PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 126, Number 8, August 1998, Pages 2407–2416 S 0002-9939(98)04603-6

LAPLACE TRANSFORMS AND GENERATORS OF SEMIGROUPS OF OPERATORS

JIGEN PENG AND SI-KIT CHUNG

(Communicated by Palle E. T. Jorgensen)

ABSTRACT. In this paper, a characterization for continuous functions on $(0, \infty)$ to be the Laplace transforms of $f \in L^{\infty}(0, \infty)$ is obtained. It is also shown that the vector-valued version of this characterization holds if and only if the underlying Banach space has the Radon-Nikodým property. Using these characterizations, some results, different from that of the Hille-Yosida theorem, on generators of semigroups of operators are obtained.

1. INTRODUCTION

The theory of Laplace transforms plays an important role in the theory of semigroups of operators. Given a function F on $(0, \infty)$, under what conditions is Fthe Laplace transform of a certain function f? This problem has been investigated extensively. In [7], Widder obtained the following characterization of Laplace transforms of scalar-valued functions:

A function F on $(0, \infty)$ is the Laplace transform of $f \in L^{\infty}(0, \infty)$ if and only if F is infinitely differentiable and satisfies

(W_{\infty})
$$\sup\{\left|\frac{1}{n!}\lambda^{n+1}F^{(n)}(\lambda)\right|:\lambda>0, n\in\mathbf{N}\cup\{0\}\}<\infty.$$

The vector-valued version of Widder's theorem has been investigated by Arendt among others. In [1], Arendt obtained an "integrated version of Widder's theorem" (see [1, Theorem 1.1]), and from this generalization, the relation between the Hille-Yosida theorem and Widder's theorem is revealed.

It is worth noting that in Widder's characterization of Laplace transforms, condition (W_{∞}) involves not only the original function, but also its higher derivatives, and so in certain practical problems it may be difficult to verify condition (W_{∞}) . In Section 2, we give a characterization of Laplace transforms which involves only the original function but not its derivatives. Applications of this characterization can be found in [6].

In the theory of semigroups of operators, it is known that whether a linear operator A is the generator of a certain semigroup (C_0 -semigroup or integrated semigroup) is related to the Laplace representation of its resolvent $R(\lambda, A)$ (see [1], [5], [3]). In Section 3, using the results in Section 2, we obtain some characterization

©1998 American Mathematical Society

Received by the editors March 18, 1996 and, in revised form, January 23, 1997.

¹⁹⁹¹ Mathematics Subject Classification. Primary 47D03; Secondary 44A10.

results for generators of semigroups of operators. These results are different from those given by the Hille-Yosida theorem.

2. Characterizations of Laplace transforms

Let $f \in L^{\infty}(0,\infty)$. The Laplace transform F of f is given by

$$F(\lambda) = \int_0^\infty e^{-\lambda t} f(t) \, dt \quad (\lambda > 0).$$

The following result gives a characterization of those $F \in C(0,\infty)$ that are Laplace transform of an element f in $L^{\infty}(0,\infty)$. This characterization involves only the original function F, not its higher derivatives.

Theorem 2.1. Let $F \in C(0, \infty)$. The following assertions are equivalent.

- 1. F is the Laplace transform of some $f \in L^{\infty}(0, \infty)$.
- 2. There exists a constant M such that $|\lambda F(\lambda)| \leq M$ for a.e. $\lambda > 0$ and $|\sum_{j=1}^{\infty} \frac{(-1)^{j-1}}{(j-1)!} e^{jn} \lambda F(j\lambda)| \leq M \text{ for a.e. } \lambda > 0 \text{ for infinitely many } n \in \mathbf{N}.$ 3. Same as (2), with the inequalities holding for all $\lambda > 0$ and all $n \in \mathbf{N}$.

Proof. (1 implies 3) Put $M = \operatorname{ess\,sup}_{0 < t < \infty} |f(t)|$. It is clear that $|\lambda F(\lambda)| \le M$ for all $\lambda > 0$. Let $\lambda > 0$ and $n \in \mathbf{N}$. Then

$$\begin{aligned} |\sum_{j=1}^{\infty} \frac{(-1)^{j-1}}{(j-1)!} e^{jn} \lambda F(j\lambda)| &= |\int_0^{\infty} \lambda \sum_{j=1}^{\infty} \frac{(-1)^{j-1}}{(j-1)!} e^{jn} e^{-j\lambda t} f(t) dt| \\ &= |\int_0^{\infty} \lambda e^{-e^{n-\lambda t}} e^{n-\lambda t} f(t) dt| \\ &\leq M. \end{aligned}$$

(3 implies 2) Obvious.

