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ON THE MINKOWSKI MEASURABILITY OF FRACTALS

K. J. FALCONER

(Communicated by Andrew M. Bruckner)

Abstract. This note addresses two aspects of Minkowski measurability. First

we present a short "dynamical systems" proof of the characterization of

Minkowski measurable compact subsets of R . Second, we use a renewal theory

argument to point out that "most" self-similar fractals are Minkowski measure

able and calculate their Minkowski content.

1. Introduction

Let FE denote the e-neighbourhood of a set FC1", i.e.,

Fs = {xeRn: disx(x, F) < e}.

We study the behaviour of V(Fe) as e approaches 0, where V denotes n-

dimensional volume (Lebesgue measure). This may be used to define the

Minkowski dimension, equivalently the box-counting dimension, of F , see [3,

§3.1]. In particular, if V(Fe) « en~d as s —> 0, then the Minkowski dimension

or box-counting dimension of F equals d (this is the situation that we are

particularly interested in here). In the nicest case, V(FC) ~ ce"~d for some c

(0 < c < oo), in which case we say that F is d-dimensional Minkowski mea-

surable, with Minkowski content c. (Note that f(t) « g(t) as t —► 0 means

there exist positive constants a, b such that af(t) < g(t) < bf(t) for all suf-

ficiently small t and that f(t) ~ g(t) means f(t)/g(t) —> 1 as i->0. We use
a similar notation for t —> oo .) Smooth or rectifiable curves are 1-dimensional

Minkowski measurable, smooth surfaces are 2-dimensional Minkowski measur-

able, and so on (see Fédérer [4, 3.2.29]). Here we investigate conditions for

fractal sets to be Minkowski measurable.

It is possible to give a complete characterization of Minkowski measurable
compact subsets of R. This was done by Lapidus and Pomerance [12, 13] in

their treatment of the 1-dimensional Weyl-Berry conjecture. The lengths of the

complementary intervals to F are crucial. Let / be a bounded closed interval,

with /„ disjoint open subintervals of / satisfying |/„| > \In+x\ (« = 1,2,...)

and |/| = Y^n°=\ l^nl- (1^1 denotes the length of the interval 7.) Then the
compact set F = I\\JnxLxIn  is ^-dimensional Minkowski measurable if and
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only if I/„| ~ cn~xld as n —> oo for some c > 0. This follows from a result

on the asymptotic behaviour of certain sequences which was proved by Lapidus

and Pomerance [13]. In §2 we give a shorter dynamical systems proof of this,

leading to a concise derivation of this characterization of Minkowski measurable
subsets of R. This characterization is of particular relevance to the work by

Lapidus and Pomerance on the 1-dimensional version of the problem that is

succinctly expressed as "Can you hear the dimension of a fractal?". We say a
little more about this in §4.

In §3 we specialise to self-similar subsets of R, showing that they are "almost

always" Minkowski measurable and calculating their Minkowski content. This

is in contrast to "exceptional" cases which happen to include the usual middle-

third Cantor set, shown by Lapidus and Pomerance [13] not to be Minkowski
measurable. These results follow easily using the renewal theory methods de-

veloped by Lalley [5-7].
The referee has pointed out that results similar to those of §3 have been

obtained independently by Lapidus [10] and Kigami and Lapidus [8] in very

recent work.

The author thanks Professor C. Pomerance for helpful comments on an ear-

lier version of this paper.

2. Characterization of Minkowski measurable subsets of 1

In this section we give a rather shorter proof of the characterization of

Minkowski measurable compact subsets of R originally given by Lapidus and
Pomerance [13]. As there, we deduce the characterization from results on the
asymptotic behaviour of sequences, which are stated in Corollary 2 below. The

following proposition, which we prove using a dynamical systems argument, is

a continuous version of the asymptotic result—an analogous proof using a dis-

crete dynamical system would lead to the corollary directly, but the algebra is
less straightforward.

Proposition 1. Let f: [0, oo) —► (0, oo) be a nonincreasing continuous function

with ¡0°° f(t)dt < oc. Let 0 < d < 1 and a, ß > 0. Then as t -> oo
(a)

(1) f(t)*rl'd

if and only if

/oo f(u)du + ßtf(t)ä*l;

(b)

(3) f(t)~(ad/(i-d) + ß)-l'drl'd

if and only if

(4) af(t)d-ll°°f(u)du + ßtf(t)d~l.

