ZEROS OF FUNCTIONS IN THE BERGMAN SPACES

BY CHARLES HOROWITZ

Communicated by R. C. Buck, November 6, 1973

A function f(z) analytic in the unit disk is said to belong to the Bergman space A^p $(0 if <math>\int_0^1 \int_0^{2\pi} |f(re^{i\theta})|^p r \, dr \, d\theta < \infty$. It is clear that A^p contains the Hardy space H^p of analytic functions for which $\lim_{r\to 1} \int_0^{2\pi} |f(re^{i\theta})|^p \, d\theta < \infty$. We adopt the convention that $A^\infty = H^\infty$, the space of bounded analytic functions in the disc.

Assuming that $f(0) \neq 0$, we list the zeros of f in order of nondecreasing modulus: $0 < |z_1| \leq |z_2| \leq |z_3| \leq \cdots < 1$. We repeat z_i according to the multiplicity of the zero of f at z_i . The sequence $\{z_i\}$ is called the zero set of f. If $f \in A^p$ (resp. H^p), then z_i will be called an A^p (resp. H^p) zero set. It has long been known that H^p zero sets $(0 are completely characterized by the condition <math>\prod_{k=1}^{\infty} 1/|z_k| < \infty$. (Equivalently, $\sum_{k=1}^{\infty} 1 - |z_k| < \infty$.) In particular, the condition is independent of p. Our results show that the situation for A^p zero sets is considerably more complex.

LEMMA 1. If $\{z_k\}$ is an A^p zero set (0 , then

$$\prod_{K=1}^{N} \frac{1}{|z_k|} = O(N^{1/p}).$$

COROLLARY. If $\{z_k\}$ is an A^p zero set $(0 , then for each <math>\varepsilon > 0$,

$$\sum_{k=1}^{\infty} (1-|z_k|) \left\{ \log \frac{1}{1-|z_k|} \right\}^{-1-\varepsilon} < \infty.$$

If $f(z) = \sum_{n=0}^{\infty} a_n z^n$, let $S_N^{(p)} = \sum_{k=1}^N |a_k|^p$, p > 0.

LEMMA 2. If $S_N^{(2)} = O(N^{\alpha})$ for some $\alpha \ge 1$, then $f \in A^p$ for all $p < 2/\alpha$.

LEMMA 3. For some p, $1 \le p \le 2$, suppose that $\sum_{N=1}^{\infty} N^{-p} S_N^{(p)} < \infty$ and $N^{1-p} S_N^{(p)} = O(1)$. Then $f \in A^{p'}$, 1/p + 1/p' = 1.

Lemma 1 is proved by an application of Jensen's theorem. Lemmas 2 and 3 follow from corresponding coefficient conditions, after a summation by parts. In particular, Lemma 3 is a consequence of the fact that

AMS (MOS) subject classifications (1970). Primary 30A04; Secondary 30A78. Key words and phrases. Bergman spaces, A^p spaces, A^p zero sets, H^p zero sets.

 $\sum |a_N/N|N < \infty$ implies $f \in A^{\infty}$, and that $\sum |a_N/N|^2N < \infty$ implies $f \in A^2$. One merely applies the Riesz interpolation theorem and summation by parts to obtain the result.

THEOREM 1. Let $0 . Then there exists an <math>A^p$ zero set which is not an A^q zero set.

SKETCH OF PROOF. Let $f(z) = \prod_{k=0}^{\infty} 1 + uz^{b^k}$, where b is an integer greater than 2, and u is a positive constant. Using the notation of the lemmas, one verifies that:

- (1) Every partial product for f(z) is a partial sum of its Taylor series.
- (2) If $N = \sum_{k=0}^{s-1} b^k$, $S_N^{(p)} = (1 + u^p)^s$.
- (3) If u>1, if $N=\sum_{k=0}^{s-1}b^k$, and if $\{z_i\}$ are the ordered zeros of f, then $\prod_{i=1}^{N}1/|z_i|=u^s$.

From these facts, and from Lemmas 1, 2 and 3, we conclude that:

- (4) If $b \le 1 + u^2$, then $f \in A^p$ for all $p < 2 \log b / \log(1 + u^2)$. (Also, in this case, $f \notin A^2$.)
- (5) If $1+u^s \le b^{s-1}$ for some s, $1 < s \le 2$, $f \in A^p$ for all p < s', where 1/s+1/s'=1.
- (6) If u>1, the zero set of f is not the zero set of any function in A^q for $q>\log b/\log u$.

An examination of (4), (5) and (6) shows that if 0 , <math>u and b may always be chosen to yield a function f in A^p whose zero set is not an A^q zero set.

THEOREM 2. For $0 , the union of two <math>A^p$ zero sets is not in general an A^p zero set.

To prove Theorem 2, we choose one of the functions $f \in A^p$ constructed in Theorem 1, with the parameter u>1. We choose a positive integer N and require that each zero of f be repeated N times. For N sufficiently large we obtain a sequence which, by Lemma 1, cannot be an A^p zero set.

We state two corollaries to the above theorems, both of which again contrast sharply with H^p theory.

COROLLARY (TO THEOREM 1). It is not possible to represent an arbitrary A^1 function as the product of two functions in A^2 , one of them nonvanishing.

COROLLARY (TO THEOREM 2). Consider the operator M_z of multiplication by z on A^2 (a weighted unilateral shift). There exist two nontrivial closed invariant subspaces of M_z whose intersection is trivial.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MICHIGAN, ANN ARBOR, MICHIGAN 48104