(2 implies 1) Let $f_n(t) = \sum_{j=1}^{\infty} \frac{(-1)^{j-1}}{(j-1)!} e^{jn} \frac{n}{t} F(\frac{jn}{t})$. Then the given condition on F implies that there exist $n_1 < n_2 < \cdots$ such that (f_{n_i}) is a bounded sequence in $L^{\infty}(0,\infty)$. Since $L^{\infty}(0,\infty)$ is the dual of the separable space $L^{1}(0,\infty)$, $(f_{n_{i}})$ has a subsequence $(f_{n_{i_k}})$ which converges in the weak*-topology to $f \in L^{\infty}(0,\infty)$. In particular, for every $\lambda > 0$,

$$\lim_{k \to \infty} \int_0^\infty e^{-\lambda t} f_{n_{i_k}}(t) \, dt = \int_0^\infty e^{-\lambda t} f(t) \, dt.$$

On the other hand, since

$$\int_0^\infty \sum_{j=1}^\infty \frac{e^{jn}}{(j-1)!} \frac{n}{t} |F(\frac{jn}{t})| e^{-\lambda t} \, dt < \infty$$

and

$$\int_0^\infty \sum_{j=1}^\infty \frac{e^{jn}}{(j-1)!} \frac{n}{s} |F(\frac{1}{s})| e^{-\lambda j n s} \, ds < \infty,$$

we have

$$\begin{aligned} \int_0^\infty f_n(t) e^{-\lambda t} \, dt &= \int_0^\infty \sum_{j=1}^\infty \frac{(-1)^{j-1}}{(j-1)!} e^{jn} \frac{n}{t} F(\frac{jn}{t}) e^{-\lambda t} \, dt \\ &= \sum_{j=1}^\infty \frac{(-1)^{j-1}}{(j-1)!} e^{jn} \int_0^\infty \frac{n}{s} F(\frac{1}{s}) e^{-\lambda j n s} \, ds \end{aligned}$$

$$= \int_0^\infty e^{-e^{n(1-\lambda s)}} e^{n(1-\lambda s)} \frac{n}{s} F(\frac{1}{s}) ds$$

$$= \int_{-n}^\infty e^{-e^{-u}} e^{-u} \frac{n}{n+u} F(\frac{\lambda n}{n+u}) du$$

$$= \int_{-\infty}^\infty \chi_{(-n,\infty)} e^{-e^{-u}} e^{-u} \frac{n}{n+u} F(\frac{\lambda n}{n+u}) du,$$

so by the dominated convergence theorem (using the condition that $|\lambda F(\lambda)| \leq M$ a.e. $\lambda > 0$),

$$\lim_{n \to \infty} \int_0^\infty f_n(t) e^{-\lambda t} dt = \int_{-\infty}^\infty e^{-e^{-u}} e^{-u} F(\lambda) du = F(\lambda).$$

Hence F is the Laplace transform of f.

In the proof of the above theorem, we use the following version of the dominated convergence theorem: if $\int_X \sum_{j=1}^{\infty} |g_j| < \infty$, then $\int_X \sum_{j=1}^{\infty} g_j = \sum_{j=1}^{\infty} \int_X g_j$. This kind of argument will be used in later proofs and will not be mentioned explicitly.

Corollary 2.2. Suppose a continuous function F on $(0, \infty)$ satisfies

$$\sup_{\lambda>0}|\lambda F(\lambda)|<\infty$$

and

$$\sup_{\lambda>0,n\in\mathbf{N}}|\sum_{j=1}^{\infty}\frac{(-1)^{j-1}}{(j-1)!}e^{jn}\lambda F(j\lambda)|<\infty.$$

Then F is infinitely differentiable and can be extended to an analytic function on the right half-plane $\{z \in \mathbb{C} : \operatorname{Re} z > 0\}.$

Note that unlike Bernstein's theorem on completely monotone functions (see [7]), the condition given in the above corollary does not involve higher derivatives of F.

Next we want to consider Laplace transforms of vector-valued functions. Given $f \in L^{\infty}((0, \infty), E)$, where E is a Banach space, using the same argument as in the proof of Theorem 2.1, we see that the Laplace transform F of f satisfies

$$(\mathbf{P}_{\infty}) \qquad \sup_{\lambda>0} \|\lambda F(\lambda)\| < \infty \quad \text{and} \quad \sup_{\lambda>0, n \in \mathbf{N}} \|\sum_{j=1}^{\infty} \frac{(-1)^{j-1}}{(j-1)!} e^{jn} \lambda F(j\lambda)\| < \infty.$$

We will show that the converse holds if E has the Radon-Nikodým property. In fact, this gives a characterization for Banach spaces with the Radon-Nikodým property. The idea is to show that condition (P_{∞}) is equivalent to Widder's condition.