Proof. The implications (1)^(2) and (3) =>■ (4) are easily verified by direct
integration and substitution.

To establish the converses, define x: [0, oo) —> (0, oo) by

(5) x(t) = txldf(t)
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Figure 1. The family of curves {Kc}

and y : [0, oo) —► (0, oo) by

/oo f(u)du

so that for t > 0

/oo f(u)du-((i-d)/d)rM'df(t)

= ((l-d)/d)rx[y(t)-x(t)].

We shall study x(i) = (x(t), y(t)) as a dynamical system in [0, oo) x [0, oo).

For all c> 0 let Kc be the curve given by

v = ((1 - d)/ad)(cxx~d -ßx)       (0<x< (c/ß)l'd).

Thus Kc is the set of points in (0, oo) x [0, oo) satisfying

(8) a(d/(l-d))xd-xy + ßxd = c

together with (0,0). For each c, Kc is a convex curve that approaches the ori-

gin tangentially to the y-axis and that meets the x-axis again at ((c/ß)x/d, 0).

The family of curves {A^c:0<c<oo} varies continuously with c in the ob-

vious sense, with Kc> outside Kc if c < c' ; see Figure 1. We write L for the

line y = x , and p for the point of Kx n L other than the origin.
Using (5) and (6), condition (2) becomes

cx < a(d/(l - d))x(t)d-ly(t) + ßx(t)d < c2

for all t, for some cx, c2 with 0 < cx < c2 < oo. Thus, writing R for the open
region in (0, oo)x(0, oo) lying between KCl and KCl, we have (x(t), y(t)) e R
for all t. Since the curves Kc approach the origin tangentially to the y-
axis, the region {(x,y) e R: 0 < x < jc0} lies above the line L if x0
> 0 is chosen sufficiently small, so by equation (7) y(t) is increasing when-

ever x(t) < Xq .  Thus for t > 1, the point x(r) can never enter the region
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{(x, y): x ■< xo, y < min(y(l), x0)} ; so x(t) is bounded below. Trivially,

x(t) < (c2lß)xld for all t, which completes the proof of (a).

Now suppose that the stronger condition (4) holds. Using (5) and (6) this

condition becomes

a(d/(l - d))x(t)d'xy(t) + ßx(t)d ~ 1.

This means that \(t) e Kx+e^ where e(t) —> 0, so in particular

(9) dist(x(i), Kx) ->      asi->oo.

We show that \(t) -> p as / —► oo in two complementary cases.

Case (i). There exists ío > 0 such that x(t) does not strictly cross the
line L for any t > to. Thus y(t) - x(t) does not change sign and y(t) is

monotonie for t > to, using (7). It follows that y(t) —► yo for some yo e

[0, M], where M = sup{y : (x, y) e R} and R is as above. Since the set

{x e [0, oo): (x, yo) e Kx) is finite (in fact, contains at most two points), (9)

implies that x(t) -* xo for some x0 with (x0, yo) e Kx. If xo ± yo, then (7)
implies that either y'(t) > at~x or y'(t) < -at~x for t sufficiently large, where

a > 0, which would imply that y(t) -> oo. Hence x(t) -* (y0, yo) e Kx; by

pan (a) x(t) -A (0, 0), so x(t) -> p.
Case (ii). The point x(t) lies strictly above L and lies strictly below L for

arbitrary large t. Using (7), if x(t) is above L, then y(t) < y(t+) where t+

is the least number greater than t such that x(t+) e L; and if x(t) is below

L, then y(t) < y(t-) where /_ is the greatest number less than t such that

x(t-) e L (assuming that such a i- exists, which is certainly the case for t
sufficiently large). Hence

(10) limsupy(i)= Hm{y(t):(x(t),y(t))eL},
••-»oo t->oo

and similarly

(11) lim infy(t) = lim inf{y(t) : (x(t), y(t)) e L}.
t—KX t—KX

But if {■>,} is any sequence with t¡ -» oo and x(t¡) e L, (9) implies that

x(i() —» P (the sequence x(t¡) is bounded away from (0, 0) by part (a)). It

follows from (10) and (11) that y(t) -» yo as i-»oo, where p = (yo, yo).

