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We recall that if an algebraic group G operates regularly on a variety V,

by a quotient variety is meant a pair (V/G, t), where V/G is a variety and

t: V—*V/G is a rational map, everywhere defined and surjective, such that

two points of V have the same image under t if and only if they have the same

orbit on V, and such that, for any xE V, any rational function on V that is

G-invariant (i.e., constant on orbits) and defined at x is actually (under the

natural injection of function fields Q,(V/G)—*Q(V), ß denoting the universal

domain) a rational function on V/G that is defined at tx (cf. [l, exposé 8]).

Q,(V/G) must therefore consist precisely of all G-invariant elements of ß(V),

so t is separable. A quotient variety need not exist (obvious necessary condi-

tion: all orbits on V must be closed), but when it exists it is clearly unique to

within an isomorphism; in this case, for any open subset UQV/G, r~lU/G

exists and equals U.

Proposition 1. Let the algebraic group G operate regularly on the variety V,

all defined over the field k. Suppose there exists a quotient variety r : V—» V/G.

Suppose also that for each point p of V that is algebraic over k there exists an

open affine subset of V/G containing the image under t of each of the conjugates

of p over k (a vacuous condition if V/G can be embedded in a projective space or

if V/G and t are known to be defined over a regular extension of k, in particular

if k is algebraically closed). Then V/G and r could have been taken so as to be

defined over k.

The G-invariant elements of fl(F) are generated by those in k(V), in

other words there exists a variety W and a generically surjective rational

map V—*W, both defined over k, such that for any field K between k and Ö,

K(W) is the field of G-invariant elements of K(V) [3, Theorem 2], We have

here a field descent problem, and supposing V/G and t to be defined over the

extension field K of k, there are two cases to consider: K a regular extension

of k, and K algebraic over k. In view of the unicity to within isomorphism of

the quotient variety, the criteria of Weil [6] take care of the first case. [Of

course this can also be done directly; e.g., supposing k algebraically closed, if
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K = k(t), where (t) is a generic point over A of some variety defined over A,

and if the G-invariant elements of k(V) are k(xi, • • • , xr), for any pE V that

is rational over A there are coordinate functions valid in some neighborhood

of Tp in V/G, say <bi(x, t), • • • , <bn(x, t)Ek(x, t), and these will be such under

a suitable A-specialization of (t) into a point rational over A, and we have then

only to worry about enough points p.] In the second case, K algebraic over

A, Weil's results may not apply since the extension need not be separable, so

we use another argument: For any point pEV that is algebraic over A let

Í7C V/G be an open affine subset containing the image under r oí each of the

conjugates of p over A. Suppose U to be P'-open, where KQK'QÇl. The

coordinate functions on U are then in K'(V/G), but a suitable P-specializa-

tion into the algebraic closure of K will give a set of functions on V/G that

are defined over an algebraic extension of K and are local coordinate functions

for V/G in a neighborhood of the finite set of points in question ; cutting this

last neighborhood down suitably shows we could have assumed K' to be

algebraic over K. Changing K if necessary, we assume that U is P-open,

with K a finite normal algebraic extension of A. For any A-automorphism cr

of K, t": V—*(V/G)* is also a quotient variety, hence isomorphic (over K) to

t: V-*V/G. The subset U.CV/G corresponding to U'C(V/G)' under our

birational equivalence is also P-open and affine and contains our finite set

of points. Replacing U by the affine set C\tU, we get (t~1/7)» = t_1î/, i.e.,

t-1 U is A-open. Since such A-open subsets cover V, it suffices to prove the

proposition for the case V/G affine. But this is easy: any coordinate function

on V/G is an everywhere defined function on F, hence of the form Ec»/»>

with the Ci s in Q and linearly independent over A, and the /<'s everywhere

defined functions in k(V) (cf. the result stated below in the proof of Lemma 1

of Theorem 1). Linear disjointness implies that each/,- is G-invariant, hence

everywhere defined on V/G. Enough such functions /,• give an affine repre-

sentation of V/G over A.

The following extremely useful result is due to Chevalley [2, pp. 195-

196]. For the convenience of the reader, we outline a proof.

Lemma 1. Let V, W be varieties, let r: V-*W be an everywhere defined gener-

ically surjective rational map, and let pEVbe such that Tp is normal on W and

each component of r~l(rp) that passes through p has the correct dimension

dim V—dim W. Then the image under r of any neighborhood of p is a neighbor-

hood of Tp.

