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(Communicated by Wolmer V. Vasconcelos)

Abstract. Using a tight closure argument in characteristic p and then lifting
the argument to characteristic zero with the aid of ultraproducts, I present an
elementary proof of the Briançon-Skoda Theorem: for an m-generated ideal
a of C[[X1, . . . ,Xn]], the m-th power of its integral closure is contained in
a. It is well-known that as a corollary, one gets a solution to the following
classical problem. Let f be a convergent power series in n variables over C
which vanishes at the origin. Then fn lies in the ideal generated by the partial
derivatives of f .

1. Introduction

The main aim of this paper is to provide an alternative proof of the following
result. (We will write I for the integral closure of an ideal I.)

Theorem A (Briançon-Skoda). For every m-generated ideal a in C[[X1, . . . , Xn]],
we have an inclusion am ⊂ a.

It is well-known that it has the following corollary.1

Theorem B. Let f ∈ C[[X1, . . . , Xn]] be a convergent power series without con-
stant term. Let J(f) denote the Jacobian ideal of f , that is to say, the ideal gener-
ated by all partial derivatives ∂f/∂Xi. Then fn ∈ J(f).

Since the formal power series ring is faithfully flat over the ring of convergent
power series, we may drop the requirement in Theorem B that f is convergent and
work with formal power series instead. With the right characterization of integral
closure (Fact 2.2), it is an easy exercise on the chain rule to show that f lies in the
integral closure J(f) of J(f) (Fact 5.1). Therefore, an application of Theorem A
with a = J(f) and m = n proves Theorem B, since always (a)n ⊂ an.

In fact, Theorem A holds in much more generality, by work of Lipman, Sathaye

and Teissier in [11] and [12], where the ring A may be taken to be any regular
or even pseudo-rational local ring and where one obtains an inclusion am+l ⊂
al+1, for all l ∈ N. Below, I present an amazingly quick proof of Theorem A in
positive characteristic, due to Hochster and Huneke (Fact 3.4 together with
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Fact 3.3; I only explain the case l = 0, but without effort the general case follows
along the same lines). In fact, using their notion of tight closure in characteristic
zero, the result extends to characteristic zero as well, thus providing an alternative
proof of Theorem B. However, the very definition of tight closure in the ring
C[[X1, . . . , Xn]] requires a substantial analysis of descent and genericity. Moreover,
most of its properties can only be proven by means of a highly non-trivial Néron
desingularization theorem of Artin-Rotthaus proven in [3]. The main contribution
of this paper is to replace the use of this theory by a non-standard argument,
explained in Section 4, together with the more elementary Artin Approximation
[1, 2] for the ring of algebraic power series over C. To wit, a system of equations
over this ring is solvable if, and only if, it is solvable by means of formal power
series. As a result, we have now a shorter proof of Theorem A.

Most material in this paper is elementary and well-known; the only new ingre-
dient is the approximate splitting part in Fact 4.3 relating the ultraproduct A∞ of
the power series rings Falg

p [[X1, . . . , Xn]] to the power series ring C[[X1, . . . , Xn]].
The present proof relies on the Henselian property of the ultraproduct together
with Artin Approximation. Originally, I intended to give a more elementary proof
of this approximate splitting as well, but since it was merely a shortened version
of Artin’s original proof, I decided to publish this argument and the surrounding
discussion in a separate paper. I did include a short argument for an improved
version, where this time a true splitting over any finitely generated subalgebra is
obtained (this is not used elsewhere in the paper; moreover, its proof relies on the
less elementary Artin-Rotthaus Theorem). Ideally, we would like this splitting to
hold in its strongest form, namely, that the ring C[[X1, . . . , Xn]] is a direct sum-
mand of the ultraproduct. At present, I only know this to be true for a single
variable. It should be pointed out that Fact 4.3 in turn yields the Uniform Strong
Artin Approximation of [4]; in fact the proof of Fact 4.3 is inspired by their ideas.

Some final remarks.

1.1. Remark. The term non-standard in the title refers to the use of ultraproducts.

1.2. Remark. Theorem B itself is false in characteristic p (see Remark 5.2 below);
nonetheless, its proof uses essentially characteristic p methods.

