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Abstract. In this paper, a characterization for continuous functions on (0,∞)
to be the Laplace transforms of f ∈ L∞(0,∞) is obtained. It is also shown
that the vector-valued version of this characterization holds if and only if
the underlying Banach space has the Radon-Nikodým property. Using these
characterizations, some results, different from that of the Hille-Yosida theorem,
on generators of semigroups of operators are obtained.

1. Introduction

The theory of Laplace transforms plays an important role in the theory of semi-
groups of operators. Given a function F on (0,∞), under what conditions is F
the Laplace transform of a certain function f? This problem has been investi-
gated extensively. In [7], Widder obtained the following characterization of Laplace
transforms of scalar-valued functions:

A function F on (0,∞) is the Laplace transform of f ∈ L∞(0,∞) if and
only if F is infinitely differentiable and satisfies

sup{| 1
n!

λn+1F (n)(λ)| : λ > 0, n ∈ N ∪ {0}} < ∞.(W∞)

The vector-valued version of Widder’s theorem has been investigated by Arendt
among others. In [1], Arendt obtained an “integrated version of Widder’s theorem”
(see [1, Theorem 1.1]), and from this generalization, the relation between the Hille-
Yosida theorem and Widder’s theorem is revealed.

It is worth noting that in Widder’s characterization of Laplace transforms, con-
dition (W∞) involves not only the original function, but also its higher derivatives,
and so in certain practical problems it may be difficult to verify condition (W∞).
In Section 2, we give a characterization of Laplace transforms which involves only
the original function but not its derivatives. Applications of this characterization
can be found in [6].

In the theory of semigroups of operators, it is known that whether a linear
operator A is the generator of a certain semigroup (C0-semigroup or integrated
semigroup) is related to the Laplace representation of its resolvent R(λ, A) (see [1],
[5], [3]). In Section 3, using the results in Section 2, we obtain some characterization
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results for generators of semigroups of operators. These results are different from
those given by the Hille-Yosida theorem.

2. Characterizations of Laplace transforms

Let f ∈ L∞(0,∞). The Laplace transform F of f is given by

F (λ) =
∫ ∞

0

e−λtf(t) dt (λ > 0).

The following result gives a characterization of those F ∈ C(0,∞) that are Laplace
transform of an element f in L∞(0,∞). This characterization involves only the
original function F , not its higher derivatives.

Theorem 2.1. Let F ∈ C(0,∞). The following assertions are equivalent.
1. F is the Laplace transform of some f ∈ L∞(0,∞).
2. There exists a constant M such that |λF (λ)| ≤ M for a.e. λ > 0 and

|∑∞
j=1

(−1)j−1

(j−1)! ejnλF (jλ)| ≤ M for a.e. λ > 0 for infinitely many n ∈ N.
3. Same as (2), with the inequalities holding for all λ > 0 and all n ∈ N.

Proof. (1 implies 3) Put M = ess sup0<t<∞ |f(t)|. It is clear that |λF (λ)| ≤ M for
all λ > 0. Let λ > 0 and n ∈ N. Then

|
∞∑

j=1

(−1)j−1

(j − 1)!
ejnλF (jλ)| = |

∫ ∞

0

λ

∞∑
j=1

(−1)j−1

(j − 1)!
ejne−jλtf(t) dt|

= |
∫ ∞

0

λe−en−λt

en−λtf(t) dt|
≤ M.

(3 implies 2) Obvious.
(2 implies 1) Let fn(t) =

∑∞
j=1

(−1)j−1

(j−1)! ejn n
t F ( jn

t ). Then the given condition on
F implies that there exist n1 < n2 < · · · such that (fni) is a bounded sequence in
L∞(0,∞). Since L∞(0,∞) is the dual of the separable space L1(0,∞), (fni) has
a subsequence (fnik

) which converges in the weak*-topology to f ∈ L∞(0,∞). In
particular, for every λ > 0,

lim
k→∞

∫ ∞

0

e−λtfnik
(t) dt =

∫ ∞

0

e−λtf(t) dt.