Let Xi, • • • , xa, a = dim F—dim W, be functions on F that are defined at

p and such that p is a component of t~1(tP)H(xi= ■ ■ • =xo = 0); replacing

W by IFXß° and t by the map P-»(tP, íCi(P), • • • , xa(P)), we are reduced

to the case dim F=dim IF. This being so, we may alter first IF, then V, so

as to be able to assume W protective and normal. Let the abstract field K be

a normal algebraic extension field of Q(W) containing Ü(V), and let V be
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the normalization of W in K. If />'£ V is a point corresponding to p, then

p is an isolated point of the subset of V that corresponds to p', so the rational

map V—*V is defined at p'. Replacing V by V, we are reduced to the case

where W is complete and normal and V is the normalization of W in a finite

normal algebraic extension field of $l(W). Now each U(W)-automorphism a

of fi(F) induces an automorphism of the covering V—*W, and the various

ff's permute transitively the points of V lying over any given point of W (to

verify the latter statement, note that we may consider the analogous state-

ment when W is affine; then V is also affine, and for every f£ñ[F], fi[F]

being the ring of everywhere defined functions on V, we have a p'th power

of IJ, (Z — f") contained in il[W] [Z], so the various values of f at the points

of V lying over any given point of W are determined). Thus we must show

that the image under t of any open subset of V that is invariant under each

a is an open subset of W, and this is a consequence of the fact that a proper

image of a closed set is closed. Q.E.D.

Lemma 2. Let the algebraic group G operate regularly on the variety V and let

t: V—>W be an everywhere defined surjective rational map such that two points

of V have the same image under r if and only if they have the same orbit. Then all

orbits on V have the same dimension. If W= V/G (a case that will certainly hold

if t is separable and W normal), then the map r is open ; furthermore if we denote

normalization by *, and by t* the rational map V*—>(V/G)* corresponding to r,

then t* is everywhere defined and, for any p(EV, t* maps the points of V* lying

over p onto the points of ( V/G) * lying over rp.

For any transformation space V for G, let $QVXV be the locus of

(v, gv), »£ V, g£G, and TCGX&CGXVX V be the graph of the operation
of G on V. Then the isotropy group of any /»£ V is given by Ti~\(GXpXp),

hence has dimension ^dim Y— dim $, which is the dimension of the isotropy

group of a generic point of V. Thus the dimension of any orbit is majorized

by that of the generic orbit. On the other hand, since we have our map t,

the dimension of any orbit is at least that of the generic orbit; thus all orbits

have the same dimension. If W is normal, the openness of t follows from

Lemma 1 ; also if />£ V and /£fi(W0 is defined at p, then / must be defined

at rp, for the image under r of the domain of definition of / on V, an open

subset of V, contains a neighborhood of rp, so the polar locus of / on W can

have no component through rp, the function 1// on W being defined along

any such component and taking the value 0. If t is separable, clearly any

G-invariant function on V is in Q(W), so r separable and W normal implies

W= V/G. Now drop the assumption that Wis normal, but suppose W= V/G.

Each point of V* corresponds under t to a definite point of V/G, hence to

one of a finite number of points of (V/G)*. By Zariski's Main Theorem, t* is

everywhere defined. Trivially, for any ££ V, t* maps the points over p into

points of ( V/G) * lying over rp. Suppose now that g is a point of ( V/G) * lying
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over rp that corresponds to no point of V* lying over p. Then there exists a

function fE$l(V/G) that is not defined at q but is defined at all other points

of (V/G)* lying over rp. f is then defined at all points of V* lying over p,

hence is integral over the local ring op. Writing f=x/y, with x, yEorp, there

is an integer « such that y"f'Eop for all s^O. Hence ynf'Eorp, so/ is integral

over orp, hence defined at q, contrary to assumption. It remains to verify that

r is open. But any open neighborhood of p corresponds to an open subset of

V* containing each point of V* lying over p, hence (by Lemma 1) maps under

t* into an open subset of (V/G)* containing each point of (V/G)* lying over

rp, hence (by the closedness of the mapping into any variety of its normal-

ization) produces a neighborhood of rp.

Lemma 2 shows that if V/G exists, its topology must be the quotient

topology. The lemma also implies that if F is a connected algebraic group

and G an algebraic subgroup operating by right translation, then the usual

homogeneous space V/G is actually a quotient space in the present sense.

We remark that in [l ] Chevalley has defined quotient spaces for more general

fiberings of a variety than that given by a group operation, and Lemma 2 ex-

tends immediately to this more general case, at least under the assumption

that all fibers have the same dimension.