1.3. Remark. The referee of an earlier version of this paper has pointed out to
me–for which I thank him–that Theorem B can be proven from the characteristic
p Briançon-Skoda Theorem (Fact 3.4 below) without any appeal to Artin Approx-
imation or tight closure in characteristic zero. In fact, Theorem A itself admits
such a reduction in the special case that m, the number of generators, is equal to
n, the number of variables (which is the case needed to prove Theorem B). First,
replace the ideal a by a + (X1, . . . , Xn)N for some sufficiently high N , so that we
may assume that a is a primary ideal. Then replace a by its minimal reduction, to
reduce to an n-generated primary ideal. However, since a is primary, it is the ex-
tension of a primary ideal in C[X1, . . . , Xn](X1,...,Xn) and by faithfully flat descent,
we reduced the problem to the latter ring. In this case, reduction to characteristic
p can be carried out in a more elementary way, avoiding the use of Artin Approx-
imation. In fact, analysis of the argument below shows that Theorem A admits
an elementary proof for either C[X1, . . . , Xn](X1,...,Xn) or its Henselization, since in
that case Fact 4.3 is immediate.
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I would also like to thank that referee for pointing out an erroneous approach
for proving Fact 4.3.

1.4. Remark. Although only stated here for A = C[[X1, . . . , Xn]], the present
method easily proves the validity of Theorem A for any equicharacteristic regu-
lar local ring A. Indeed, after taking completion and making some base change
of the ground field, we may assume by Cohen’s Structure Theorem that A =
K[[X1, . . . , Xn]], for K an algebraically closed field of uncountable cardinality. Such
a field K is always an ultraproduct of fields of positive characteristic (this is the gen-
eral version of Fact 4.2 below) so that the argument presented here easily extends
to K[[X1, . . . , Xn]].

2. Integral closure

In this section A is an arbitrary Noetherian domain and a is an ideal of A.

2.1. Definition. We say that z lies in the integral closure of a, denoted a, if there
exist ai ∈ ai, such that

zd + a1z
d−1 + · · ·+ ad = 0.

It follows immediately from the definition that a is contained in the radical of a.
From the next characterization (see [19, Appendix 4] for proofs), it follows that a

is an ideal.

2.2. Fact. The following are equivalent for an ideal a of A and an element z ∈ A:
2.2.1. The element z lies in the integral closure a.
2.2.2. For each homomorphism A → V with V a complete discrete valuation

ring, the image of z lies in aV .
2.2.3. There exists a non-zero c ∈ A, such that for all m ∈ N, we have that

czm ∈ am.

3. Tight closure

Throughout this section, A will denote a Noetherian domain with the extra
assumption that its characteristic is p > 0. Furthermore, a = (f1, . . . , fm) will be
an arbitrary ideal of A. We will use q to denote an arbitrary power of p. We will
denote the Frobenius endomorphism a 7→ aq on A by Frq.

3.1. Fact. If A is a power series ring over an algebraically closed field K, then A
is a finite free Frq(A)-module, where Frq(A) is the image of Frq, that is to say, the
subring of A consisting of all q-th powers of elements in A.

Proof. In fact, Kunz proves that an arbitrary domainA is regular if, and only if, the
Frobenius Frp is flat; for two quick proofs using either the Buchsbaum-Eisenbud

criterion or Cohen’s Structure Theorem for complete regular equicharacteristic local
rings, see [10, p. 12].

However, in the special case that A = K[[X1, . . . , Xn]], the statement follows
immediately, since Frq(A) = K[[Xq

1 , . . . , X
q
n]], so that the monomials Xν with all

entries of ν less than q, form a basis.

3.2. Definition. We will say that z ∈ A belongs to the tight closure of a, denoted
a∗, if there exists a non-zero c ∈ A, such that for all powers q of p, we have

czq ∈ (f q1 , . . . , f
q
m)(= Frq(a)A).(1)
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It is an easy exercise to check that a∗ is an ideal of A containing a. From 2.2.3
of Fact 2.2, it follows that a∗ ⊂ a.

