
FUNCTIONS HARMONIC IN A STRIP

D. V. WIDDER

1. Introduction. The form of the Poisson kernel appropriate for

an infinite strip is undoubtedly familiar to many analysts. However,

there seems to be no convenient reference to it; compare  [l] and

[2]. Hence a brief discussion of it here may not be without interest.

If we set
sin x

(1) P(x,y)=—-,
cosh y — cos x

then a formal solution of the Dirichlet problem for the strip Q^x^tt,

— =0 <y< 00, is

If00
u(x, y) = — I    P(x, I - y)u(0, l)dt

2tJ _oo
(2)

1   f
H-I    P(w — x, t — y)u(%, t)dt.

2tJ -x

We supply a set of conditions sufficient for the validity and unique-

ness of this representation. We also discuss positive harmonic func-

tions, obtaining the analogue of the classical theorem of Herglotz.

See [3; 5].

2. Properties of the kernel. Let us use the letters 77, L, C to denote

the classes of functions which are harmonic, Lebesgue integrable, and

continuous, respectively.

Lemma 1. If P(x, y) is the function (1) and ô is a positive number,

then

A. P(x, y) EH - 00 <y < »,0 < x < 2tt;

B. P(x, y) > 0 0 < x < t;

sin x gHi/l+s

C. \P(x,y)\ áJ—rî—r- M ^»°^a2i;
cosh ó — 1

D.
/CO

P(x, y)dy = 2(7T — x) 0 < x < ir;
-00

The proofs of these facts follow from the following relations:
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A. P(x, y) = 2 Im [<?-«*+*> - l]-1;

B. cos x < cosh y;

C. cosx < 1, e_lïl(coshy — 1) is increasing for 5 ^ y < «> and is even;

' cos x — e"\      P(x, y)d / cos x — e"\
D.    — ctn-1 I .-;-) =

dy \     sin x     /dy \     sin x    / 2

By use of this lemma we now prove our first theorem.

Theorem 1. 7/<£(2)eH"£L on (— «e, ■»), <£(2)£Caí 2 = yo, awá

(3) P(x, y) = — f   P(x, ¿ - y)4>(0*,
2xJ_oo

/Ae«

A. P(x, y) £ H -oo<y<oo,0<x<2ir

B. P(7T, y) = 0 — co < y < co

C. lim     F(x,y) = <Kyo).
x-<0+,v->vt

In conclusion C, the approach of (x, y) to (0 + , yo) is two-dimen-

sional. The integral (3) converges uniformly in 0<x<27r, \y\ ^R

for every R>0. For, in this region we have by conclusion C of Lemma

1 that

c r        I <K0 le-"-"'^
P(x, / - y)0(/)¿/ « e5 j --!-

J MiêB+s «J Ki>Ä+J    cosh 5 — 1

gß+5 *»

«-I I *(/) liH"«ft.
cosh5 — 1J iíi>p+j

This proves conclusions A and B.

Given e>0, we choose 8 so that| <b(y-\-yo)—cp(yo)\ <e/2 when |y|

g25. Then for \y-yo\ =8 and |*| gS

I 4>(t + y) - 0(yo) | < e/2.

For 0<x<7T and |y — yo| =â8 we have by B, C, D of Lemma 1 that

F(x, y) -   W~X <b(y0)   Ú—Í   P(x, /) | *(y + 0 - <b(yQ) \ dt
IT ¿irJ-a

i   rs sinx c       e-i'l+5|^(y+0 - 4>(y0)\dt
^ — I    P(x, t)dt + ■- I-

4:wJ-t 2r J |*i*i cosh 5 — 1

6
^-h if sin x,
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where

<f>(yo) \es eW+2*
K =

7r(cosh 5—1)      27r(cosh 5—1)

We have used the fact that

f   e-^\4>(t)\dt.

/.
e-^dt = 2,

f i-'«-*' | <i>(i) \dt^ f e-1'l+lvol+í | ^ | dt

when \y — y0\ :S5. If we now choose x so small that K sin x<e/2,

the proof is complete.

3. Uniqueness. We inquire next about the character of a function

which is harmonic in a strip and zero on the boundary.

Theorem 2. If

1. u(x, y) E H 0 < x < x;

2. u(x, y) EC 0 á ï ^ t;

3. w(0, y) = u(w, y) = 0 — oo < -y < e»,

then

CO

(4) u(x, y) = £ (^e*" + P*«-*") sin ¿x,
*-i

where the series converges for all x and y and

22  /•*
(5) Akth + Bke-k« = —       «(*,

JT J 0
y ) sin kx dx.

Define u(x, y) for —7r^x<0 by the equation u( — x, y) = — u(x, y).