Lemma 3. Let the algebraic group G operate regularly on the variety V in

such a way that V/G exists, and let W be another variety. If G operates on VXW

by the rule g(v, w) = (gv, w), then (VXW)/G exists and equals (V/G) XW.

The rational map VXW—>(F/G)XW is everywhere defined, separable,

and has the correct set-theoretic properties. We therefore need only show that

if (v, w)EVX W and /Gß(( V/G) X W) is defined at (v, w), then / is also de-
fined at (tv, w), t denoting the natural map V—*V/G. Without loss of gen-

erality we may replace W by an affine neighborhood of w, and similarly V/G

may be replaced by some affine neighborhood of tv, V being cut down suita-

bly. Thus we may suppose that V/G and W are affine varieties. Letting *

denote normalization, there is a natural everywhere defined rational map

V*XW*—*(V/G)*XW* and this map is open, by the previous lemmas. The

polar divisor F of / on the normal variety ( V/G) * X W* can have no com-

ponent passing through any point lying above (tv, w), for otherwise 1//would

be defined and take the value zero along such a component, hence (by the

openness of the above map and Lemma 2) along a subvariety of V*XW*

passing through a point above (v, w), which is impossible. The image F' of

F on (V/G) XW is a. closed subset not passing through (tv, w), so there is a

polynomial function <b on ( V/G) X W vanishing on F' but not at (tv, w). For

some v>0, <p"f will have no poles on (V/G)*XW*, hence will be everywhere

defined, i.e., be a polynomial function on the affine variety (V/G)*XW*. Re-

placing/by tp'f, we may thus suppose that/is of the form/= 53"-i/»-^" where

each/,-(Eß(r/G) and each hiE&(W). Suppose/i, • ■ • ,/„ linearly independent
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over fl, and similarly for h\, • • ■ , h„. Since / is defined at (v, w) it is defined

along vX W; say / is defined on vX(W—Z), where Z?¿ W is a closed subset.

Choose w\, • ■ • , w„ £ W — Z such that each hi is defined at each wy and

det ■«,-{«/,■) ?=0. For each j=l, • • • , n, the function 5Z/,A<(wy) on Fis defined

at », so each/, is defined at v. In the same way, each hi is defined at w. Since

V/G is a quotient variety, each/,, considered as a function on V/G, is defined

at to. Hence/= Zf*hi is defined at (tv, w). Q.E.D.
Before proceeding, we mention the following application of Lemma 3 to

an often arising question: If the algebraic group G operates regularly on the

variety F=U,ej Vi, where each F< is a G-invariant open subset such that

Vi/G exists, then does V/G exist? To answer this, consider the subset

P= {(v, gv)\v(E.V, g£G} CFXF, i.e., the set-theoretic projection on VXV

of the graph of the operation of G on F. If V/G exists, then P is the inverse

image of the diagonal under the obvious rational map VX F—►( V/G) X ( V/G),

hence closed. Conversely, if P is closed then V/G exists: for let t,-: F<—»Fi/G,

t£J, be the natural maps, and set F/G = U,6i F./G with the obvious identi-

fications, i.e., for »£ F,n V¡ we identify t,v and tjv. The only point that needs

checking is that for », j£7, the set { (t,v, tjv) | t»£ F.HFy} is a closed subset

of (Vi/G)X(Vj/G). But this set is the image of pn(F/WyX V/Wj), under
the map (vit v¡)—>(t<i>,-, tjv/), and closure results from the facts that

PHÍFiHFyXF.nFy) is a closed G X G-invariant subset of the variety

ViX Vj (on which GXG operates regularly), that (F,X V,)/(GXG) = (F./G)
X ( Fy/G) (repeated application of Lemma 3), and that a map into a quotient

variety is open (Lemma 2). The set P is automatically closed if G is finite (in

which case the closure of P follows from the closure of the diagonal of VX V)

or if VX V=l)iei ViX Vi, i.e., if any given pair of points of F is contained

in at least one F,. (This last condition is due to Chevalley [l, p. 8-06],

and its sufficiency can be shown directly in a very easy way: indeed, return-

ing to the details above, for any (p, q) in the closure of { (ta, t/v) | »£ ViC\ Vj}

there exists Ft such that rrlp, TjlqC.Vk; the facts that the birational cor-

respondence from (F,/G)X(Fy/G) to (Vk/G)X(Vk/G) is biregular at (p, q)

and that the diagonal on ( F*/G) X ( F*/G) is closed give TrlP=T]~1q). We

note with Chevalley that the last condition is certainly satisfied (at least if

the set { Vi} iei is chosen large enough) if F also happens to be a homogeneous

space for another algebraic group H, the operations of G and H on F com-

muting, for then any given point pair on F is contained in a suitably generic

translate of any Vi.