3.3. Fact. If A is a power series ring over an algebraically closed field K, then
a = a∗, for every ideal a.

Proof. Again this holds in much more generality: every ideal in an arbitrary regular
ring is equal to its own tight closure ([10, Theorem 1.3]). The proof uses the flatness
of Frobenius in the following way. I will only present the proof in the case that
interests us: A is local with maximal ideal m and Frq is flat. Let z ∈ a∗, so that for
each q, we have an equation (1), with c non-zero and independent from q. Hence,
for all q, we have that

c ∈ (Frq(a)A : Frq(z)) = Frq(a : z)A(2)

where we used the flatness of Frq for the last equality. If z /∈ a, then (a : z) ⊂ m.
Therefore, by (2), c ∈ Frq(m)A ⊂ mq, for all q, from which it follows that c = 0, a
contradiction.

The key result is now the following tight closure version of Theorem A.

3.4. Fact (Tight closure Briançon-Skoda). If A is local ring (of positive charac-
teristic) and a an ideal in A generated by m elements, then am ⊂ a∗.

Proof. Let z ∈ am, where a = (f1, . . . , fm). By Condition 2.2.3 in Fact 2.2, it
follows that there exists a non-zero c ∈ A, such that, cze ∈ (am)e, for all e ∈ N.
Since a is generated by the m elements fj , any element in aem is divisible by some
fej . In other words, we have that cze ∈ (fe1 , . . . , fem), for all e ∈ N. Taking for e
powers of p shows that z ∈ a∗.

Putting both facts together, we get a proof of Theorem A (the Briançon-Skoda
Theorem) in positive characteristic.

4. Lefschetz Principle

In this section, we assume some familiarity with the ultraproduct construction
(see for instance [9, §9.5] or [7, §6.7]). Let U be some non-principal ultrafilter on
an infinite index set W (below W will be the set of prime numbers or the set of
natural numbers N). For each w ∈ W , pick a ring Bw. We define the ultraproduct
of the Bw as the quotient of the direct product

∏
w Bw modulo the equivalence

relation in which two tuples (aw | w ∈W ) and (bw | w ∈ W ) are identified, if there
exists D ∈ U , such that aw = bw for all w ∈ D. If the ultrafilter U is clear from the
context, we simply say that aw and bw are equal for almost all w. We denote the
ultraproduct by

lim
w→∞

Bw or simply by B∞

(we omit reference to the ultrafilter U). One checks that B∞ is again a ring. We
will denote the image of the sequence (aw | w ∈ W ) in B∞ by limw→∞ aw.

4.1. Fact ( Los’s Theorem). If F ∈ Z[T1, . . . , Tn] and ai∞ = limw→∞ aiw with
aiw ∈ Bw, then F (a1∞, . . . , an∞) = 0 in B∞ if, and only if, F (a1w, . . . , anw) = 0
in Bw for almost all w.
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Proof. Straightforward. In fact  Los’s Theorem takes the following more general
form: if a collection of structures Bw in a fixed language L satisfy a sentence in that
language, then so does their ultraproduct B∞ with respect to some non-principal
ultrafilter U on the index set (see for instance [9, Theorem 9.5.1]).

From now on, U is a non-principal ultrafilter on the set of prime numbers and all
ultraproducts will be taken with respect to this ultrafilter. We denote the algebraic
closure of the p element field by Falg

p .

4.2. Fact (Lefschetz Principle). There is a non-canonical isomorphism between
the ultraproduct of the Falg

p and the field of complex numbers C.

Proof. Write F∞ for the ultraproduct limp→∞ Falg
p . We can express in an equational

way that a ring is a field and that this field is algebraically closed. Therefore, by
Fact 4.1, F∞ is an algebraically closed field. Let l be a rational prime. For all
rational primes p 6= l, we have that l is a unit in Falg

p . By Fact 4.1, l is a unit in F∞.
Therefore F∞ has characteristic zero. It is a well-known fact that an ultraproduct of
countably many countable sets has the cardinality of the continuum. The statement
follows, since Steinitz’ Theorem says that any two algebraically closed fields of
characteristic zero of the same uncountable cardinality are isomorphic (this follows
easily from the fact that they have the same transcendence degree over Q; for
a model theoretic proof using quantifier elimination, or, equivalently, Chevalley’s
Theorem, see [9, Corollary 4.5.7]).