By the Schwarz reflection principle u(x, y)EH in — t^x^it. By

hypothesis 3, w(x, y) has the period 2tt as a function of x. Conse-

quently for each fixed y it has an expansion in a Fourier sine-series:

c«
w(x, V) =» X. Ci(y) sin kx —t^x

t—i

2   /•«
C*(;y) = — I    u(x, y) sin ¿z ¿x,       k = 1, 2,

7T J oo

Differentiating (6) twice and using hypothesis 1, we have
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2   c T
Ck(y) =-f    uxx(x, y) sin kx dx

■k J o

2k2 r"
=-■ I    w(x, y) sin ¿x dx = k2Ck(y).

x J 0

Here we have integrated by parts, using hypothesis 3. Solving the

resulting differential equation, the result is established.

It should be observed that hypothesis 2 is an essential feature of the

theorem. It was used in the application of the reflection principle.

Note that the function P„(x, y)GH in 0<x<ir and that Py(0 + , y)

= Py(ir — , 0) =0 for all y. But it has a singularity at the origin and

cannot have the expansion (4). Indeed the integrals (5) all diverge if

u = Py.

Corollary 2.1. //, in addition,

4.      |     | w(x, y) | dx = 0(eaM) \ y\  -» °°,
J o

then

to]

«(*, J) = E [Ak&v + Bke-ky] sin kx.
k=i

For, by hypothesis 4 and equation (5)

Akekv + Bke~ky = 0(eaM) \ y\ -* ».

If &> [a], this is clearly a contradiction unless Ak = Bk = 0.

Corollary 2.2. If

4.   w(x, y) = 0 0 < x < 7T,

then

u{x, y) = [Aie" + B\e~y] sin x,

wAere ^4i a«d 5i are non-negative constants.

For, the inequality |sin kx\ ¿S&|sin x|, k = l, 2, • • • , gives

2k

o

i i       2k rT
| ^Ae*» + Bke~k" |   = — I    m(x, y) sin xdx = k^Aie» + Sie-"].

% J o

It is now easy to give a set of conditions which will guarantee the

unique representation (2). For example, we have
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Theorem 3. If u(x, y)EHin 0<x<7r, ECinO^x^w, u(0, y)e~lv{

EL, u(t, y)e~MEL, and

(7) I     | u(x, y) | dx = o(eM) \y\ -» »,
•/ o

ifte« equation (2) holds.

For, by Theorem 1, the difference between u(x, y) and the integrals

(2) satisfies all the conditions of Theorem 2. This difference must be

identically zero, since the condition (7) implies that all terms of the

series (4) are zero.

Corollary 3.1. Equation (2) holds if u(x, y)EH in 0^x^7r and

u(x, y) = 0(e"M) a < 1, \ y\  —» <»

uniformly in 0 ^ x ^ it.

4. Positive harmonic functions. A function harmonic and positive

for 0<x<ir has a Poisson-Stieltjes representation, as set forth in the

following theorem.

Theorem 4. A necessary and sufficient condition that u(x, y)EH,

and u(x, y)^0for 0<x<ir is that

(8)

u(x, y) = [Aev + Be~"] sin x H-Í    P(x, t —
2ttJ -co

+ —[   P(j-x,t- y)dß(l),
¿irj _oo

y)da(t)

where A^O, PïïO, a(t) and ß(t) are nondecreasing, and the integral

converges for 0<x<ir, — °o<;y<oo.

This result may be proved in a variety of ways. Perhaps the sim-

plest is by use of the map

£ = £ + i^l = ei(x+iv) = e_!/(cos x + i sin x),

which carries the strip 0<x<7r into the half-plane rj>0. Let E(£, r¡)

be defined by the equation

F(e~v cos x, e~v sin x) = u(x, y).

Then F(£, 17) £77 and 2:0 for ??>0, and we may appeal to the Her-

glotz theorem for the half-plane [4J:

1   r"       t]dß(a)
(9) F(ï,v) = Pv + - —-.- «>>0,

7T J-co   V    + (<r — k)
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where P is a non-negative constant and /¿(cr) is nondecreasing. Break

the integral into two parts corresponding to the intervals (0, <») and

(-00,0). Then

r *      ydßjo-)      _ rt[ß(Q+) - p(0)]     r*     ydßjo-)

Jo     7,2+(<r-£)2_ V2 + e        '     Jo+>?2+(<r-Ö2'

In the last integral set a = e~l and replace the variables £, r) by their

values in terms of x and y. It becomes

i rx

— I     P(x, t - y)da(t),        da(t) = - e'dß(e-').
L   J _oo

The integral (8) extended over the interval (— «, 0) is treated simi-

larly, this time by the change of variable a= —e~'. Thus equation (9)

becomes (8) with

it(0+) - ii(O-)
B = P,    A = Ei-i- ,    dß(t) = e'dß(- e-').

w

Clearly ait) and ß(t) are nondecreasing, and the proof is complete.
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