Using (9) again gives that x(t) —> xo, where (xo, yo) e Kx. Since xo / yo
would contradict that x(t) crosses L for arbitrarily large t, we again conclude

that (x0, yo) = P •

Thus in both Cases (i) and (ii), x(t) —► p = (xo, xo) as t -» oo. Substituting

in (8) with c = 1 we get

x(t)^x0 = [ß + ad/(l-d)]-x,

so (3) follows, using (5).   D

We apply Proposition 1 to obtain the characterization of Minkowski measur-

ability given by Lapidus and Pomerance [13].

Proposition 2. Let I be a bounded closed interval in R, and let {/n}^i be a

sequence of disjoint open subintervals of I with \I„\ > \In+x\ and \I\ = YA^LX \In\ ■

Define the compact set F = I\ |J~ , h . For all d  (0 < d < 1 ) and c>0
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(a)

(12) \In\*n-x'd    asn^oo

if and only if

(13) V(Fg)t»el~d    ase->0;

(b)

(14) \In\~2x-xldcxld(l-d)xldn-xld    asn^oo

if and only if

(15) V(Fe)~cel~d    ase^O.

Proof. The e-neighborhood FE consists of F , all those intervals /„ with |/„| <

2e , two subintervals of lengths e inside every interval /„ with |/„| > e, and
an interval of length e at each end of F .

Hence, if e satisfies ^l^+il ^ e ^ jUn\ (at least one such n exists if 0 <

e < j\Ii\), we have

00

(16) V(Fe)=  £ \I¡\ + 2ne + 2e.
i=n+l

Direct substitution of ( 12) and ( 14) now gives ( 13) and (15) respectively (noting

fh3XYZn+xi-xld~nx-xlddl(l-d)).
For the converses, we have from ( 16) that

00

(17) ed-lV(Fe) = ed-x £ \Ii\ + (2n + 2)ed.

i=n+l

Define /: (1, 00) —> (0, 00) by

f(t) = \(t-n)\In+x\ + {(n+l-t)\In\

where n < t < n + 1. Then / is continuous and nonincreasing with f(t) —» 0

as t —> 00 and with f(n) = \\In\. Taking e = f(t) in (17) we get

00

f(t)d-xV(Ff(t)) = f(t)d-x £ 2f(i) + (2n + 2)f(t)d
i=n+1

where n < t < n + 1, so

/oo f(u)du + 2tf(t)d + 0(f(t)d).

(Notice that /(°° f(u) du = YZn+i f(i)+0(f(t)) by an "integral test" estimate.)

Given (13), it follows from (18) that f(t) = 0(rx'd) and thus that (2) holds
with a = ß = 2. It follows using Proposition 1(a) that |/„| = 2f(n) « n~xld

as n-»oo.

Given (15), we get from (18) that (4) holds with a = ß = 2/c. By Proposi-
tion 1(a) we get (3), which reduces to (14).   D
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It follows from Proposition 2(b) that F is ¿/-dimensional Minkowski mea-

surable if and only if |/„| ~ an~xld for some a > 0

3. Self-similar sets

We now specialize to self-similar subsets of R which generalise the middle-

third Cantor set construction. The results given below are very much in the

spirit of Lalley's work [5-7].
Let / be a closed subinterval of R, and let fa, ... ,<f>m: I -> I be contrac-

tions such that <f>i(I)n<f>j(I) = 0 (i¿ j). It is well known [3, §9.1] that there ex-
ists a unique, nonempty compact set F, called invariant set for {fa ,... , <f>m} ,

such that F = \JT=i <P¡(F) ■  write Fk = IJ.,.hfax ° ■•• ° fak(I) where the
union is over all sequences (/•, ... , i*) with 1 < i¡ < m   (1 < j < k). Then

F = \T-xFk.
Suppose, for the moment, that (f>¡ are similarity transformations, i.e.,

\fa(x) - 4>j(y)\ = c¡\x - y\ (x, y e I) where 0 < c, < 1 ; then F is called a
self-similar set. (The simplest example is the middle-third Cantor set, obtained

by taking <f>x(x) = ^x and fa(x) = \x + \.) The box-counting dimension
(and also the Hausdorff dimension) of F is given by the unique positive d

satisfying £¿.i cf = 1. By choosing / and ordering the fa appropriately, we
may assume that F has been constructed with fa(I),... , <f>m(I) subintervals
of / occurring in that order and with <f>x(I) and (j>m(I) each having an end in
common with one of the ends of /. For convenience we assume that F has

been scaled so that / = [0, 1]. We call Cx,... ,cm the ratios and bx, ..., bm-x
the gaps in the construction of F , where b¡ is the distance between fa(I) and

fa+i(I) (l<i<m-l).
The following version of the renewal theorem is most convenient for our

purposes. (The observation that (19) is equivalent to N(t) = YOLi N(t - ft) +
Xio,oo](t) (t > 0), N(t) = 0 (t < 0), followed by the substitution Z(t) =
e~stN(t) reduces it to a more usual form of the renewal theorem.) We write

gp{r. , ... , rm} for the additive subgroup of R generated by {r{, ... , rm} .

