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CORRECTED OUTER FUNCTIONS

EVGUENI DOUBTSOV

(Communicated by Albert Baernstein II)

ABSTRACT. Given 0 < p < 2 and a strictly positive continuous function ¢ on
the unit circle, we construct a bounded analytic function g such that |g*| = ¢
a.e., and g is in the Besov space Aé on the unit disc.

1. INTRODUCTION

Let D={z€C: |z| <1}, T={( € C: |[¢|] =1} be the unit disc and the unit
circle. Denote by ms and m; the corresponding Lebesgue measures, mo(D) = 1,
m1(T) =1. H(D) is the space of all analytic functions f: D — C.

Put H* := {f € H(D) : fis bounded}, A(D) = H(D)NC (D) (the disc-algebra).
Let 0 < p < 2; then define

A;(D) ={feHD): ||f||i}17(]n>) = HfIHi;p(D)
- / PP = [2)P~ dma(z) < oo}

Since || - [[41(p) is the Besov (quasi) norm, we say that A, (D) is the analytic
Besov space. Recall some inclusions between A;(ID)) and other classical spaces of

analytic functions. Let €5 = {f € H(D) : {f(n)}n>0 € £P} and H? be the Hardy
class; then £} C AL(D) C H?, 0 < p < 2. In particular, A3(D) = H?.

The aim of the present paper is to prove the following result (we use the symbol
g* to denote the boundary values of g € H™).

Theorem. Let 0 < p < 2 and ¢ € C(T), ¢ > 0. Then there exists a function
g € H* N AL(D) such that |g*| = ¢ m1-almost everywhere.

Remark. This theorem holds also for some non-continuous functions ¢ and for non-
negative ¢ with some zeros. Moreover, these results are true in the unit ball of C",
n > 2. We will not discuss these generalizations in the present paper.

If p = 1, then the result under question was obtained in [2]. Note that the
theorem is interesting for small p > 0, since H*NAL(D) € H*NAL(D)if 0 < p < q.
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Indeed, suppose that f € H>; then, by Cauchy’s inequality, |f'(2)|(1—]z|) < const,
z € D, and therefore

/ /()PP (L — [2]) PP Ay (2) < ConSt/ [ (2)P(L = |2])"~ dma(2).
D D

To prove the theorem, we apply, as in [2], the approximation construction of
A. B. Aleksandrov in LP(T), 0 < p < 1 (see [1]). Recall that in [1] this construction
yields a solution of the inner function problem in the unit ball of C™.

Comments.

1. The point of the theorem is the restriction g € Azl7 (D). Indeed, given a bounded
modulus ¢ > 0, logp € L(T), the classical outer (in sense of Beurling) function is
defined by the formula

O,(z) = exp </ (+z log ¢(Q) dml(()> , zeD.
16— %

Recall that O, satisfies the equality under consideration |O}| = ¢ mj-a.e. (for
further details about the inner-outer factorization see [3]). Therefore, it is important
to note that there exists ¢ € C(T), ¢ > 0, such that O, ¢ Al(D) for all 0 < p < 2
(this has been known for a long time, at least for p = 1, see [5] and [6]). For
example, the following argument gives the proof:

If f € AL(D), 1 < p < 2, then {f(2")}n>0 € £7. On the other hand, given a
sequence {z, },>0 € (2, there exists g € A(D) such that §(2") = z,,, n € Zy. Hence,
if we take {z,} € £2\ £? for all 0 < p < 2, we obtain a function g € A(D) \ A,(D)
for all 0 < p < 2. To finish the argument, put h = g + 2||g|co; then || > 0 and h
is outer.

2. The theorem has an interpretation in terms of the inner-outer factorization.
Indeed, let 0 < ¢ < 2, ¢ € C(T), ¢ > 0, and O, ¢ U0<p<2 Azl,(]D). Then there
exists an inner function I, such that Oyl, € Al(D). In other words, the outer
function O, is corrected by I,.

Given a space £ C H(D), recall one notion which is important for investigation
of z-invariant subspaces of £.

Definition. Let I be an inner function. We say that I divides & if
IFefé=Fe& forall Fe HY ¢q>0.