On the other hand, since∫ ∞

0

∞∑
j=1

ejn

(j − 1)!
n

t
|F (

jn

t
)|e−λt dt < ∞

and ∫ ∞

0

∞∑
j=1

ejn

(j − 1)!
n

s
|F (

1
s
)|e−λjns ds < ∞,

we have ∫ ∞

0

fn(t)e−λt dt =
∫ ∞

0

∞∑
j=1

(−1)j−1

(j − 1)!
ejn n

t
F (

jn

t
)e−λt dt

=
∞∑

j=1

(−1)j−1

(j − 1)!
ejn

∫ ∞

0

n

s
F (

1
s
)e−λjns ds
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=
∫ ∞

0

e−en(1−λs)
en(1−λs) n

s
F (

1
s
) ds

=
∫ ∞

−n

e−e−u

e−u n

n + u
F (

λn

n + u
) du

=
∫ ∞

−∞
χ(−n,∞)e

−e−u

e−u n

n + u
F (

λn

n + u
) du,

so by the dominated convergence theorem (using the condition that |λF (λ)| ≤ M
a.e. λ > 0),

lim
n→∞

∫ ∞

0

fn(t)e−λt dt =
∫ ∞

−∞
e−e−u

e−uF (λ) du = F (λ).

Hence F is the Laplace transform of f .

In the proof of the above theorem, we use the following version of the dominated
convergence theorem: if

∫
X

∑∞
j=1 |gj | < ∞, then

∫
X

∑∞
j=1 gj =

∑∞
j=1

∫
X

gj . This
kind of argument will be used in later proofs and will not be mentioned explicitly.

Corollary 2.2. Suppose a continuous function F on (0,∞) satisfies

sup
λ>0

|λF (λ)| < ∞

and

sup
λ>0,n∈N

|
∞∑

j=1

(−1)j−1

(j − 1)!
ejnλF (jλ)| < ∞.

Then F is infinitely differentiable and can be extended to an analytic function on
the right half-plane {z ∈ C : Re z > 0}.

Note that unlike Bernstein’s theorem on completely monotone functions (see [7]),
the condition given in the above corollary does not involve higher derivatives of F .

Next we want to consider Laplace transforms of vector-valued functions. Given
f ∈ L∞((0,∞), E), where E is a Banach space, using the same argument as in the
proof of Theorem 2.1, we see that the Laplace transform F of f satisfies

(P∞) sup
λ>0

‖λF (λ)‖ < ∞ and sup
λ>0,n∈N

‖
∞∑

j=1

(−1)j−1

(j − 1)!
ejnλF (jλ)‖ < ∞.

We will show that the converse holds if E has the Radon-Nikodým property. In fact,
this gives a characterization for Banach spaces with the Radon-Nikodým property.
The idea is to show that condition (P∞) is equivalent to Widder’s condition.

Theorem 2.3. Let E be a Banach space and let F ∈ C((0,∞), E). The following
assertions are equivalent.

1. There exists a Lipschitz continuous function α : [0,∞) −→ E with α(0) = 0
such that

F (λ) =
∫ ∞

0

λe−λtα(t) dt ∀λ > 0.

2. F satisfies condition (P∞).
3. F is infinitely differentiable and sup{‖ 1

n!λ
n+1F (n)(λ)‖ : λ > 0, n ∈ N∪{0}} <

∞.
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Proof. (1 implies 2) Let x∗ ∈ E∗. Consider the scalar-valued function g(t) =
〈α(t), x∗〉. The conditions on α imply that there exists f ∈ L∞(0,∞) such that
g(t) =

∫ t

0
f(s) ds for all t ≥ 0. So for every λ > 0, we have (using Fubini’s theorem)

〈F (λ), x∗〉 =
∫ ∞

0

(
λe−λt

∫ t

0

f(s) ds

)
dt =

∫ ∞

0

e−λtf(t) dt.

Using the proof of Theorem 2.1 together with the uniform boundedness principle,
we see that F satisfies condition (P∞).

(2 implies 1) For every x∗ ∈ E∗, we consider the function λ 7→ 〈F (λ), x∗〉. By
Theorem 2.1, there exists f̃x∗ ∈ L∞(0,∞) such that

〈F (λ), x∗〉 =
∫ ∞

0

e−λtf̃x∗(t) dt ∀λ > 0.

It follows from the proof of [1, Theorem 1.1] that there exists a function α which
satisfies the requirements.

The equivalence of 1 and 3 is just [1, Theorem 1.1].

Theorem 2.4. A Banach space E has the Radon-Nikodým property if and only if
every F ∈ C((0,∞), E) satisfying condition (P∞) is the Laplace transform of some
f ∈ L∞((0,∞), E).

Proof. This is an immediate consequence of Theorem 2.3 and [1, Theorem 1.4].