Theorem 2.3. Let E be a Banach space and let $F \in C((0, \infty), E)$. The following assertions are equivalent.

1. There exists a Lipschitz continuous function $\alpha : [0, \infty) \longrightarrow E$ with $\alpha(0) = 0$ such that

$$F(\lambda) = \int_0^\infty \lambda e^{-\lambda t} \alpha(t) \, dt \quad \forall \, \lambda > 0.$$

- 2. F satisfies condition (P_{∞}) .
- 3. F is infinitely differentiable and $\sup\{\|\frac{1}{n!}\lambda^{n+1}F^{(n)}(\lambda)\|:\lambda>0, n\in\mathbb{N}\cup\{0\}\}<\infty.$

2409

Proof. (1 implies 2) Let $x^* \in E^*$. Consider the scalar-valued function $g(t) = \langle \alpha(t), x^* \rangle$. The conditions on α imply that there exists $f \in L^{\infty}(0, \infty)$ such that $g(t) = \int_0^t f(s) \, ds$ for all $t \ge 0$. So for every $\lambda > 0$, we have (using Fubini's theorem)

$$\langle F(\lambda), x^* \rangle = \int_0^\infty \left(\lambda e^{-\lambda t} \int_0^t f(s) \, ds \right) dt = \int_0^\infty e^{-\lambda t} f(t) \, dt$$

Using the proof of Theorem 2.1 together with the uniform boundedness principle, we see that F satisfies condition (P_{∞}) .

(2 implies 1) For every $x^* \in E^*$, we consider the function $\lambda \mapsto \langle F(\lambda), x^* \rangle$. By Theorem 2.1, there exists $\tilde{f}_{x^*} \in L^{\infty}(0, \infty)$ such that

$$\langle F(\lambda), x^* \rangle = \int_0^\infty e^{-\lambda t} \tilde{f}_{x^*}(t) dt \quad \forall \lambda > 0.$$

It follows from the proof of [1, Theorem 1.1] that there exists a function α which satisfies the requirements.

The equivalence of 1 and 3 is just [1, Theorem 1.1].

Theorem 2.4. A Banach space
$$E$$
 has the Radon-Nikodým property if and only if
every $F \in C((0,\infty), E)$ satisfying condition (P_{∞}) is the Laplace transform of some
 $f \in L^{\infty}((0,\infty), E)$.

Proof. This is an immediate consequence of Theorem 2.3 and [1, Theorem 1.4].

Remark 2.1. If E is a dual space and has the Radon-Nikodým property, then $L^{\infty}((0,\infty), E)$ is a dual space (see [4]). So given $F \in C((0,\infty), E)$ satisfying condition (\mathbb{P}_{∞}) , the bounded sequence (f_n) constructed in the proof of Theorem 2.1 has a weak^{*} limit f which is the inverse Laplace transform of F.

For continuous $f \in L^{\infty}((0, \infty), E)$, where E is a Banach space not necessarily possessing the Radon-Nikodým property, we have the following inversion formula.

Theorem 2.5. Let E be a Banach space. Let $f : (0, \infty) \longrightarrow E$ be a bounded continuous function and F its Laplace transform. Then

$$f(t) = \lim_{n \to \infty} \sum_{j=1}^{\infty} \frac{(-1)^{j-1}}{(j-1)!} e^{jnt} n F(jn) \quad \forall t > 0 ,$$

the convergence is uniform on compact subsets of $(0, \infty)$, and uniform on bounded subsets of $(0, \infty)$ if $f(0+) = \lim_{t\to 0+} f(t)$ exists, and in this case,

$$f(0+) = (1 - e^{-1})^{-1} \lim_{n \to \infty} n \sum_{j=1}^{\infty} \frac{(-1)^{j-1}}{(j-1)!} F(jn) \; .$$