Let ¢ be as above; then the theorem says, in particular, that I, does not divide
H>NA,(D). We refer the reader to the paper [8] for other results on division and
non-division by inner functions in the spaces H> N A;(D), 0<p<2.

3. Let 0 < p, ¢ < co. Then define

4L,(D) = {feHom: / If’(Z)I”(l—IZI)“‘ldmz(Z)<<>0}-

It is necessary to explain why we consider the case ¢ = p only.
Indeed, let ¢ > p and f € H*; then

/ If/(2)P(1 = |2))?  dma(2) < const/(l — |27 P dma(2) < oo,
D

D
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in other words, H*® C Azl,q (D), and the theorem is trivial in this case.
On the other hand, let p > ¢>p—1,¢> 1 and f € A} (D); then (see, e.g, [4,
p.67])

[ e [ i) - g drar < o
Since there exists a modulus ¢ € C(T), ¢ > 0, such that

[ [ (e ) — ey e it = o,

—T —T

the theorem is not valid for all ¢ < p.

2. AUXILIARY RESULTS
Lemma 2.1 (see, e.g., [7, p.17], where the proof is given even in the ball of C").
LetweD,a>0,b>—1. Then
dm1(Q) < const(a)
|1 =@t = (1= fw])*”
/ (1 — |2])>dma(2) < const(a, b)
p |1—zwPrett = (1—|w])e
Lemma 2.2. Letde N, 0<p <1, pd>2, and

7

= t> D.
h(t, z) Gri—td t>2 z€D
Then there exist constants o = ap,d) € (0,1) and My = Mo(p,d) > 4 such that
1 (" .
(2.1) %/ |11-a.21(0) — Reh(MoA™Y, )| db < a- A/,
(22) ||h(MOA_1a )Hip('ﬂ‘) < A/ﬂ-v
(23 B (oA ) < A

for all A € (0,7/4).
Proof. 1. To prove (2.1), we estimate the value of
e
Reh(t, e) = I|gl—$-2t4(_1tilcoscg)sf)i:—s;flsgﬁg :
If |t0] < 1, then |2 4 ¢(1 — cosf) + itsinf| < 4. On the other hand, there exists
e =¢(d) € (0,1) such that
2Im (2 + t(1 — cosf) + itsin6)?| > 2971th| for all |tf] < e, t > 2
(we killed the higher degrees of [t0]). Put t = MA~! M > 2; then

i/A |Re h(t,e)* do > i/s/t [Re h(t,e)|>do > C(d)t~! —C(d)é
or | e o e, € = -\

—e/t

Let 0 < p <1 and z € [-1,1]; then

1 p p p(1—p) ,
S+ + (1 —ap) <1- BB
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Note that Re h(t,e~") = —Re h(t, €?); thus

o7 | M

where Cy(p,d) > 0.

Now we estimate the complementary integral.

If |0] € [A,7/2], then |h(t,e?)| < |tsing|~¢ < C(d)[t|~. On the other hand, if
|| € [7/2, ], then |h(t,e?)| < [t|=¢ < C(d)|td]~?. For t = MA~™! we obtain

A
(2.4) ! H—RMM@”W%9<A<1—95&@),
A 7T

1 . oo
— |mMmﬂwwga@/(wﬂwe
(2.5) 2T J—x )\ [-A,A] A
1—pd
< AM 02(p7d)
- M

If M is so large that Cy (p,d) > M; P%Cy(p,d) and My > Mj, then (2.1) follows
from (2.4) and (2.5).
2. Lemma 2.1, with a = pd — 1 > 0, yields

B dm (¢)
1At Ol oy = S p—

t+2)~pd
- [ g am©
(t +2)~Pd
(1 —t(t+2)"1)pd-1
< consty(p, d)t ™.

< const(p, d)

Let t=' = AM; " and My > 7 - consta(p, d); then (2.2) holds if My > M.
3. We have

, td
W (¢, 2)| = PEREETEE
Hence, by Lemma 2.1, with a =pd —1>0and b=p—1 > —1, we obtain
/ tPdP(t +2)7P7P(1 — |2|)P !
Hh (t,Z)Hip(D) :/]D |1 — t(t—i— 2)—1Z|;Dd+p dmg(z)
(t+2)-rd
(1 —t(t+2)-1)pd-1
< comsts(p, d)t™ .