Remark 2.1. If E is a dual space and has the Radon-Nikodým property, then
L∞((0,∞), E) is a dual space (see [4]). So given F ∈ C((0,∞), E) satisfying con-
dition (P∞), the bounded sequence (fn) constructed in the proof of Theorem 2.1
has a weak∗ limit f which is the inverse Laplace transform of F .

For continuous f ∈ L∞((0,∞), E), where E is a Banach space not necessarily
possessing the Radon-Nikodým property, we have the following inversion formula.

Theorem 2.5. Let E be a Banach space. Let f : (0,∞) −→ E be a bounded
continuous function and F its Laplace transform. Then

f(t) = lim
n→∞

∞∑
j=1

(−1)j−1

(j − 1)!
ejntnF (jn) ∀ t > 0 ,

the convergence is uniform on compact subsets of (0,∞), and uniform on bounded
subsets of (0,∞) if f(0+) = limt→0+ f(t) exists, and in this case,

f(0+) = (1− e−1)−1 lim
n→∞n

∞∑
j=1

(−1)j−1

(j − 1)!
F (jn) .

Proof. Let t ≥ 0 and n ∈ N. Then

lim
n→∞

∞∑
j=1

(−1)j−1

(j − 1)!
ejntnF (jn) = lim

n→∞

∫ ∞

0

n

∞∑
j=1

(−1)j−1

(j − 1)!
ejnte−jnrf(r) dr

= lim
n→∞

∫ ∞

0

ne−en(t−r)
en(t−r)f(r) dr

= lim
n→∞

∫ ∞

−nt

e−e−u

e−uf(
nt + u

n
) du
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=


∫∞
−∞ e−e−u

e−uf(t) du if t > 0,∫∞
0 e−e−u

e−uf(0+) du if t = 0 and f(0+) exists,

where the last equality follows from the dominated convergence theorem and the
condition that f is continuous. Since f is uniformly continuous on [a, b] for 0 <
a < b < ∞ (on (0, b] if f(0+) exists), the convergence given in the last equality is
uniform on [a, b] (on (0, b] if f(0+) exists).

Remark 2.2. Using the same idea as in the above proof, we see that the sequence
(fn) constructed in the proof of Theorem 2.1 converges to f for all t > 0 if f is
continuous. However, we cannot consider the convergence at t = 0 for this sequence.

3. Semigroups of operators

Let E be a Banach space. The space of all bounded linear operators from E into
itself is denoted by B(E). A family (S(t))t>0 ⊂ B(E) is said to be a semigroup if
S(s + t) = S(s)S(t) for all s, t > 0. If (S(t))t>0 is a strongly continuous semigroup
and SOT-limt→0+ S(t) = I := S(0), (S(t))t≥0 is called a C0-semigroup.

Proposition 3.1. Let E be a Banach space. Let A : D(A) ⊂ E −→ E be a closed
linear operator and let w ∈ R. If there exists a strongly continuous semigroup
(S(t))t>0 ⊂ B(E) satisfying ‖S(t)‖ ≤ Mewt for all t > 0, where M is a constant,
such that for all x ∈ E,

R(λ, A)x =
∫ ∞

0

e−λtS(t)x dt ∀λ > w,

then (w,∞) ⊂ ρ(A) and the function F : (0,∞) −→ B(E) defined by

F (λ) = R(w + λ, A)

satisfies condition (P∞). The converse is true if E has the Radon-Nikodým prop-
erty.

Proof. The condition on (S(t))t>0 implies that F is the Laplace transform (in the
strong operator topology) of the bounded function t 7→ e−wtS(t). Hence F satisfies
condition (P∞).

Conversely, if F satisfies condition (P∞), by Theorem 2.3, it satisfies the Hille-
Yosida condition, namely,

sup
λ>0,m∈N∪{0}

‖(λR(λ, A − w))m‖ < ∞.

Hence by [1, Theorem 6.2], there exists a strongly continuous semigroup (T (t))t>0

satisfying supt>0 ‖T (t)‖ < ∞ such that R(λ, A − w)x =
∫∞
0

e−λtT (t)x dt for all
λ > 0, x ∈ E. Hence (S(t) = ewtT (t))t>0 is the required semigroup.