Proof. Let $t \ge 0$ and $n \in \mathbf{N}$. Then

$$\begin{split} \lim_{n \to \infty} \sum_{j=1}^{\infty} \frac{(-1)^{j-1}}{(j-1)!} e^{jnt} nF(jn) &= \lim_{n \to \infty} \int_0^{\infty} n \sum_{j=1}^{\infty} \frac{(-1)^{j-1}}{(j-1)!} e^{jnt} e^{-jnr} f(r) \, dr \\ &= \lim_{n \to \infty} \int_0^{\infty} n e^{-e^{n(t-r)}} e^{n(t-r)} f(r) \, dr \\ &= \lim_{n \to \infty} \int_{-nt}^{\infty} e^{-e^{-u}} e^{-u} f(\frac{nt+u}{n}) \, du \end{split}$$

$$= \begin{cases} \int_{-\infty}^{\infty} e^{-e^{-u}} e^{-u} f(t) \, du & \text{if } t > 0, \\ \int_{0}^{\infty} e^{-e^{-u}} e^{-u} f(0+) \, du & \text{if } t = 0 \text{ and } f(0+) \text{ exists,} \end{cases}$$

where the last equality follows from the dominated convergence theorem and the condition that f is continuous. Since f is uniformly continuous on [a, b] for $0 < a < b < \infty$ (on (0, b] if f(0+) exists), the convergence given in the last equality is uniform on [a, b] (on (0, b] if f(0+) exists).

Remark 2.2. Using the same idea as in the above proof, we see that the sequence (f_n) constructed in the proof of Theorem 2.1 converges to f for all t > 0 if f is continuous. However, we cannot consider the convergence at t = 0 for this sequence.

3. Semigroups of operators

Let *E* be a Banach space. The space of all bounded linear operators from *E* into itself is denoted by $\mathcal{B}(E)$. A family $(S(t))_{t>0} \subset \mathcal{B}(E)$ is said to be a semigroup if S(s+t) = S(s)S(t) for all s, t > 0. If $(S(t))_{t>0}$ is a strongly continuous semigroup and SOT-lim_{t \to 0+} $S(t) = I := S(0), (S(t))_{t\geq 0}$ is called a *C*₀-semigroup.

Proposition 3.1. Let E be a Banach space. Let $A : \mathcal{D}(A) \subset E \longrightarrow E$ be a closed linear operator and let $w \in \mathbf{R}$. If there exists a strongly continuous semigroup $(S(t))_{t>0} \subset \mathcal{B}(E)$ satisfying $||S(t)|| \leq Me^{wt}$ for all t > 0, where M is a constant, such that for all $x \in E$,

$$R(\lambda,A)x = \int_0^\infty e^{-\lambda t} S(t)x \, dt \quad \forall \, \lambda > w,$$

then $(w, \infty) \subset \rho(A)$ and the function $F: (0, \infty) \longrightarrow \mathcal{B}(E)$ defined by

$$F(\lambda) = R(w + \lambda, A)$$

satisfies condition (P_{∞}) . The converse is true if E has the Radon-Nikodým property.

Proof. The condition on $(S(t))_{t>0}$ implies that F is the Laplace transform (in the strong operator topology) of the bounded function $t \mapsto e^{-wt}S(t)$. Hence F satisfies condition (P_{∞}) .

Conversely, if F satisfies condition (P_{∞}) , by Theorem 2.3, it satisfies the Hille-Yosida condition, namely,

$$\sup_{\lambda>0,m\in\mathbf{N}\cup\{0\}} \|(\lambda R(\lambda,A-w))^m\| < \infty.$$

Hence by [1, Theorem 6.2], there exists a strongly continuous semigroup $(T(t))_{t>0}$ satisfying $\sup_{t>0} ||T(t)|| < \infty$ such that $R(\lambda, A - w)x = \int_0^\infty e^{-\lambda t} T(t)x \, dt$ for all $\lambda > 0, x \in E$. Hence $(S(t) = e^{wt}T(t))_{t>0}$ is the required semigroup.

Remark 3.1. The converse is also true if A is densely defined. In this case, the strongly continuous semigroup $(S(t))_{t>0}$ can be extended to a C_0 semigroup $(S(t))_{t\geq0}$ (see Corollary 3.7).

2411

Proposition 3.2. Let E be a Banach space. Let $w \in \mathbf{R}$. Suppose $A : \mathcal{D}(A) \subset E \longrightarrow E$ is the generator of a C_0 -semigroup $(S(t))_{t\geq 0}$ with $||S(t)|| \leq Me^{wt}$ for all $t \geq 0$, where M is a constant. Then for every $x \in E$, we have

$$S(t)x = e^{wt} \lim_{n \to \infty} n \sum_{j=1}^{\infty} \frac{(-1)^{j-1}}{(j-1)!} e^{jnt} R(jn+w,A)x \quad \text{for } t > 0,$$

$$(1-e^{-1})x = \lim_{n \to \infty} n \sum_{j=1}^{\infty} \frac{(-1)^{j-1}}{(j-1)!} R(jn+w,A)x,$$

and the convergence is uniform on (0, b] for $0 < b < \infty$.