Unfortunately, the relationship between an arbitrary sequence of rings and their
ultrapower is more complicated than in the case of fields. For our purposes, we
need a Lefschetz Principle for power series, and I will discuss this now. Let X =
(X1, . . . , Xn) be a finite set of variables. For the remainder of this section, we set

A∞ := lim
p→∞

Falg
p [[X ]].

From Fact 4.2, it is clear that C embeds in A∞. Moreover, the limp→∞Xi are
algebraically independent over K∞, so that we may view them again as variables
Xi. This makes C[X ] into a subring of A∞. Since being local or Henselian can be
expressed equationally, it follows from  Los’s Theorem (Fact 4.1) that A∞ is a local
Henselian ring. Being Noetherian, however, does not carry over, and consequently
A∞ is not Noetherian and neither is it separated in the (X)-adic topology. Although
we will not need it here, one can also check that every Cauchy sequence in A∞ has
a limit. However, it is not immediately obvious how to embed C[[X ]] in A∞, since
limits are no longer unique. Using the Artin-Rotthaus Theorem, one can show that
such an embedding exists for each finitely generated subalgebra; see Theorem 4.5
below. However, to prove Theorem A, we only need the following weaker version.
Its first part is well-known and easy (see [4, Lemma 3.4]) and I briefly recall the
argument; the second part requires some form of Artin Approximation over C.2

4.3. Fact (Partial Lefschetz Principle for power series). If

i :=
⋂
d

(X1, . . . , Xn)dA∞

2I opted in this paper to just quote Artin’s result. Nonetheless, with some surgery of his
argument, one can obtain a more elementary and direct proof. I intend to return to this and
related issues in a future paper on model theoretic consequences of Artin Approximation.
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denotes the so-called ideal of infinitesimals at the origin, then we have an exact
sequence

0→ i→A∞
π−−→C[[X ]]→ 0.

Moreover, if there is a commutative diagram

?

-

?
-

A∞C[X ]

C[[X ]]B

f π

σ

(3)

of C[X ]-algebra homomorphisms, with B finitely generated over C[X ], then for each
c ∈ N, we can find a C[X ]-algebra homomorphism δc : B → A∞, such that πδc ≡ σ
mod (X1, . . . , Xn)c.

Proof. Fix once and for all an isomorphism as in Fact 4.2. We start by defining π.
Let f∞ ∈ A∞. Choose fp ∈ Ap, such that limp→∞ fp = f∞ in A∞. Write each
fp as

∑
aνpX

ν, with aνp ∈ Falg
p . Write aν∞ ∈ C for limp→∞ aνp (after applying

the isomorphism from Fact 4.2). Define π(f∞) to be the power series
∑
aν∞X

ν.
It follows from Fact 4.1 that π is a C[X ]-algebra homomorphism and surjectivity
is also clear. So it remains to show that i is the kernel of π. If f∞ ∈ i, then
by Fact 4.1, for each d, there is Id ∈ U , such that for all p ∈ Id, we have that
fp ∈ (X1, . . . , Xn)dFalg

p [[X ]]. In particular, for each multi-index ν = (ν1, . . . , νn),
we have that aνp = 0, for all p ∈ Iν1+···+νn+1. It follows that aν∞ = 0. Since this
holds for all ν, we see that π(f∞) = 0, as required. The converse holds by virtually
the same argument.

