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LOWER BOUNDS FOR SLOSHING FREQUENCIES*

By J. R. KUTTLER AND V. G. SIGILLITO (The Johns Hopkins University)

In a recent paper [3] the authors have used a simple device to give lower bounds
for Stekloff and free membrane eigenvalues. The idea of the device can also be used
in problems where there is a Stekloff condition on part of the boundary. One such prob-
lem is that of the sloshing of a liquid in a tank. Mathematically, the problem is to find
the frequencies A satisfying

Au=0 in V,
du/on =0 on Z, 1)
du/on = \u on S,

where u is the time-independent velocity potential of an incompressible, inviscid fluid,
subject to gravity, in a rigid tank V with free surface S and walls =. We order the
frequencies

0=>\1<sz>\3$°“

This problem has been considered, among others, by Rayleigh [7], Lamb [4], Lawrence
et al. [5], Budiansky [1], Ehrlich et al. [2] and Troesch [8], [9]. Upper bounds for the
frequencies have been estimated by the Ritz method applied to the Rayleigh quotient
for (1),

D)
j; u® do

minimized subject to the condition [s u de = 0. Here D(u) is the Dirichlet integral.
Troesch has obtained results by an inverse method [8] and also by a ‘“shallow water”
assumption [9]. No shallow water assumption is made in this paper.

For simplicity, we consider a two-dimensional problem, corresponding to an infinite
canal of uniform cross section. The method for higher dimensions will be similar. Suppose
V is symmetric about the y-axis with side walls given by z = xf(y), -l < y <0,
where f is a smooth, positive function. The free surface is the portion of the z-axis
between —f(0) and f(0) (see Fig. 1).

We can write the Dirichlet integral as

pw = [ ar [ [(2) + (2]
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x = f(y)

Fia. 1

We make the change of variables ¢ = kz/f(y), n = y, where k is a positive parameter.
In these coordinates

oo = [an LG5 + G -ef 50 T
2 Lo LG+ - DI + 0 -G e

by the arithmetic-geometric mean inequality, where 0 < a < 1. This in turn is greater
than or equal to

[ LALGY + =20 )G) + o)} e
We choose «a so that
G (D6 - -
and it follows that

b= gin () + e mll) - () + 0+ ] -7
L [ + (@] e

f£(0) k
2 — 2 f(o)f 2
Luda—-f_m)udz—————k _kudg

Therefore, using the max-min characterization of the frequencies (see [8]),

) {(f) +a+ - (1) +a+ f)('ff)] - 4)1/2}%,

where M\ is the ¢th frequency of problem (1) for the rectangle of width 2k and depth 1.
By separation of variables we see that

— Dl
)

We also have

\¥F = (@ = Dr tanh @

i=2,3, -

2k 2k




19691 NOTES 407

So, since k is arbitrary, we have

2 g i [ () + 0+ ®

- ([(%) + 0+ f'z)(g)]z — 1)’ ]t np &= Lt %1)“} i=2,3,

(Notice that 2 — (x> — 4)'? is monotone decreasing for z > 2.) This bound becomes
equality in the case of a rectangular tank.

The assumption of symmetry was made for convenience. The nonsymmetric case
is treated analogously.

Applying a similar procedure to a tank with free surface of width s, vertical side
walls, and a bottom given by y = —f(z), where f is a smooth, positive function (see
Fig. 2), we have the inequality

> (L—;—s-l)—r max (mm [f + @0+ f’z) i~ (l:(%) + 1+ fﬂ)(%)]z - 4)1/2]}

1)1rl
8

tanh(z =2;3y"')

again with equality for a rectangle.

y = - f(x)

Fia. 2

As a simple example of the application of the bound, consider a symmetric, bowl-
shaped region with vertical sides given by

= +f(y) = (1 — 2)1/2y -3=1<Zy<0,

(see Fig. 3). The lower bound is then X, > .71.

To obtain a crude upper bound we observe from (2) that if two tanks V, , V, have
the same free surface S and V, is contained in V, then the \; of V, is an upper bound
for the \; of V, . In our example an upper bound for X, is A% for a rectangle of width 2
and depth . Hence A\, < 1.03.

We can also use this observation to apply our method to regions without flat bottoms
by shaving off a part of the bottom. Indeed shaving the bottom may sometimes improve

the bound.
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