Proof. This is an immediate consequence of Theorem 2.5

Let $n \in \mathbf{N}$. A strongly continuous family $(S(t))_{t\geq 0} \subset \mathcal{B}(E)$ is called an *n*-times integrated semigroup if S(0) = 0 and, for all $x \in E$,

$$S(t)S(s)x = \frac{1}{(n-1)!} \left[\int_{t}^{s+t} (s+t-r)^{n-1} S(r)x \, dr - \int_{0}^{s} (s+t-r)^{n-1} S(r)x \, dr \right]$$

 $\forall s, t \geq 0$. For convenience, a C_0 -semigroup is also called a 0-times integrated semigroup.

An *n*-times integrated semigroup $(S(t))_{t\geq 0}$ (where $n \in \mathbf{N}$) is said to be

- 1. exponentially bounded if there exist constants M, w such that $||S(t)|| \le Me^{wt}$ for all $t \ge 0$;
- 2. non-degenerate if S(t)x = 0 for all $t \ge 0$ implies x = 0;
- 3. locally Lipschitz if there exist constants M, w such that $||S(t+h) S(t)|| \le Me^{w(t+h)}h$ for all $t, h \ge 0$.

Given a non-degenerate, exponentially bounded *n*-times integrated semigroup $(S(t))_{t\geq 0}$ (where $n \in \mathbf{N}$), there exists a unique operator A and there exists $a \in \mathbf{R}$ with $(a, \infty) \subset \rho(A)$ such that $R(\lambda, A)x = \int_0^\infty \lambda^n e^{-\lambda t} S(t)x \, dt$ for all $\lambda > a, x \in E$. This unique operator is called the generator of $(S(t))_{t\geq 0}$. Since we are mainly interested in generators, for $n \in \mathbf{N}$, a non-degenerate, exponentially bounded *n*-times integrated semigroup will be called an *n*-times integrated semigroup for simplicity.

It should be pointed out that for an *n*-times integrated semigroup $(S(t))_{t\geq 0}$ $(n \in \mathbf{N})$ with $||S(t)|| \leq Me^{wt}$ for all $t \geq 0$, the constant w must be non-negative. This follows from the equality

$$S(t)x = \frac{t^n}{n!}x + \int_0^t S(s)Ax\,ds,$$

which holds for all $x \in \mathcal{D}(A)$ and $t \geq 0$. Similarly, if $(S(t))_{t\geq 0}$ is locally Lipschitz with $||S(t+h) - S(t)|| \leq Me^{w(t+h)}h$ for all $t, h \geq 0$, the constant w must be non-negative.

If A generates an *n*-times integrated semigroup $(S(t))_{t\geq 0}$, then for every $\lambda \in \mathbf{C}$, $A - \lambda$ generates an *n*-times integrated semigroup $(\widetilde{S}(t))_{t\geq 0}$, where

$$\widetilde{S}(t)x = e^{-\lambda t}S(t)x + \sum_{k=1}^{n} \lambda^k \binom{n}{k} \int_0^t \int_0^{u_k} \cdots \int_0^{u_2} e^{-\lambda u_1}S(u_1)x \, du_1 \cdots du_k \quad \forall x \in E$$

(To see this, it suffices to check that $\int_0^\infty e^{-\mu t} \widetilde{S}(t) x \, dt = \frac{1}{\mu^n} R(\mu, A - \lambda) x$.) The following two lemmas give the relation between the locally Lipschitz constants of $(S(t))_{t\geq 0}$ and $(\widetilde{S}(t))_{t\geq 0}$.