< const(p, d)

Again, let ! = AM; ! and M3 > 7 - consts(p, d); then (2.3) holds if My > M.

To finish the proof, define My = max{4, My, M, M3}. |
3. ELEMENTARY FUNCTIONS

Given R > 0, define D(R) = {z € C: |z| < R}.

Lemma 3.1. Suppose that p € (0,1). Then there exists a constant = [(p) €
(0,1) with the following property: Let r € (0,1/4) and Q = (e™3"%,e3") C T. Let
€ (0,1), R €(0,1). Then there exists a function f € A(D) such that

(3.1) Ref<lon@, and Ref<s»xonT\Q,

(3'2) H HQ - R’ef”Z[)/P(’J]‘) < Bmy (Q)7
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(33) A1y < m1(Q),
(3-4) 11 oy < ma(Q),
(3.5) If(2)] < » if z€D(R).

Remark. We will use this lemma when m;(Q) and s are small and R is close to 1.
Proof. Let 0 < § < »min{r,(1 — R)?} and r6~! = N € N (note that N3 > 1).
Define ¢ = e™", (i1 = €*¥i¢;, 1 < j < N —1; then {¢}}L, C [e7"", "], Take
d = d(p) € N such that pd > 2 (in particular, d > 2) and let @ and My be those
given by Lemma 2.2. We claim that the function

N N i
) = ; hiz) =3 (2 + Mo6=1(1 — 2(;))

J=1

satisfies the conditions of the lemma.
1. Let ¢ € T; then

12+ Mo~ (1 — (C;)| > min(2, Mod ™1 — ¢(;]) = min(2, Mos ' |¢ — ¢1).

Now, assume that ¢ € @ and min{j : arg({) < arg(¢;)} = k; then (x4 — (| > 16,
l=1,2,...,N — k. Therefore

ij ) <27 +ZZM0

=1

Analogously,

e

—1 (e’
hi(Q)] <279+ (1Mg)~*
1 =1

<.
Il

Hence, if ¢ € Q, then

SGIEERES SO

=1
Since Mo > 4, the first part of (3.1) holds.
If (€ T\Q, then |1 —((;[ >r=Noforall 1 <j<N. Hence

|<Z|h SN -N"% <871 < s

2. The estimate (2.1) from Lemma 2.2, for A = ¢, gives
N

|| HQ Re f”Lp(’J]‘ < ml(Q) - N6/7T + Z || H[Cje*‘”,cje&] —Re hJHZ[),p(T)
j=1
< m1(Q) = (N6 —a(p)No)/m =mi(Q) — (1 —alp)) - /7

Bp

)ma(Q)-
3. Since ||h; ||Lp(T < 6/7r (

see (2.2)), we obtain

N
171y < S URSIE ) < N8/ = /7 < mu(Q).

J=1
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4. The property (2.3) yields
N
17V < DoV < Vo < @

If [z] < R, then [1 — 2(;|> > (1 — R)? for all 1 < j < N. Thus, as above,
|f(2)] < N-6%1 = R)™% < N6U/25:42% < 5.
The proof is complete. O
4. APPROXIMATION CONSTRUCTION

Lemma 4.1. Let 0 < p < 1. Then there exists a constant v = v(p) € (0,1) with
the following property: Suppose that ¢ € C(T), ¥ >0, R € [0,1), € > 0; then there
exists a function F € A(D) such that

(4.1) ReF <y on T,
(42) 6 = Re P12 ry < 11
(43) V1 iy < 1012
(4.4) IF I oy < 012
(4.5) |F|<e on D(R).

Proof. Take a linear combination of characteristic functions h := ijl cjlq, (the
arcs (; are mutually disjoint and small enough, ¢; > 0) such that

(4.6) 20— A2,y < (1= BEIEIL ay:

(4.7) Y —h>n for some n>0.