The necessity for proving the following fact, especially in the case where

H operates trivially on F (which occurs several times in the literature), seems

not to have been noted.

Proposition 2. Let the algebraic group G operate regularly on the variety V,

and let H be a normal algebraic subgroup of G such that V/H exists. Then the

operation of G/H on V/H is regular.
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The latter operation is given by (gH, Hv)-*Hgv, at least generically, and

we must show that this rational map (G/H)X(V/H)-^V/H is everywhere

defined. Letting HXH operate on GX V by the rule (Ai, hî)(g, v) = (ghr1, h2v),

the rational map GX V-+V/H that is given by (g, v)-+Hgv is everywhere de-

fined and HXH-invariant so, assuming that (GXV)/(HXH) exists, the

map (GX V)/(HXH)—>V/His everywhere defined. But a double application

of the last lemma shows that (GXV)/(HXH) indeed exists and equals

(G/H)X(V/H), so we are done.

Note that, under the conditions of Proposition 2, (V/H)/(G/H) exists if

and only if V/G exists, in which case they are equal.

Corollary. Let V be a variety and let G be an algebraic group that operates

regularly on V. Let G' be another algebraic group that operates on V and let

<p: G—*G' be a surjective rational homomorphism such that g(v) =<bg(v) for generic

gEG, vE V. Then G' operates regularly on V.

Simplify slightly by taking G connected. The proposition enables us to

assume that <p is a purely inseparable isogeny, so that we are in the case of

characteristic p^O. By the results of Serre [5], we have to show that if n

is the kernel of the Lie algebra map associated with <f>, then G/n operates

regularly on V. To do this we must first consider the following analogy of the

preceding part of this paper. Let F be a variety that is defined over a field k

of characteristic p^O and let 9c be a p-hie subalgebra of the derivations of

ß(F)/ß. By a quotient variety for V over 9i we mean a pair (F/9Î, t), where

V/SSl is a variety and t: F—>F/9c a bijective rational map such that if

/£ß( 10 is defined at a point ¡c£ V then / is a rational function on F/9c that

is defined at tx if and only if/is annulled by 9Î. The unicity of such a quotient

is clear, and we must show that one exists, and in fact that if 91 has a basis

consisting of derivations of k(V)/k then F/9c and r may be taken to be de-

fined over k. To do this, we may suppose F affine, and here we can show that

F/9c is also affine: in fact, we take for the affine ring of F/9Î over k the sub-

ring of k[V] that is annulled by 9Í, a finitely generated ring over k over which

k[V] is a finite module, since k[V] is integral over its subring A[(&[F])P].

Next let V, 91 be as above and let W be another variety. Identifying 91 with

an algebra of derivations of ß(FX W)/Sl we have, analogous to Lemma 3, an

isomorphism between (FXW0/9Î and (V/^VjXW; the proof of this is trivial

in the affine case. For our present problem we put 9c = n® üß(l0, so G/9c

= G/n. Now reason as in the proposition: the regular map GXV—*V goes

through (GXV)ß\ = (G/SiDXV=(G/n)XV, and we are done. (It is clear

that all this is susceptible of a much wider generalization, which can only be

done in the Grothendieck language.)

Lemma 1. Let the algebraic group G operate regularly on the variety V, all

defined over the field k. Then any everywhere defined rational function on V is
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contained in a finite dimensional vector space S of such functions that is invariant

under translation by elements of G, and S may be taken to have a basis consisting

of functions that are defined over A. If such a basis for S is chosen, we obtain a

surjective rational homomorphism, defined over k,from G into an algebraic group

of matrices.

This is a slight generalization of [3, Theorem 12], where F was assumed

nonsingular, and can itself be generalized in the obvious manner to the case

where F is reducible. The proof is exactly the same as that of the quoted re-

sult if we replace the last theorem of Weil's Foundations by the following re-

sult: If F is a variety defined over A, then any everywhere defined rational

function/on Fis of the form/= Ec</i> where each dEQ and each/<GA(F);

furthermore, if the c<'s are taken to be linearly independent over A, then each

fi is defined everywhere on F. To prove this it suffices to take F affine, in

which case the everywhere defined rational functions are precisely the poly-

nomial functions, and these latter are the tensor product of 0 with the ring

of polynomial functions that are defined over A.