Lemma 3.3. Let $n \in \mathbf{N}$. Suppose A generates an n-times integrated semigroup $(S(t))_{t>0}$ satisfying

$$||S(t+h) - S(t)|| \le Mh \quad \forall t, h \ge 0,$$

where M is a constant. Then for every $\lambda > 0$, $A + \lambda$ generates an n-times integrated semigroup $(\widetilde{S}(t))_{t\geq 0}$ with the property that given any $\epsilon > 0$, there exists a constant \widetilde{M} such that

$$\|\widetilde{S}(t+h) - \widetilde{S}(t)\| \le \widetilde{M}e^{(\lambda+\epsilon)(t+h)}h \quad \forall t,h \ge 0.$$

Proof. Let $\lambda, \epsilon > 0$. Take $M_1 > 0$ such that $||S(t)|| \le M_1 e^{\epsilon t}$ for all $t \ge 0$. Then for every $t, h \ge 0$, we have

$$\begin{split} \|\widetilde{S}(t+h) - \widetilde{S}(t)\| &\leq \|e^{\lambda(t+h)}S(t+h) - e^{\lambda t}S(t)\| \\ &+ \sum_{k=1}^{n} \lambda^{k} \binom{n}{k} \int_{t}^{t+h} \int_{0}^{u_{k}} \cdots \int_{0}^{u_{2}} e^{\lambda u_{1}} \|S(u_{1})\| \, du_{1} \cdots du_{k} \\ &\leq e^{\lambda(t+h)} \|S(t+h) - S(t)\| + (e^{\lambda(t+h)} - e^{\lambda t}) \|S(t)\| \\ &+ \sum_{k=1}^{n} \lambda^{k} \binom{n}{k} \int_{t}^{t+h} \int_{0}^{u_{k}} \cdots \int_{0}^{u_{2}} M_{1} e^{(\lambda+\epsilon)u_{1}} \, du_{1} \cdots du_{k} \\ &\leq M e^{\lambda(t+h)} h + e^{\lambda(t+h)} \lambda h M_{1} e^{\epsilon t} + \sum_{k=1}^{n} \lambda^{k} \binom{n}{k} M_{1} (\lambda+\epsilon)^{1-k} e^{(\lambda+\epsilon)(t+h)} h \\ &\leq \left[M + \lambda M_{1} + M_{1} \sum_{k=1}^{n} \lambda^{k} \binom{n}{k} (\lambda+\epsilon)^{1-k} \right] e^{(\lambda+\epsilon)(t+h)} h. \quad \Box \end{split}$$

Lemma 3.4. Let n = 1 or 2. Suppose A generates an n-times integrated semigroup $(S(t))_{t\geq 0}$ satisfying

$$||S(t+h) - S(t)|| \le M e^{w(t+h)}h \quad \forall t, h \ge 0,$$

where M, w are constants. Then for every $\lambda > w$, $A - \lambda$ generates an n-times integrated semigroup $(\widetilde{S}(t))_{t>0}$ satisfying

$$\|\widetilde{S}(t+h) - \widetilde{S}(t)\| \le \widetilde{M}h \quad \forall t, h \ge 0,$$

where \widetilde{M} is a constant.

Proof. Let $\lambda > w$. Take $\epsilon > 0$ such that $\lambda > w + \epsilon$. It follows from the condition on $(S(t))_{t\geq 0}$ that there exists $M_1 > 0$ such that $||S(t)|| \leq M_1 e^{(w+\epsilon)t}$ for all $t\geq 0$. So for every $t, h\geq 0$, we have

$$\begin{split} \|\widetilde{S}(t+h) - \widetilde{S}(t)\| &\leq \|e^{-\lambda(t+h)}S(t+h) - e^{-\lambda t}S(t)\| + 2\lambda \int_{t}^{t+h} e^{-\lambda r} \|S(r)\| \, dr \\ &+ \lambda^{2} \int_{t}^{t+h} \int_{0}^{s} e^{-\lambda r} \|S(r)\| \, dr \, ds \\ &\leq e^{-\lambda(t+h)} \|S(t+h) - S(t)\| + |e^{-\lambda(t+h)} - e^{-\lambda t}| M_{1} e^{(w+\epsilon)t} \\ &+ 2\lambda \int_{t}^{t+h} M_{1} e^{(w+\epsilon-\lambda)r} \, dr + \lambda^{2} \int_{t}^{t+h} \int_{0}^{s} M_{1} e^{(w+\epsilon-\lambda)r} \, dr \, ds \\ &\leq e^{(w-\lambda)(t+h)} Mh + \lambda e^{-\lambda t} h M_{1} e^{(w+\epsilon)t} + 2\lambda M_{1} h + \lambda^{2} M_{1} (\lambda - w - \epsilon)^{-1} h \\ &\leq [M + 3\lambda M_{1} + \lambda^{2} M_{1} (\lambda - w - \epsilon)^{-1}] h. \end{split}$$

Lemma 3.5. Let E be a Banach space and let $w, M \ge 0$. Suppose $F : [0, \infty) \longrightarrow E$ satisfies $\limsup_{h\to 0+} h^{-1} ||F(t+h) - F(t)|| \le M e^{wt}$ for all $t \ge 0$. Then