Put ¢p = max{c; : 1 < j < J} and » = min{e,n}/(2¢oJ). Given the arcs Q;, »
and R, Lemma 3.1 provides the functions f;.

We claim that the function F' := ijl c; f; satisfies the conditions of the lemma
with v = (1 + 3)/2.

Since 2¢pJs < 7, (3.1) and (4.7) yield the inequality ©» — Re F > n/2, so (4.1)
holds. By (3.2) and (4.6), we have (4.2). Indeed,

J
Hd) ReF”Lp (T) < Hw - h||1[),17(’ﬂ‘) + ZC§||HQJ' - Refj”ip(']r)
=1

1
< (U= By + BRI
< 7||1/)||Lp('ﬂ*)-

The property (3.3) provides the estimate

J J
||F||I£p(qr) < ZC?HfjH’ipm < chml(Qj) < ||1/’Hz£p(1r)'
P P

The same argument shows that (3.4) implies (4.4).
At last, (3.5) = (4.5), since 2¢oJ s < . O
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5. PROOF OF THE THEOREM

Proof. Given a strictly positive continuous modulus ¢, put ¥y = loge. Without
loss of generality, we suppose that ¢p > 0 and 0 < p < 1.

Put ¢ = ¢y and R = Ry := 0; then Lemma 4.1 yields a function F' € A(D).
Define F; := F.

Suppose, as induction hypothesis, that m € N, {F;}7, € A(D) and {Ry,}}"' C
[0,1). Assume also that

(5.1) Re <2Fk> <ty on T,
k=1

m p
(5.2) ‘ Yo — Re (Z Fk> <YYol Lo (r
k=1 L»(T)
(5'3) ||Fm||1[),17(’ﬂ‘) < vm_1||¢0||’£p(qy)7
(5'4) ||Fr/n||€xp(m) < 'Ym_l ||w0||iP(T)7
m—1 p
(5.5) > F <y,
k=1 AP(D\D(Rmfl))
m—1 P
(5.6) (exp(Fy,) — 1) <Z F,é) <™
k=1 AP(D(Rmfl))

Remark (base of induction). If m = 1, then (5.1-5.4) are (4.1-4.4), and the esti-
mates (5.5), (5.6) are trivial.

Step m + 1. Define R,, such that (5.5) holds for >_;" ; and v™. Take &,, > 0 such
that
P

(5.7) <

Ap(D(Rm))

(exp(em) — 1) (Z Fé)

k=1

Given p € (0,1) and ¢ =9 — Re (3_j-, Fx) >0, R = Ry, € = €, Lemma 4.1
provides the function Fj, 1.

Note that (4.1-4.4) = (5.1-5.4) and (5.7) = (5.6) for m + 1. Now the induction
construction proceeds.

Recall that Y °_, 7™ < oo; therefore, by (5.3), the series Y ;- | Fj, converges in
HP, so define

g = exp (Z Fk> .
k=1

We claim that g satisfies the conditions of the theorem.

Put ¢ := max(p) < +o00. Then (5.1) implies the estimate |g| < @ on the disc D,
and therefore g € H>.

On the other hand, (5.2) yields the equality |¢*| = ¢ m1-a.e.
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So we have to prove the property g € A;l7 (D) only. Introduce extra notations

Gy = ZF,Q exp ZFk , Ty = ||Gm+1—Gm||ip(D)-
k=1 k=1

It is sufficient to show that {z,,}°_, € ¢1. Fix an integer m € N. Then

m—+1 p
T < X + Vi = ||F), o exp | Y Fi
k=1 Ap (D)
m m—+1 m p
+ ZF,,’C exp Z F, | —exp ZFk
k=1 k=1 k=1 A, (D)
X). The properties (5.1) and (5.4) imply the estimate
Xm < Vm@HwO”ip('ﬂ')-
Y). By (5.1), (5.5) and (5.6), we obtain
m p m P
Yo <20 || Ff + & | (exp(Frni1) — 1) | Y F
k=1 1A, (D\D(Rm)) k=1 Ap(D(Rm))
<A™ . 30.
Since Y °_, ™ < oo, the items X) and Y) yield > °_, 2, < +00.
The proof is finished. O
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