Remark 3.1. The converse is also true if A is densely defined. In this case, the
strongly continuous semigroup (S(t))t>0 can be extended to a C0 semigroup
(S(t))t≥0 (see Corollary 3.7).
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Proposition 3.2. Let E be a Banach space. Let w ∈ R. Suppose A : D(A) ⊂
E −→ E is the generator of a C0-semigroup (S(t))t≥0 with ‖S(t)‖ ≤ Mewt for all
t ≥ 0, where M is a constant. Then for every x ∈ E, we have

S(t)x = ewt lim
n→∞n

∞∑
j=1

(−1)j−1

(j − 1)!
ejntR(jn + w, A)x for t > 0,

(1 − e−1)x = lim
n→∞n

∞∑
j=1

(−1)j−1

(j − 1)!
R(jn + w, A)x,

and the convergence is uniform on (0, b] for 0 < b < ∞.

Proof. This is an immediate consequence of Theorem 2.5

Let n ∈ N. A strongly continuous family (S(t))t≥0 ⊂ B(E) is called an n-times
integrated semigroup if S(0) = 0 and, for all x ∈ E,

S(t)S(s)x =
1

(n− 1)!

[∫ s+t

t

(s + t− r)n−1S(r)x dr −
∫ s

0

(s + t− r)n−1S(r)x dr

]
∀ s, t ≥ 0. For convenience, a C0-semigroup is also called a 0-times integrated
semigroup.

An n-times integrated semigroup (S(t))t≥0 (where n ∈ N) is said to be
1. exponentially bounded if there exist constants M, w such that ‖S(t)‖ ≤ Mewt

for all t ≥ 0;
2. non-degenerate if S(t)x = 0 for all t ≥ 0 implies x = 0;
3. locally Lipschitz if there exist constants M, w such that ‖S(t + h)− S(t)‖ ≤

Mew(t+h)h for all t, h ≥ 0.
Given a non-degenerate, exponentially bounded n-times integrated semigroup

(S(t))t≥0 (where n ∈ N), there exists a unique operator A and there exists a ∈ R
with (a,∞) ⊂ ρ(A) such that R(λ, A)x =

∫∞
0

λne−λtS(t)x dt for all λ > a, x ∈ E.
This unique operator is called the generator of (S(t))t≥0. Since we are mainly in-
terested in generators, for n ∈ N, a non-degenerate, exponentially bounded n-times
integrated semigroup will be called an n-times integrated semigroup for simplicity.

It should be pointed out that for an n-times integrated semigroup (S(t))t≥0

(n ∈ N) with ‖S(t)‖ ≤ Mewt for all t ≥ 0, the constant w must be non-negative.
This follows from the equality

S(t)x =
tn

n!
x +

∫ t

0

S(s)Axds,

which holds for all x ∈ D(A) and t ≥ 0. Similarly, if (S(t))t≥0 is locally Lipschitz
with ‖S(t + h) − S(t)‖ ≤ Mew(t+h)h for all t, h ≥ 0, the constant w must be
non-negative.

If A generates an n-times integrated semigroup (S(t))t≥0, then for every λ ∈ C,
A− λ generates an n-times integrated semigroup (S̃(t))t≥0, where

S̃(t)x = e−λtS(t)x+
n∑

k=1

λk

(
n

k

) ∫ t

0

∫ uk

0

· · ·
∫ u2

0

e−λu1S(u1)x du1 · · · duk ∀x ∈ E .

(To see this, it suffices to check that
∫∞
0

e−µtS̃(t)x dt = 1
µn R(µ, A − λ)x.) The

following two lemmas give the relation between the locally Lipschitz constants of
(S(t))t≥0 and (S̃(t))t≥0.
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Lemma 3.3. Let n ∈ N. Suppose A generates an n-times integrated semigroup
(S(t))t≥0 satisfying

‖S(t + h)− S(t)‖ ≤ Mh ∀ t, h ≥ 0,

where M is a constant. Then for every λ > 0, A+λ generates an n-times integrated
semigroup (S̃(t))t≥0 with the property that given any ε > 0, there exists a constant
M̃ such that

‖S̃(t + h)− S̃(t)‖ ≤ M̃e(λ+ε)(t+h)h ∀ t, h ≥ 0.

