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INDUCED MASS WITH FREE BOUNDARIES*
by GARRETT BIRKHOFF (Harvard University)

The concept of induced mass, and some of its properties, are extended to the case
of an incompressible liquid having a free surface. The usual1 treatment of the case of a
non-viscous fluid extending to infinity must be considerably changed to do this.

1. Minimum principle. Let R be a region filled with an incompressible liquid, bounded
in part by a wetted wall W, and in part by a free surface S at constant pressure p0 . The
region R moves with the liquid, and may extend to infinity in some directions.

Suppose the fluid accelerated from rest, by an acceleration of W whose inward normal
component toward the liquid is an arbitrary function /(x) of position. Letting u =
u(x; t) denote liquid velocity and a = du/dt denote acceleration, clearly

Div a = 2d(duk/dt)/dxk = d{I,duk/dxk) / dt = 0, (1)

by incompressibility. Similarly, the Navier-Stokes equations with gravity neglected are2

Dui/Dt = —dp/pdXi + i>V2Ui . (2)

Since u = 0 initially, the initial acceleration therefore satisfies a, = Dui/Dt = — dp/pdXi,
or, setting A = (p0 - p)/p,

a = VA, where p = p0 — pA, initially. (3)

Combining (3) with (1), we get
V2A = 0 in R. (4)

The free surface condition is simply

4=0 on S. (5)

Finally, by continuity, we have

fflnormal = dA/dn = f (x) On W. (6)

*Received July 16, 1951.
'Given in [1], Chap. V; in [3]; and in Chap. VI of Lamb's Hydrodynamics.
2Here and below D/Dt is the substantial derivative d/dt + uk d/dxk , while d/d n denotes the inward

normal derivative on the surface of the liquid.



dR

82 NOTES [Vol. X, No. 1

By potential theory,3 conditions (4) to (6) uniquely determine A; we shall call A the
acceleration potential associated with the given acceleration of W; by (3), A determines p.

Theorem 1. The acceleration kinetic energy

T = \ p fff VA-VA dR (7)
R

is minimized by the free surface condition (5), relative to all other volume-conserving
flows in R satisfying (6).

Remark. The acceleration kinetic energy is half the second time derivative of the
ordinary kinetic energy.

Proof. Let VA + b be any other volume-conserving flow satisfying (6). Then

Div b = Div b + V2A = Div (VA + b) = 0

Consider now the expanded acceleration kinetic energy

T = \p /s(V4 + b)-(V4+b)

= T0 + P f (VA-b) dR + ^p I (b-b) dR.
J R * J R

Since the last term is positive unless b vanishes identically, the theorem will be proved
if we can show that the middle integral is zero. But since Div b = 0, clearly

Div (i'b) = A Div b + (VA)-b = VA-b.

Hence, by the Divergence Theorem, letting bn denote the outward normal component of b,

[ (VA-b)dR=-[ AbndS — [ AbndS. (8)
Jr Jw Js

Since VA + b satisfies (6) on W, bn = 0 on W and the first surface integral in (8)
vanishes. By (5), the second surface integral vanishes; hence the proof is complete.

When S is void, our result reduces to the classical case ([2], p. 84). There is however
no relation between the kinetic energy for steady flow with a free boundary, which is
always infinite in an infinite non-viscous stream, and virtual mass. In this respect, the
case of flows with free boundaries is unlike the classical case.

2. General interpretation. The acceleration potential A described in Sec. 1 has a
very general interpretation. Let a fluid motion, defined by an "undisturbed" velocity
field U = U(x; t), be altered at time t = 0 by an additional instantaneous normal ac-
celeration /(x) of W. Because of incompressibility, we have for the perturbed velocity
field U = u,

Div u = 0, whence Div a = 0, (9)

where a = du/dt denotes the additional acceleration.