Proposition 3. Let r¡ > 0  (I < i < m), and let

Í s
(19) N(t) = #l(ix, ... ,ik):k>0,  1 < ij < m, and ^r,; < t

( j=\

Let s > 0 satisfy YZi ?~sr' = 1 •
(a) If gv{rx, ... ,rm} is dense in 1, then as t -> oo

N(t)~estlsYjne-sr¡.

(b) If gp{rx, ... , rm} = hZ where h > 0, then as t —► oo

N(t) ~ es'g(t)

where g is a positive continuous function with period h .

Proof. See, for example, [7].   D

The following application of the renewal theorem is similar to that of Lalley

[6]. Expression (20) gives the Minkowski content of a self-similar set in the

"generic" case.
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Proposition 4. Let F ç 1 be a self-similar set as described above, with ratios

Cx,..., cm and gaps bx, ..., bm-X. Let d be the Minkowski dimension (or

box-counting dimension) of F, so that YAlLi cf — I ■

(a) If gp{log cf1, ... , loge"1} is dense in R, then as e -> 0

(20) V(Fe)~ex-d2x-d(l-d)~x

in particular, F is Minkowski measurable.
n

V(Fe)*el-d

m—l j     m

£¿77 ¿Erlöge:
j=l / 1=1

-1

(b) Ifgp{logcf',... ,logc~l} = hZ for h>0, then as e -> 0

(21)
Proof. For u > 0 write

N(u) = #{sequences (ix, ..., ik): k >0,  1 < i, j < m, and c,,^ • • • cik > u}

-4sequences (ix,..., ik) : £ loge, ' < - log«
I J=x

For case (a), we may apply Proposition 3(a) to deduce that

(22) --1
/

N(u)~u~d / ¿]Tcflogc:
'        i=l

as Moo. The jXh gap in </>,-, o ■ • • o «^(IJ™. 4>i(I)) has length bjc^ ■ ■ -cik.
Hence, if {In}n°=x are the open intervals in the complement of F arranged in
decreasing order of length, we have for w > 0,

m-l

#{n: \I„\ >w}= £#{(/'i, ■■■ ,h): bjChcÍ2---cik >w}

7=1

m-l

= £ N(w/bj)
;=i

m— 1 /       mm— i /        m

~ w~d £ bd / d J] cf loge-1.
7=1       '       /=i

Using (22) it follows that

(23) \In\

m-l
-,1/rf

¿>/     d £ cf logc¡
j=i '

-1

(=1

■I/d

and Proposition 2(b) gives (20).
Case (b) follows in exactly the same way, but using Proposition 3(b) and

2(a).   D

We remark that these results extend to the much more general situation of

"non linear" Cantor sets. Suppose now that fa ,... ,fa\ I -* I are now con-

formal C2 contractions where / = int / is a subset of K" . Let F be the

invariant set of <px, ... , </>m (which exists in this situation), and assume that
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</>i (F), ... , <pm(F) are disjoint. The Minkowski dimension of the invariant set

F is given by the unique positive number d for which there exist a, b > 0

such that

a<   £   \(fa,o-..ofak)'(x)\d<b
i\ , ... , ¡k

for all k elA andx e /. (See [1, 4] for a discussion of the thermodynamic

formalism leading to this result.) For x e fa(F) write f(x) for the unique
y e F such that fa(y) = x ; thus, <p¡ is the local inverse of f and f(F) = F.

We say that two functions g, h e C(F) are cohomologous if there exists a
function y/ e C(F) such that g-h = ip-y/of.

The following result may be obtained via Lalley's generalization of the re-
newal theorem to the nonlinear situation.

Proposition 5. Let F be the invariant set for fa , ... , 4>m : / —> / as above.
Then F is Minkowski measurable providing that the function log|/'(')| e C(F)
is not cohomologous to any function taking values in a discrete additive subgroup

ofR.