Define a variety to be quasi-affine if it can be embedded in an affine space,

i.e., is isomorphic to an open subset of an affine variety. A (quasi-) affine

variety that is defined over A is isomorphic over A to (a A-open subset of) an

affine variety that is defined over A: this is an easy consequence of the result

quoted in the proof of the preceding lemma.

Lemma 2. If the algebraic group G operates regularly on the quasi-affine

variety V, everything being defined over k, then there exists an embedding of V,

also defined over k, into an affine space (onto a closed subset of an affine space if

V is affine) on which G operates linearly.

This is an immediate consequence of the previous lemma.

Lemma 3. Let T be a finitely generated commutative monoid, fa, ■• -, fa. a

finite set of homomorphisms from T into the additive group of integers Z. Then

the submonoid of T consisting of all y such that <bi(y) —0,i = l,---,v,is also

finitely generated.

For the proof, it suffices to take v = l, so we consider a single Z-valued

function 4> on T. We may also take T free, i.e.,

T = {(xi, ■ ■ ■ , x„) | xi, ■ ■ ■ , xn E Z, xu ■ ■ ■ , xn ^ 0}.

Write faxi, •••,*») = E"-i a<xi> where a\, • • • , anEZ, and let V denote

the submonoid consisting of all (x)E? such that <b(x)=Q. Excluding trivial

cases, we may assume that no at is zero, and that both positive and negative

zj/s occur, say ci, • ■ • , ar>0, ar+i, ■ ■ ■ , or+s<0, where r, s>0, r-\-s = n.

Writing ar+i=— bit i=l, ■ ■ • , s, we have bi, • • • , £>s>0 and fax)

= «i*i+ • • • +Or*r — bixr+i— • • • —b,xr+t.   For   each   a=l, • • • ,   r   and
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ß=l, ■ ■ ■ , s, we define yaß = (£1, • ■ • , $,+1)£r by ^i = Siabß, i= 1, • • • , r and

£r+¿ = à,?aa, i= 1, • • • , s; clearly <p(yag) =0, so yaßEV. If now (xi, • • ■ , xr+.)

is an arbitrary element of Y' and at least one of xr+i, • • • , xr+, is very large,

say > M for some suitably large M, then at least one of xi, • • • , xr will be

large, which implies that (x)=yaß + (x'), for suitable a, ß and a certain

(x')Gr'- That is, T' is generated by the various 7a3's together with those of

its elements (x) for which xr+i, • • • , xr+s^M. For each a=l, • • ■ , r define

Ya = (fi> • • • . Tr+«) by r< = S,a, *»1, • • • , r+s; then 71, • ■ • , 7r£r', and
moreover there exists a number N such that if (x)EY' and xr+i, • • ■ , xr+,

^M, while at least one of Xi, ■ • • , xr is >iV, then (x) = ya + (x") for some

a = l, • • • , r and suitable (x")EY'. Hence V' is generated by the various

7a(j's and 7a's and by those (x)GT' for which Xi, • • • , xr^ N, xT+i, • • • , xr+,

^ M. Since these latter elements are in finite number, we are done.

In what follows, the translation of a function on a variety V on which a

group G operates by an element gEG will be denoted X„; i.e., if /Gß(F) then

Kf(v) =f(i~lv)> f°r » generic in F. The following result holds also, in an obvi-

ous sense, for algebraic sets that are reducible.

Theorem 1. Let the torus G operate regularly on the affine variety V, and

suppose that all G-orbits on V have the same dimension. Then V/G exists and is

also affine. If W is a G-invariant subvariety of V, then we have a natural em-

bedding W/G C V/G. If V is a principal space for G, V is actually a G-principal
fiber bundle over V/G.

If k is an algebraically closed field of definition for everything and v a

generic point of V over k then the isotropy subgroup of v, being a subgroup

of the torus G, is defined over k, hence leaves each point of V fixed. Dividing

G by this subgroup, we are reduced to the case where each orbit has dimension

dim G, i.e., each isotropy subgroup is finite. By Proposition 2 and the remark

following, we may assume G = Gn. Indeed, letting t be a multiplicative param-

eter on Gm, using Lemma 2 and recalling the diagonalizability of any repre-

sentation of a torus, we may suppose F to be a subvariety of the affine

space ß" such that the coordinate functions Xi, • • ■ , x„ on V transform by G

according to the rule X((x<) = /'*'Xi, i = 1, • • • , n, where vi, ■ ■ ■ ,vn are certain

integers; the condition that all isotropy groups be finite is that for each pE V

there exists i=l, ■ • • , « such that v^O and Xi(p)?*Q. If Xi, ■ • ■ , Xn are

indeterminates and we define the weight of a monomial cX"1 • ■ ■ X"n (where

c£ß, C9^0) to be oiiVi-T- • • ■ -T-anvn, then any P£ß[-X"] can be written

uniquely as F— 5^<--«> P«. where each nonzero P< is in il[X] and isobaric

of weight î. If F vanishes on F, so does each P,-, since Q = \tF(xi, • • • , x„)