 $||F(t+h) - F(t)|| \le M e^{w(t+h)}h \quad for \ all \ t, h \ge 0.$

Proof. It suffices to prove the result for the case where $E = \mathbf{R}$. First, we note that F is Lipschitz continuous on every bounded interval in $[0, \infty)$. Indeed, for every $\eta > 0$, take $M_1 > Me^{w\eta}$; then we have $\limsup_{h\to 0+} h^{-1}|F(t+h) - F(t)| < M_1$ for all $t \in [0, \eta)$. From this it follows that $|F(t+h) - F(t)| \leq M_1 h$ whenever $0 \leq t < t + h \leq \eta$.

Next, since F is absolutely continuous on bounded intervals in $[0, \infty)$,

$$\int_0^t F'(s) \, ds = F(t) - F(0) \quad for \ all \ t \ge 0.$$

Hence for $t, h \ge 0$,

$$|F(t+h) - F(t)| = |\int_{t}^{t+h} F'(s) \, ds| \le \int_{t}^{t+h} M e^{ws} \, ds \le M e^{w(t+h)} h.$$

Theorem 3.6. Let E be a Banach space and let $A : \mathcal{D}(A) \subset E \longrightarrow E$ be a linear operator.

1. Let $n \in \mathbf{N} \cup \{0\}$. Suppose there exists $w \ge 0$ such that $(w, \infty) \subset \rho(A)$ and the function $F : (0, \infty) \longrightarrow \mathcal{B}(E)$ defined by

$$F(\lambda) = \frac{1}{\lambda^n} R(w + \lambda, A)$$

satisfies condition (P_{∞}) . Then A generates an (n+1)-times integrated semigroup $(S(t))_{t\geq 0}$ with the property that, given any $w_1 > w$, there exists $M_1 > 0$ such that

$$\limsup_{h \to 0+} h^{-1} \| S(t+h) - S(t) \| \le M_1 e^{w_1 t} \quad \forall t \ge 0.$$

2. Let n = 0 or 1. Suppose A generates an (n + 1)-times integrated semigroup $(S(t))_{t>0}$ satisfying

$$\limsup_{h \to 0+} h^{-1} \| S(t+h) - S(t) \| \le M_1 e^{w_1 t} \quad \forall t \ge 0,$$

where M_1, w_1 are constants. Then $(w_1, \infty) \subset \rho(A)$ and for every $w > w_1$, the function $F_w : (0, \infty) \longrightarrow \mathcal{B}(E)$ defined by

$$F_w(\lambda) = \frac{1}{\lambda^n} R(w + \lambda, A)$$

satisfies condition (P_{∞}) .

Proof. (1) By Theorem 2.3, there exists a constant M > 0 and a function $T : [0, \infty) \longrightarrow \mathcal{B}(E)$ satisfying T(0) = 0 and $||T(t+h) - T(t)|| \le Mh$ for all $t, h \ge 0$ such that for all $x \in E$,

$$R(\lambda, A - w)x = \int_0^\infty \lambda^{n+1} e^{-\lambda t} T(t)x \, dt \quad \forall \, \lambda > 0.$$

By [1, Theorem 3.1], $(T(t))_{t\geq 0}$ is an (n+1)-times integrated semigroup with generator A-w. Hence by Lemma 3.3, A generates an (n+1)-times integrated semigroup $(S(t))_{t\geq 0}$ with the required property. (2) For every $w > w_1$, by Lemma 3.5 and Lemma 3.4, A-w generates a Lipschitz continuous (n+1)-times integrated semigroup. Hence by Theorem 2.3, F_w satisfies condition (\mathbf{P}_{∞}) .

Remark 3.2. The second assertion in the above theorem does not hold if $n \geq 2$. For example, in **R** or **C**, A = -1 generates a 3-times integrated semigroup $(S(t) = -e^{-t} + \frac{t^2}{2} - t + 1)_{t\geq 0}$ satisfying $\limsup_{h\to 0+} h^{-1} ||S(t+h) - S(t)|| \leq 2e^t$ for all $t \geq 0$. However, $F_w(\lambda) = \frac{1}{\lambda^2(\lambda+w+1)}$ does not satisfy condition (\mathbf{P}_{∞}) for any w.