Proof. Let λ, ε > 0. Take M1 > 0 such that ‖S(t)‖ ≤ M1e
εt for all t ≥ 0. Then for

every t, h ≥ 0, we have

‖S̃(t + h)− S̃(t)‖ ≤ ‖eλ(t+h)S(t + h)− eλtS(t)‖

+
n∑

k=1

λk

(
n

k

) ∫ t+h

t

∫ uk

0

· · ·
∫ u2

0

eλu1‖S(u1)‖ du1 · · ·duk

≤ eλ(t+h)‖S(t + h)− S(t)‖ + (eλ(t+h) − eλt)‖S(t)‖

+
n∑

k=1

λk

(
n

k

) ∫ t+h

t

∫ uk

0

· · ·
∫ u2

0

M1e
(λ+ε)u1 du1 · · · duk

≤ Meλ(t+h)h + eλ(t+h)λhM1e
εt +

n∑
k=1

λk

(
n

k

)
M1(λ + ε)1−ke(λ+ε)(t+h)h

≤
[
M + λM1 + M1

n∑
k=1

λk

(
n

k

)
(λ + ε)1−k

]
e(λ+ε)(t+h)h.

Lemma 3.4. Let n = 1 or 2. Suppose A generates an n-times integrated semigroup
(S(t))t≥0 satisfying

‖S(t + h)− S(t)‖ ≤ Mew(t+h)h ∀ t, h ≥ 0,

where M, w are constants. Then for every λ > w, A − λ generates an n-times
integrated semigroup (S̃(t))t≥0 satisfying

‖S̃(t + h)− S̃(t)‖ ≤ M̃h ∀ t, h ≥ 0,

where M̃ is a constant.

Proof. Let λ > w. Take ε > 0 such that λ > w + ε. It follows from the condition
on (S(t))t≥0 that there exists M1 > 0 such that ‖S(t)‖ ≤ M1e

(w+ε)t for all t ≥ 0.
So for every t, h ≥ 0, we have

‖S̃(t + h)− S̃(t)‖ ≤ ‖e−λ(t+h)S(t + h)− e−λtS(t)‖+ 2λ

∫ t+h

t

e−λr‖S(r)‖ dr

+ λ2

∫ t+h

t

∫ s

0

e−λr‖S(r)‖ dr ds

≤ e−λ(t+h)‖S(t + h)− S(t)‖+ |e−λ(t+h) − e−λt|M1e
(w+ε)t

+ 2λ

∫ t+h

t

M1e
(w+ε−λ)r dr + λ2

∫ t+h

t

∫ s

0

M1e
(w+ε−λ)r dr ds

≤ e(w−λ)(t+h)Mh + λe−λthM1e
(w+ε)t + 2λM1h + λ2M1(λ− w − ε)−1h

≤ [M + 3λM1 + λ2M1(λ− w − ε)−1]h.
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Lemma 3.5. Let E be a Banach space and let w, M ≥ 0. Suppose F : [0,∞) −→ E
satisfies lim suph→0+ h−1‖F (t + h)− F (t)‖ ≤ Mewt for all t ≥ 0. Then

‖F (t + h)− F (t)‖ ≤ Mew(t+h)h for all t, h ≥ 0.

Proof. It suffices to prove the result for the case where E = R. First, we note that
F is Lipschitz continuous on every bounded interval in [0,∞). Indeed, for every
η > 0, take M1 > Mewη; then we have lim suph→0+ h−1|F (t + h) − F (t)| < M1

for all t ∈ [0, η). From this it follows that |F (t + h) − F (t)| ≤ M1h whenever
0 ≤ t < t + h ≤ η.

Next, since F is absolutely continuous on bounded intervals in [0,∞),∫ t

0

F ′(s) ds = F (t)− F (0) for all t ≥ 0.

Hence for t, h ≥ 0,

|F (t + h)− F (t)| = |
∫ t+h

t

F ′(s) ds| ≤
∫ t+h

t

Mews ds ≤ Mew(t+h)h.

Theorem 3.6. Let E be a Banach space and let A : D(A) ⊂ E −→ E be a linear
operator.

1. Let n ∈ N ∪ {0}. Suppose there exists w ≥ 0 such that (w,∞) ⊂ ρ(A) and
the function F : (0,∞) −→ B(E) defined by

F (λ) =
1
λn

R(w + λ, A)

satisfies condition (P∞). Then A generates an (n + 1)-times integrated semi-
group (S(t))t≥0 with the property that, given any w1 > w, there exists M1 > 0
such that

lim sup
h→0+

h−1‖S(t + h)− S(t)‖ ≤ M1e
w1t ∀ t ≥ 0.

