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LOWER BOUNDS FOR SLOSHING FREQUENCIES*

By J. R. KUTTLER. AND V. G. SIGILLITO {The Johns Hopkins University)

In a recent paper [3] the authors have used a simple device to give lower bounds
for Stekloff and free membrane eigenvalues. The idea of the device can also be used
in problems where there is a Stekloff condition on part of the boundary. One such prob-
lem is that of the sloshing of a liquid in a tank. Mathematically, the problem is to find
the frequencies X satisfying

A u = 0 in V,

du/dn = 0 on 2, (1)

du/dn = Xu on S,

where u is the time-independent velocity potential of an incompressible, inviscid fluid,
subject to gravity, in a rigid tank V with free surface S and walls 2. We order the
frequencies

0 = Xi < X2 < X3 <

This problem has been considered, among others, by Rayleigh [7], Lamb [4], Lawrence
et al. [5], Budiansky [1], Ehrlich et al. [2] and Troesch [8], [9]. Upper bounds for the
frequencies have been estimated by the Ritz method applied to the Rayleigh quotient
for (1),

—("L , (2)

LU2 da

minimized subject to the condition f,5 u da = 0. Here D(u) is the Dirichlet integral.
Troesch has obtained results by an inverse method [8] and also by a "shallow water"
assumption [9]. No shallow water assumption is made in this paper.

For simplicity, we consider a two-dimensional problem, corresponding to an infinite
canal of uniform cross section. The method for higher dimensions will be similar. Suppose
V is symmetric about the y-axis with side walls given by x = ±f(y), —l<y< 0,
where / is a smooth, positive function. The free surface is the portion of the z-axis
between —/(0) and /(0) (see Fig. 1).

We can write the Dirichlet integral as

D(u) = J_t dy J [(I) + (g, j dx.
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x = f(y)

Fig. 1

We make the change of variables £ = kx/f(y), y = y, where k is a positive parameter.
In these coordinates

■dy ? / di;/ J k ^

- Ldv L {[(?)+ (l" «Xf /L) ](§)+ (1 ~a)©} id
by the arithmetic-geometric mean inequality, where 0 < a < 1. This in turn is greater
than or equal to

/>£{[©

2 / i\/ M2
+ i- PlV*£ 'duY n JduV\f

We choose a so that

and it follows that

°<«>2 I {(I)+ (1 + '"tf)" ([(I)+ (1 +'">(?)]' ~4)"'}
du
,dy df.

We also have

r u° &, = r *d*-*&■[* «■*.
Js & J-k

Therefore, using the max-min characterization of the frequencies (see [8]),
\ 1/2

-4 k,X< - W) {(I) +(1 + ni~i) ~ ([(I) +(1 + /,2)(]j J
where A* is the tth frequency of problem (1) for the rectangle of width 2k and depth I.

By separation of variables we see that

X* = ^ 2,1^ tanh ~ ^ , i = 2, 3, • • • .



1969] NOTES 407

So, since k is arbitrary, we have

n (i — 1)t jX, > —— max i min
-1<V<o i)+ (1 + n(f) ®

i — 2, 3,

(Notice that x — (x2 — 4)1/2 is monotone decreasing for x > 2.) This bound becomes
equality in the case of a rectangular tank.

The assumption of symmetry was made for convenience. The nonsymmetric case
is treated analogously.

Applying a similar procedure to a tank with free surface of width s, vertical side
walls, and a bottom given by y = —f(x), where / is a smooth, positive function (see
Fig. 2), we have the inequality

^ (i ~~ I)11" iX,- > A—  max (mm
2s i i \ + a + n -f - f\ , „ , uJlV + (1 +rAh

)l/2"

•tanh — , i = 2, 3,

again with equality for a rectangle.

As a simple example of the application of the bound, consider a symmetric, bowl-
shaped region with vertical sides given by

x = ±Ky) = ±(i - yT2, -§ = l < y < 0,

(see Fig. 3). The lower bound is then X2 > .71.
To obtain a crude upper bound we observe from (2) that if two tanks Fj , F2 have

the same free surface S and FL is contained in V2 then the X,- of V2 is an upper bound
for the Xi of Vi . In our example an upper bound for X2 is X't; for a rectangle of width 2
and depth J. Hence X2 < 1.03.

We can also use this observation to apply our method to regions without flat bottoms
by shaving off a part of the bottom. Indeed shaving the bottom may sometimes improve
the bound.
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