= F(tnxi, ■ ■ • , t"'xn) = 53« ¿*Pí(xi, • • • , xB), so the ideal of V is generated by

its isobaric elements and we have an induced grading on the ring ß[F] = ß[x],

an element of ß[x] being isobaric of weight zero if and only if it is G-invari-
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ant. By Lemma 3, the multiplicative monoid of monic monomials in

X\, • • ■ , Xn of weight zero is finitely generated. Hence we may suppose that

vi, • • • , »V"»0, JV+ii • • • i vnt^O, and that the subring of G-invariant elements

of fl[F] is ti[xi, • • • , xr]. The condition that all isotropy groups be finite

is that the ideal generated by xr+i, • • • , xn be the unit ideal, implying in

particular that for any pEV at least one of xr+i, • • • , xn of positive weight

and at least one of negative weight do not vanish at p. Thus vT+i, • • • , v„

include both positive and negative elements and, if we make the permissible

assumption that vr+u • • • , vn are relatively prime, fl[F] contains isobaric

elements of all integral weights. We are now in a position to prove that the

map t: p-^(xi(p), • • • , xr(p)) gives us V/G as an affine variety. First, any

maximal ideal m of Sl[xi, • • • , xr] extends to an ideal of ñ[F] that is not the

unit ideal, for if we have a relation Z,F,ini=l, with each P,Gö[F], m,Gîtt,

the same relation would hold with each Fi replaced by its isobaric component

of weight zero, in which case F<Gß[*i, • • • , xr] so lGm contrary to assump-

tion. Thus the image r V is a closed subset of Qr. t is clearly everywhere defined

and constant on orbits. We need next to show that for any pEV the image

Tp determines the orbit of p, and this we do as follows: Noting that a suitable

power product of any two given elements of fl[F] that are isobaric of positive

and negative weights respectively will be in 0[ai, ■ • ■ , xr], we see that rp

determines which of Xi(p), • • ■ , xn(p) are zero and which are nonzero. We

can also find yi, y2Gß[F], power products oí Xi, • • • , xn that are not zero

at p and of weights respectively ±g.c.d.({all v.'s such that Xi(p)*¿0}),

Translation of p by a suitable element of G will then give yi(p) = l, and since

yiy2Gß[*i, • • • , *r], y2ÍP) will also be determined, and hence each Xi(p),

t = l, • • • , «, will be determined; i.e. a point pE V, normalized by yi(p) = l,

is determined by Tp. Thus tV is, at least set-theoretically, simply V/G. To

complete the proof that t actually gives us a quotient space, let pEV and

let/Gß(F) be G-invariant and defined atp. Writing/=g/A; with g, AGß[F],
h(p)^0, and letting git hi be the isobaric components of g, A of weight i, we

have / = X(/= £»' t*gi/ 5>A'hi, so hif=gi for all i. hi(p)í¿0 for some i, and
we can suppose this happens for i = 0, for otherwise we can replace g,h by

their products with a suitable power of the previously used yi or y2; then

/=go/Ao, with go, AoGß[*i, • ■ • , xT] and ho(p)9iQ, proving that/ is defined

at Tp. Thus we actually have a quotient variety. If IF is a G-invariant sub-

variety of F then tW—W/G, since the map r depends only on the integers

vi, ■ ■ ■ , vn, which are the same for IF as for F (modulo the fact, which occa-

sions no difficulty, that certain of the p.-'s may not be well-defined for IF, since

possibly Xi = 0 on W). To complete the proof, suppose that F is a principal

space for G. Then the map (p, (ktXi(p), • • • , \tXn(p)))^>t is everywhere de-

fined, so g.c.d. ({all Pi's such that Xi(p) ̂ 0}) = l for all pE V. Referring back

to the proof that t separates orbits, for any given pE V the functions yi, y2
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chosen for p will also be valid in a neighborhood of p. Setting yi = 1 then gives

a cross section V/G—*V, valid in this neighborhood of p. Thus F is indeed a

principal fiber bundle.