2. Let n = 0 or 1. Suppose A generates an (n + 1)-times integrated semigroup
(S(t))t≥0 satisfying

lim sup
h→0+

h−1‖S(t + h)− S(t)‖ ≤ M1e
w1t ∀ t ≥ 0,

where M1, w1 are constants. Then (w1,∞) ⊂ ρ(A) and for every w > w1, the
function Fw : (0,∞) −→ B(E) defined by

Fw(λ) =
1
λn

R(w + λ, A)

satisfies condition (P∞).

Proof. (1) By Theorem 2.3, there exists a constant M > 0 and a function T :
[0,∞) −→ B(E) satisfying T (0) = 0 and ‖T (t + h) − T (t)‖ ≤ Mh for all t, h ≥ 0
such that for all x ∈ E,

R(λ, A− w)x =
∫ ∞

0

λn+1e−λtT (t)x dt ∀λ > 0.

By [1, Theorem 3.1], (T (t))t≥0 is an (n+1)-times integrated semigroup with genera-
tor A−w. Hence by Lemma 3.3, A generates an (n+1)-times integrated semigroup
(S(t))t≥0 with the required property.
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(2) For every w > w1, by Lemma 3.5 and Lemma 3.4, A−w generates a Lipschitz
continuous (n+1)-times integrated semigroup. Hence by Theorem 2.3, Fw satisfies
condition (P∞).

Remark 3.2. The second assertion in the above theorem does not hold if n ≥ 2.
For example, in R or C, A = −1 generates a 3-times integrated semigroup (S(t) =
−e−t + t2

2 − t+1)t≥0 satisfying lim suph→0+ h−1‖S(t+h)−S(t)‖ ≤ 2et for all t ≥ 0.
However, Fw(λ) = 1

λ2(λ+w+1) does not satisfy condition (P∞) for any w.

Corollary 3.7. Let A : D(A) ⊂ E −→ E be closed and densely defined and let
n ∈ N ∪ {0}. If there exists w > 0 such that (w,∞) ⊂ ρ(A) and the function
F : (0,∞) −→ B(E) defined by

F (λ) =
1
λn

R(w + λ, A)

satisfies condition (P∞), then A generates an n-times integrated semigroup. The
converse is true for n = 0, 1.

Proof. If A satisfies the given condition, then by Theorem 3.6, A generates a lo-
cally Lipschitz (n + 1)-times integrated semigroup. Hence by [1, Corollary 4.2], A
generates an n-times integrated semigroup.

Conversely, for n = 0 or 1, if A generates an n-times integrated semigroup
(S(t))t≥0 with ‖S(t)‖ ≤ Mew1t for all t ≥ 0, where M, w1 are constants, then
A generates an (n + 1)-times integrated semigroup (S̃(t) =

∫ t

0 S(r) dr)t≥0 (in the
strong operator topology) satisfying ‖S̃(t+h)− S̃(t)‖ ≤ Mew1(t+h)h for all t, h ≥ 0.
Hence the required result follows from Theorem 3.6.

To close our disscussion, we give the following example studied in [6].

Example 3.1. Let E = L1[0, R)×L1[0, R), where R is a positive constant (larger
than the life span of human beings). Let A : D(A) ⊂ E −→ E be given by

Aϕ = (−ϕ′1 − (µ + δ)ϕ1 + σϕ2 , −ϕ′2 − (µ̃ + σ)ϕ2 + σϕ1),

where D(A) consists of all ϕ = (ϕ1, ϕ2) ∈ E with ϕ1, ϕ2 absolutely continuous and
satisfying

ϕ1(0) = β

∫ R

0

h(r)k(r)ϕ1(r) dr + β̃

∫ R

0

h̃(r)k̃(r)ϕ2(r) dr,

ϕ2(0) = α

∫ R

0

h(r)k(r)ϕ1(r) dr + α̃

∫ R

0

h̃(r)k̃(r)ϕ2(r) dr ,

and µ, µ̃, σ, δ, k, k̃, h, h̃ are nonnegative measurable functions on [0, R) (µ, µ̃ are the
age specific mortality moduli of normal and disabled people; 0 ≤ σ(r), δ(r) ≤ 1
represent the recover rate and disabled rate at age r; 0 < k(r), k̃(r) < 1 represent
the proportion of the female population and that of the female disabled population
of age r; h, h̃ with L1-norm equal to 1 are the birth modes of females and disabled
females respectively) and α, α̃, β, β̃ are constants (which, in fact, depend on gov-
ernment population policy). Then A satisfies the conditions given in Corollary 3.7
for n = 0 (for details, see [6]) and thus generates a C0-semigroup.
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