Corollary 3.7. Let $A : \mathcal{D}(A) \subset E \longrightarrow E$ be closed and densely defined and let $n \in \mathbb{N} \cup \{0\}$. If there exists w > 0 such that $(w, \infty) \subset \rho(A)$ and the function $F : (0, \infty) \longrightarrow \mathcal{B}(E)$ defined by

$$F(\lambda) = \frac{1}{\lambda^n} R(w + \lambda, A)$$

satisfies condition (P_{∞}) , then A generates an n-times integrated semigroup. The converse is true for n = 0, 1.

Proof. If A satisfies the given condition, then by Theorem 3.6, A generates a locally Lipschitz (n + 1)-times integrated semigroup. Hence by [1, Corollary 4.2], A generates an *n*-times integrated semigroup.

Conversely, for n = 0 or 1, if A generates an n-times integrated semigroup $(S(t))_{t\geq 0}$ with $||S(t)|| \leq Me^{w_1t}$ for all $t \geq 0$, where M, w_1 are constants, then A generates an (n + 1)-times integrated semigroup $(\widetilde{S}(t) = \int_0^t S(r) dr)_{t\geq 0}$ (in the strong operator topology) satisfying $||\widetilde{S}(t+h) - \widetilde{S}(t)|| \leq Me^{w_1(t+h)}h$ for all $t, h \geq 0$. Hence the required result follows from Theorem 3.6.

To close our disscussion, we give the following example studied in [6].

Example 3.1. Let $E = L^1[0, R) \times L^1[0, R)$, where R is a positive constant (larger than the life span of human beings). Let $A : \mathcal{D}(A) \subset E \longrightarrow E$ be given by

$$A\varphi = (-\varphi_1' - (\mu + \delta)\varphi_1 + \sigma\varphi_2 , -\varphi_2' - (\tilde{\mu} + \sigma)\varphi_2 + \sigma\varphi_1),$$

where $\mathcal{D}(A)$ consists of all $\varphi = (\varphi_1, \varphi_2) \in E$ with φ_1, φ_2 absolutely continuous and satisfying

$$\varphi_1(0) = \beta \int_0^R h(r)k(r)\varphi_1(r) dr + \tilde{\beta} \int_0^R \tilde{h}(r)\tilde{k}(r)\varphi_2(r) dr,$$

$$\varphi_2(0) = \alpha \int_0^R h(r)k(r)\varphi_1(r) dr + \tilde{\alpha} \int_0^R \tilde{h}(r)\tilde{k}(r)\varphi_2(r) dr,$$

and $\mu, \tilde{\mu}, \sigma, \delta, k, \tilde{k}, h, \tilde{h}$ are nonnegative measurable functions on [0, R) $(\mu, \tilde{\mu}$ are the age specific mortality moduli of normal and disabled people; $0 \leq \sigma(r), \delta(r) \leq 1$ represent the recover rate and disabled rate at age r; $0 < k(r), \tilde{k}(r) < 1$ represent the proportion of the female population and that of the female disabled population of age r; h, \tilde{h} with L^1 -norm equal to 1 are the birth modes of females and disabled females respectively) and $\alpha, \tilde{\alpha}, \beta, \tilde{\beta}$ are constants (which, in fact, depend on government population policy). Then A satisfies the conditions given in Corollary 3.7 for n = 0 (for details, see [6]) and thus generates a C_0 -semigroup.

Acknowledgment

The authors wish to thank the referee for his suggestions and comments on the original version of this article.

References

- W. Arendt, Vector-valued Laplace Transforms and Cauchy Problems, Isreal J. Math. 59 (1987), 327-352. MR 89a:47064
- [2] E.B. Davies, "One-parameter semigroups", Academic Press, London, 1980. MR 82i:47060
- [3] E.B. Davies and M.M. Pang, The Cauchy problem and a generalization of the Hille-Yosida theorem, Proc. London Math. Soc. 55 (1987), 181-208. MR 88e:34100
- [4] J. Diestel and J. J. Uhl, "Vector Measures", Amer. Math. Soc., Providence, 1977. MR 56:12216
- [5] R. deLaubenfels, Integrated semigroups, C-semigroups and abstract Cauchy problem, Semigroup Forum 41 (1990), 83-95. MR 91b:47092
- [6] X. Li and J. Peng, Analysis of disabled population systems (Chinese), J. Xi'an Jiaotong Univ. 30 (1996) No. 10, 115-122. CMP 97:09
- [7] D.V. Widder, "The Laplace transform", Princeton Univ. Press, Princeton, 1946. MR 3:232d

Department of Mathematics, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China

DEPARTMENT OF MATHEMATICS, HONG KONG UNIVERSITY, HONG KONG