To prove the last assertion, fix some c ∈ N and write B as C[X,Y ]/(P1, . . . , Ps),
where Y = (Y1, . . . , Ym) are some extra variables. Let y be the image of Y under
the section σ, so that P1(y) = · · · = Ps(y) = 0. Using Artin Approximation in
characteristic zero,3 we can find a tuple z in the ring of algebraic power series
C[[X ]]alg, such that P1(z) = · · · = Ps(z) = 0 and y ≡ z mod (X1, . . . , Xn)c. Since
A∞ is Henselian and since C[[X ]]alg is the Henselization of C[X ] at the maximal
ideal (X1, . . . , Xn), it follows from the universal property of Henselizations that
there is a (unique) C[X ]-algebra homomorphism λ : C[[X ]]alg → A∞. Uniqueness
guarantees that πλ is the identity on C[[X ]]alg. Therefore, if we define δc to be
the C[X ]-algebra homomorphism given by Y 7→ λ(z), we obtained the required
factorization of σ.

4.4. Remark. In the absence of Quantifier Elimination and because π is not an
embedding, only positive existential sentences carry through from the power se-
ries rings Falg

p [[X ]] to the power series ring C[[X ]]. Therefore, it would be more
appropriate to call Fact 4.3 an approximate ∃+-Lefschetz Principle.

3One can for instance use the reasonably elementary argument of Artin’s first paper [1] on the
subject; in it he proves the result from formal to convergent power series, but the proof carries
over without any problem to show the approximation property from formal to algebraic power
series.
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Although not needed in this paper, it is of interest to have a strengthened version
of Fact 4.3, albeit at the expense of using the highly non-trivial Artin-Rotthaus
Theorem.

4.5. Theorem (Partial Lefschetz Principle). Suppose we have a commutative di-
agram

?

-

?
-

A∞C[X ]

C[[X ]]B

f π

σ

(4)

of C[X ]-algebra homomorphisms, with B finitely generated over C[X ]. Then we
can find a C[X ]-algebra homomorphism δ : B → A∞, such that πδ = σ.

Proof. By [3, Corollary 5], given a diagram (3), one can write σ as a composition
of C[X ]-algebra homomorphisms B → C[[X,Y ]]alg and τ : C[[X,Y ]]alg → C[[X ]],
for some choice of variables Y = (Y1, . . . , Ym). To define δ : B → A∞, choose any
lifting z in A∞ of τ(Y ). Mapping Y to z yields a C[X ]-algebra homomorphism
C[X,Y ] → A∞. Since A∞ is Henselian, this homomorphism admits a unique
extension ε : C[[X,Y ]]alg → A∞. Uniqueness guarantees that πε = τ . Restricting ε
to B then yields the required homomorphism δ : B → A∞.

Similar Lefschetz Principles have been shown in [6, 17, 14], with substantially
more difficult proofs. Nonetheless, I only know a positive answer to the following
question when n = 1.

4.6. Question (Lefschetz Principle). Is π a split epimorphism, that is to say, is there
a C[X ]-algebra homomorphism ε : C[[X ]]→ A∞, such that πε is the identity? Note
that π would then play a role analogous to the standard part operator from non-
standard analysis.

5. Proofs of Theorems A and B

In this section, A = C[[X ]], with X = (X1, . . . , Xn). We fix some f without
constant term and define its Jacobian ideal J(f) to be the ideal generated by the
partial derivatives ∂f/∂Xi. The following observation is classical.

5.1. Fact. With notation from above, f lies in the integral closure J(f).

Proof. Using Fact 2.2, we have to show that f ∈ J(f)V , for everyA-algebra V which
is a complete discrete valuation ring. By Cohen’s Structure Theorem for complete
equicharacteristic regular local rings (see for instance [13, (28.J) Corollary 2]), V
is of the form K[[t]], with t a single variable and K an extension of C. Let xi(t)
denote the image of Xi in V . The image of f in V is the power series f(x(t)).
Factoring out the highest common power of t, we can write f(x(t) = teu(t), with
u(0) 6= 0. From this last representation, it follows that

d

dt
(f(x(t))) = ete−1u+ te

du

dt
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has t-order e− 1. By the multi-variable chain rule on the other hand, we have that

d

dt
(f(x(t))) =

∂f

∂X1

∣∣∣∣
x(t)

dx1

dt
+ · · ·+ ∂f

∂Xn

∣∣∣∣
x(t)

dxn
dt

.

Comparing these two expressions, it follows that te−1 ∈ J(f)V . Therefore J(f)V
also contains f = teu, as required.