Note on Proof. This may be proved in an almost identical way to Theorem

12 of Lalley [6], which deals with the asymptotic behaviour of alternative ap-

proximations that can be used in box dimension calculations of the limit set

of Schottky groups. The proof is fairly involved and hangs on a generalization

of the renewal theorem to the nonlinear situation. However, the only change
required, other than minor notational alternations, is that N(e, K) must be

taken as V(Ke) rather than as the minimum cardinality of an e-covering of a

set K.

4. Final remarks

The question of whether fractals are Minkowski measurable has attracted

recent prominence in work related to the Weyl-Berry conjecture on the distri-

bution of eigenvalues of the Laplacian on domains with fractal boundaries; see
[2, 8-15]. Particularly relevant is the paper by Lapidus and Pomerance [13]

which gives an analysis of the conjecture in the 1-dimensional case.
As in §2, we let / be a closed bounded interval and let {/„} be a sequence

of disjoint open subintervals such that |/| = YA^=i l^-l • We write Q = U^l, /„

and F = I\íl. We consider the eigenvalue problem

(24) 7T-Ï = -¿w    onii,
dx2

(25) u = 0    on<9Q.

(We imagine a vibrating string stretched over the gaps /„ in the fractal F .) It

is clear that the problem (24), (25) has a nontrivial solution if and only if \/Ä

is a multiple of n/\In\ for some n. Hence, if N(X) denotes the number of
eigenvalues less than or equal to À, we have

oo

(26) NW = Y,ln-1*1/2\In\\

where [ J denotes "integer part of.
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Weyl's classical result on the distribution of eigenvalues of the Laplacian on a

domain Q in R" is that N(X) ~ cvoln(Q)Xn/2 . (This follows easily from (26)

in the case n = 1.) Berry [2] conjectured that the next term in the asymptotic

expansion reflects the "fractal" dimension of the bounds of ¡Q. Lapidus and

Pomerance [13] obtained very precise formulation of this in the 1-dimensional

case in terms of Minkowski measurability and Minkowski content.

Their argument depends on two asymptotic results. The first is Proposition 2

above. The second is that if {a„} is a decreasing sequence of positive numbers

with a„ ~ an~xld , then

(27) Yßan-\tan\)~-t:(d)ad1d    as t oo

where Ç is the Riemann zeta function (note Ç(d) < 0 for 0 < d < 1). This

was proved [13, Theorem 4.2] by breaking the series of (27) into three parts

and using estimates of an analytic number-theoretic flavour.

To complete the argument, note that if F ç R is (i-dimensional Minkowski
measurable with Minkowski content c, then (14) holds; so by (26) and (27)

(28) N(X) = n~x\I\XXI2 + C(d)n-d2d-x(l - d)cXd'2 + o(Xd'2).

This formula holds for self-similar sets of the form considered in Proposition

4(a), so N(X) may be estimated in terms of the ratios and gaps of the set, using

(20), i.e.,

N(X) = n~xXxl2 + C(d)n-d
m-l

Xdl2 + o(Xdl2).T,bJ     d^cflogc;
J=X        I        i=X

In the same way, if F merely satisfies V(Fe) « sx~d , we get

bxXd>2 < it-xXx'2\I\ - N(X) < b2Xdl2

where the positive constants bx, b2 may, in principle, be estimated in terms of
the implicit constants in V(FS) « ex~d .

The reader is referred to a very interesting paper by Lapidus and Maier

[11], showing that a converse of this question (roughly, if a formula such as
(28) holds, then F is Minkowski measurable) is equivalent to the Riemann

hypothesis.
The relationship between the eigenvalues of the Laplacian in a domain in Rn

and the dimension of the boundary is studied in [9] in the case n > 2. There

is not in general such a convenient formula as (26) for N(X) in terms of the

geometry of the domain.

We remark that a related but simpler problem concerns packing intervals into

Q (as defined above). We write P(e) for the maximum number of disjoint open

intervals of length e that may be placed inside Q = \J^LX In ■ Then

oo

^(e) = EL|/«|e-1J;
n=l

so a similar argument shows that if F is ^-dimensional Minkowski measurable

with Minkowski content c, then as s —► oo

P(e) = e-'|/| + C(d)2d~x(l - d)ce~d + o(ed).
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