¡|| ¿2R(e, n). Note: This does not say

0i,..., 0, are linearly independent.

Proof, (i) In the remarks preceding the theorem, it was assumed that e was

chosen in such a way that |A —A0|=e implies (X — K)'1 and (A-ATJ-1 exist. Let

I A—A0| =e. Then for i = l,.. ,,q,

(X-Kn)4>{ = (X-Xl)</>i + (Xl-Kn)<f>i = (A-AO0Í,

and

(6) (A-ZQ-V^MA-A,).

Also,

(X-K)<pt = {X-Kfa-fo-KMi

= (X-X^ + ̂ -K)^,

and

¡¿ji<t>i = (*-K)-1<rt+j^ji(*-K)-l(Kn-m-
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Using (6),

(A-A-J-Vi-ÍA-A)-^ . -L-Q-JO-KK^-Kypi
(?)

(X-K)-\Kn-K)Knif
Ai(A-Af)'

Using the usual definitions of projections, define E(o, K) and E(on, Kn). Then

h-E(o, Kft, = E(on, Kn)<p,-E(o, KM,

= ¿ f [(A-A-n)-^;-(A-A-)-^] dX

= _L f (A-A)-HAn-A-)A-n^. ^
2tT¿ J|A-A0|=e Ay(A —Ay)

where (7) is used to obtain the last integral. Now take norms and recall that

||^|| = 1. Then for j=l,...,q,

I«,-*..**,' S ̂ ¿ J^Z^i Max JKA-A)-!!
|A-AoI=«

= -^^7||(A-A-n)A-n||   Max   ¡(A-A)"1!

â R(e, n).

(8) U,-E(?, KHA â R(e, n),      7=1,..., q.

If R(e, n)<l, then ||<£y — £'(ct, K)<f>j\\ < 1. Thus, from the assumption ||^J = 1, it

follows that E(o, K)c/>j^0, and therefore that <r# 0.

(iii) To prove (b), define

t,-E(ptEHJ\E(otK»il

Then use (8) in the following.

I^-^II Ú Ih-E^KiïA + lE^Kiït-M
^ R(e, n)+ \\E(o, K)[l - l/\\E(o, ¡WiMpA

= R(e,ri)+\l-\\E(o,K)</>j\\\

= R(e,n)+\\<Pj-E(o,K)^\\

Ú 2R(e, n). Q.E.D.

If on = {Xj}, then

R(e, n) = IK*-^y*»!   Max   ¡(X-K)-^.
|Al| |A-A!|=£
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To compute the quantity Max,A_Ao|=£ ||(A —AT)_1||, the bound on ||(A—Ä")_1||

given in [1] may be useful.
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