5.2. Remark. Note that this fact is false in characteristic p: in the above argument,
e could be divisible by p, so that df(x)/dt has order strictly bigger than e− 1. For
instance, the power series f = (X − Y )2 + Xp provides a counterexample to both
Fact 5.1 and Theorem B.

By Fact 5.1, Theorem B now follows immediately from Theorem A for the ring
C[[X ]], since J(f) is generated by n elements. So it remains to prove Theorem A.

5.3. Proof of Theorem A. Let a = (f1, . . . , fm) with fi ∈ C[[X ]] and let f0 ∈ am.
We need to show that f0 ∈ a. By assumption, there exist gi ∈ ami, such that

fd0 + g1f
d−1
0 + · · ·+ gd = 0.(5)

In order to obtain similar integral equations in positive characteristic, we will use
Fact 4.3 in the following way. Let Ap = Falg

p [[X ]] and let B be the C[X ]-subalgebra
of C[[X ]] generated by the fi and the gi. Fix c ∈ N. By Fact 4.3, there exists a
C[X ]-algebra homomorphism δ : B → A∞ such that πδ is congruent to the identity
modulo (X1, . . . , Xn)c. Choose fip, gip ∈ Ap, such that limp→∞ fip = δ(fi) and
limp→∞ gip = δ(gi). Let ap be the ideal (f1p, . . . , fmp) in Ap. It follows from  Los’s
Theorem (Fact 4.1) and equation (5), after applying δ to it, that

(f0p)d + g1p(f0p)d−1 + · · ·+ gdp = 0

and that gip ∈ (ap)mi, for almost all p. Therefore, f0p lies in the integral closure
of (ap)m, for those p. By Fact 3.4, it follows that f0p lies in the tight closure of ap.
By Fact 3.3, ap is equal to its own tight closure. Therefore, we can find rip ∈ Ap,
such that

f0p = r1pf1p + · · ·+ rmpfmp

for almost all p. By Fact 4.1 once more, we have a similar relation in A∞. More
precisely, if ri∞ = limp→∞ rip, then

δ(f0) = r1∞δ(f1) + · · ·+ rm∞δ(fm).

Applying π to this equation yields

f0 ≡ π(r1∞)f1 + · · ·+ π(rm∞)fm mod (X1, . . . , Xn)c,

showing that f0 ∈ a + (X1, . . . , Xn)c. Since this holds for all c, we get by Krull’s
Intersection Theorem that f0 ∈ a, as required.
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Tight closure proofs.

5.3.1. Characteristic zero tight closure. The proof of Hochster-Huneke of Theo-
rem A uses tight closure in characteristic zero. This is a closure operation on ideals
in certain domains containing a field of characteristic zero (including complete lo-
cal domains such as C[[X ]]). This closure operation then has the necessary formal
properties to carry out the proof of Theorem A. To wit, any ideal in a regular local
ring is equal to its own tight closure–the characteristic zero equivalent of Fact 3.3–
and, the tight closure Briançon-Skoda Theorem–the characteristic zero equivalent
of Fact 3.4. However, to define this closure operation, one has to descend the rele-
vant data to a finitely generated Z-algebra and then take reduction modulo p. To
return to the original ring, Artin Approximation [2] is needed, or, more accurately,
the improvement by Artin-Rotthaus in [3]; see [10, Appendix 1] or [8] for more
details.

5.3.2. Non-standard tight closure. The proof in this paper was inspired by a variant
of tight closure in characteristic zero, which I termed non-standard tight closure in
[16]. In that paper, some of the basic properties of non-standard tight closure are
proven in the affine case, including the analogues of Facts 3.3 and 3.4. Provided the
definition of non-standard tight closure as well as its properties can be extended to
the case of power series rings–and this basically requires a Lefschetz Principle of the
type proven in Theorem 4.5–, one would obtain yet another proof of Theorem A.
In the present article, however, I have opted to suppress any direct reference to this
non-standard tight closure, since everything happens ‘downstairs’, that is to say, in
characteristic p. A similar approach was taken in [15].
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