Apropos of Theorem 1, we may make the following comments:

(1) If a torus G operates regularly on a quasi-affine variety F, then F is

covered by its G-invariant affine open subsets. To show this, we may suppose

that F is embedded in an affine space ßn on which G operates linearly. If

xi, • • ■ , x„ are the coordinate functions on ß" and P is the complement of F

in its closure in ß", each translation by an element of G maps P into itself,

hence each X„ maps the ideal of P in ß[x] into itself. By Lemma 1, we can

find a set of generators f\, ■ ■ • ,/»£0[x] for the ideal of P such that each X„

induces a linear transformation on the vector space ß/i+ • • • +Q/,. Since

any representation of a torus is diagonalizable, we may even assume that

each \g sends each /¿ into a multiple of itself. Then F is covered by its G-

invariant affine open subsets { F— (/< = 0)}, i = 1, • • • , v. However, all orbits

on F may have the same dimension and V/G may still not exist: the remarks

preceding Proposition 2 come into play, and the necessary conditions for

piecing together the various local quotient varieties may not be satisfied. For

an example, take G = Gm, F=ß2 —(0, 0), with the operation of G on F given

by (t, (x, y))->(te, rly).
(2) Under the conditions of Theorem 1, local (regular) cross sections need

not exist if F is not a principal space for G. If F is a principal space there need

not exist an everywhere regular cross section.

(3) If we relax the hypotheses of the theorem by supposing of the algebraic

group G merely that its component of the identity be a torus, then V/G still

exists and is still affine (but the other conclusions of the theorem do not gen-

eralize). For in view of the comment following Proposition 2, the original

Theorem 1 gives an immediate reduction to the case where G is finite. That

V/G exists and is affine when F is affine and G finite is a result of Serre [4,

p. 57].

Lemma. Let the unipotent algebraic group G operate regularly on the quasi-

affine variety V. Then any G-invariant rational function on V is the quotient of

two G-invariant rational functions on V that are everywhere defined.

For suppose that/i,/2£ß[F], with/i//2 G-invariant. For all c,£ß, gi£.G,

we have/i//2= 2c»X5,/i/ Zc^o¡fí, provided that the last denominator is not

zero. But the set of all X, Ji's span a finite dimensional vector space over ß on

which G operates linearly. Since G is unipotent, some nonzero element of this

vector space is left fixed by each g£G. If we choose c,-, g, such that Zci^mh IS

this nonzero fixed element, we are done.

The lemma can be sharpened slightly to add that if G, V and the given

G-invariant function on F are all defined over k, then the two G-invariant
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elements of ß[F] can actually be chosen in ¿[7]. For if these G-invariant

elements are 2C»0» anc* 53C«V'<. with each c,Eß and each <pt, \piEk[V] and

we take the various e,'s to be linearly independent over k, then linear dis-

jointness and the fact that ^ctipi/^c^iEHV) give that (pi/ti is inde-

pendent of * and each <pi, \pi is G-invariant. This same rationality conclusion

will of course hold in the more general situation where G is no longer uni-

potent, but G, F are such that the conclusion of the lemma still holds.

The following result is due to Kostant, at least in the classical case. The

original proof was a complicated Lie algebra argument.

Theorem 2. Let the unipotent algebraic group G operate regularly on the

quasi-affine variety V. Then all orbits are closed.

We may assume that G is connected and that V is prehomogeneous with

respect to G, i.e., that the generic orbit on F is dense in F, and have to prove

F homogeneous. This is clear if dim G^l, so assume dim G>1 and use in-

duction. Let HEG be a connected normal algebraic subgroup of dimension 1

and consider the action of H on F. By the lemma, there exist xi, • ■ • , xn

Gß[F] such that the field of all iî-invariant functions on F is precisely

ß(xi, • • • , x„). For gEG, hEH, pEV, t=l, • • • , «, we have \„Xi(hp)
-Xi(g~lhp) -Xi(g~lhgg~lp) =Xi(g~lp) =\aXi(p), so all translates of each x¿ are

iî-invariant. Thus we may suppose that the vector space ßxi+ • • • +ßxn

is invariant under each X„, gEG. Define an everywhere defined rational map

rfrom F onto a dense subset of an affine variety V by t(P) = (xi(p), • • • ,xn(p)).

There is an induced operation of G on V, linear and hence regular, such that

r(gp) =g(rp) for all gEG, pE V. But H operates trivially on V, so G/H oper-

ates regularly on V. Clearly V is G/i/-prehomogeneous, hence, by the in-

duction assumption, homogeneous. To prove F homogeneous it now suffices

to show that, for any point pE V, the points of T~l(rp) are translates of each

other under H, and it is indeed enough to prove this when p is generic for

F over k, k being some field of definition for everything else. But then the

points of r~l(rp) are precisely the A(r/>)-specializations of p. Since k(p) is a

regular extension of k(rp), T~l(rp) is a variety, clearly prehomogeneous with

respect to H. But dim H— 1, so r~l(rp) is homogeneous, which completes the

proof.

Theorem 2 is not unreasonable in view of the known fact that any homo-

geneous space with respect to a connected unipotent group is biregularly

equivalent to an affine space (proof by induction on dimension, using the

existence of cross sections [3, Theorem 10] and the vanishing of coherent

sheaf cohomology on affine varieties), but the point is that an affine space

may be embedded in one of higher dimension as a nonclosed subset, e.g.,

map ß2—>ß3 by (x, y)—>(x, xy, y+xy2).

An immediate consequence of the theorem is that any conjugacy class of
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elements of a unipotent group is closed. More generally, on a connected

solvable group, the conjugacy class of any element that is centralized by some

maximal torus, e.g., any semisimple element, is closed.

The following lemma seems well known. The proof used here is from a

manuscript of Borel.

Lemma. Let G be a linear algebraic group defined over k, H a k-closed sub-

group. Then there exists a vector space V, defined over k, a faithful linear opera-

tion of G on V, also defined over k, and a vector vE V that is rational over k,

such that H consists precisely of all elements of G that map v into a scalar multiple

of itself.

In the algebra ß[G] of everywhere defined rational functions on G we

may find a G-invariant finite dimensional subspace 5 that contains a basis

for the ideal of H. Since G and H are defined over kp~", we can find a basis

/i, • • ■ ,/n of S such that each/<££""" [G] and /i, • • • ,/r span the subspace

of 5 vanishing on H. Replacing S by Sp" and /i, • • • ,/« by their p'th powers,

if necessary, we obtain elements/i, • • • ,fnEk[G], linearly independent over

ß, such that 5 = ß/i+ • • • +ß/„ is invariant under each X„, gEG, such that

ß/i+ • • • +ß/r is precisely the subset of 5 that vanishes on H, and such that

whenever gEG and fi(g)= • • • =fr(g) =0 we have gEH. An element gEG is

therefore in Hii and only if X„ maps ß/i+ ■ • • +ß/r into itself. In the rational

representation, defined over k, of G as a group of linear transformations on

Ar S, H consists of precisely all elements of G that map /iA • • • A/r into a

multiple of itself. If we let F be the direct sum of Ar5 and a vector space on

which G operates faithfully, we are done.

Theorem 3. Let G be a connected linear algebraic group, H an algebraic sub-

group of G whose component of the identity is either nilpotent, or possesses no

nontrivial rational homomorphism into Gm. Then G/H is a quasi-affine variety.

Assuming this for H connected, the problem is to show that the quotient

of a quasi-affine variety by a finite group of automorphisms exists and is also

quasi-affine, which follows from Lemma 2 to Theorem 1 and the result of Serre

quoted in comment (3) following Theorem 1. Hence H may be supposed con-

nected. First suppose that H possesses no characters. Then if F and v are

as in the Lemma, we have Hv = v and the map G—>F given by g—>gv is a one-

one rational map from G/H onto a quasi-affine variety. G/H is therefore the

normalization of this latter variety in a larger field, hence itself quasi-affine.

Finally, suppose H nilpotent. Then H= TXU, where T is a torus and U is

unipotent. Since G is an affine variety, so is G/T (Theorem 1). Since G/H

= (G/T)/U, the lemma to Theorem 2 implies the existence of /i, • • • , /„

Gß[G/T]Cß[G] such that ß(G/ii)=ß(/i, • • • ,/„). For each g E G, X„ maps
ß[G]nß(G/Jff) into itself, so we may suppose that the vector space

ß/t+ • • • +ß/>. is invariant under all X„. G operates linearly on this vector
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space, and we have an everywhere defined rational map from G into the vec-

tor space given by y—*(fi(y), • • • , fn(y)), this map commuting with left

translation by elements of G. The image of G is a homogeneous space for G,

actually G/H since ß(/i, • • • ,/„) = ß(G/ii). Therefore G/His quasi-affine.

The G/H of Theorem 3 need not be affine. For example, if

asm,   *-{Q$.

then the map G—+G/H is given by

and G/H=ílí — (0, 0), which is not affine. On the other hand, Kostant has

shown, by entirely different methods, that G/H is affine whenever H is re-

ductive.

Corollary. If G, H are as in the theorem and U is a unipotent algebraic'

subgroup of G, then the subset UH of G is closed.

For we may apply Theorem 2 to U and G/H.
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