3For existence and uniqueness theorems, see O. D. Kellogg, Potential theory, pp. 218, 315. Although
such theorems have been proved only for a restricted class of infinite regions, there is no reason to doubt
•their general validity.
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Subtraction of the Navier-Stokes equations for U from those for U + u gives

dUi dUj T dUi dUi I dp 2 ,1fy,
~rr = — uk — Uk~ uk-   + vV Ui . (10)
dt dxk dxk dxk p dXi

Here p denotes the increment in the pressure field due to the additional acceleration
of W; moreover, this is true even if gravity is considered. Since the perturbation begins
at t = 0, clearly u(x; 0) = 0, whence (10) reduces to

a,- = —dp/pdXi , at t = 0. (11)

Since the rest of the reasoning leading to (4) to (7) applies, we get the following result.
Theorem 2. The instantaneous pressure distribution required to accelerate a moving

incompressible fluid is the same as if the fluid were at rest.
The preceding result can be extended to the case of an "impulsive" velocity change,

by integrating (10) over a short interval of time, which is then allowed to tend to zero.
It is readily seen that if u is uniformly bounded and // V2u dR dt = o(l) under these
circumstances, and if the normal impulse per unit area is defined as p* — LimA(_0 Jo' pdt,
we get the limiting analog of equation (3),

Ui = —dp*/pdXi on W. (3*)

From (9), the fact that p* — 0 on the free surface S, and continuity we get similarly
equations analogous to (4) to (6). From these we deduce the following result.

Theorem 3. The impulse p*(x) per unit area required to produce an additional normal
"impulsive velocity" w„ = /(x) of W, is —pA, where A is the acceleration potential
of Sec. 1.

In the case of the irrotational motion of a non-viscous fluid, since V2u = 0, the
assumption about V2u (which is hard to prove rigorously) is superfluous.

3. Induced mass tensor. To define an induced mass tensor, let W = W' + W" con-
sist in part of the wetted area W' of an accelerated missile, and otherwise of the fixed
walls W" of a container. The case of a ball, floating on the surface of the water in a pail
(Fig. 1) is typical.

We let A1, A2, A3 denote the acceleration potentials in R for unit translations of W'
parallel to the axes; let A4, A5, A6 denote those for unit rigid rotations of W' about the
coordinate axes; in all cases we assume dA/dn = 0 on W", and A = 0 on S. We then
define the symmetric 6X6 induced mass tensor (matrix) j| Thk ||, as in the ordinary
case ([1], p. 154), by

Th = P fJJ VAh-VA"dR = Tkk (12)
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Our aim is to show that the Thk have most of their familiar properties. Although the
preceding definition of the Thk was given in principle by L. I. Sedov [4], he did not
deduce the properties proved below.

First, note that the diagonal components Thh of induced mass, satisfy the conditions
of Theorem 1. From this fact the following result follows immediately.

Corollary 1. The diagonal components Thh of induced mass are increased if either
(i) the region R occupied by liquid is increased (i.e., the free boundaries are pushed out),
or (ii) free surface area is replaced by container walls or wetted missile area.

Corollary 2. Let a volume AV of liquid be replaced by missile. The new translation
induced mass T'hh satisfies the inequality.

TL > Thh - PAV (13)

Proof. Let R' = R — AV denote the reduced volume occupied by liquid. Consider
the acceleration field of R, under which AV is accelerated as a rigid body under h-
translation, while R' is given the acceleration corresponding to T'hh . By Theorem 1,
T'hh + pAV will exceed Thh , proving formula (13). This result can be extended to rota-
tional components, if pAV is replaced by the appropriate rigid moment of inertia.

Again, we have by Green's second identity

-Thk = P [ A"~dS+ P [ Ah^dS + P[ Ah^dS
Js an Jw. dn Jwdn

By (5), Ah = 0 on S, and so the first summand is zero; by (6), dAk/dn — 0 on W",
hence the last summand is zero.
Using (3) and reversing signs, we therefore have

/A Ak^ (ph ~ Po) ~ dS, (14)

where p0 is the free surface pressure, and ph is the pressure on IF' under unit /(-accelera-
tion from rest. Also on W, dAk/dn = dxk/dn [k = 1, 2, 3] and dAi/dn = x2dx3/dxn —
x3dx2/dxn etc., by definition. Hence, cancelling out the effect of the constant pressure
Po over the missile, we have

Theorem 4. The tensor component Thk represents the total /i-component of initial
pressure force required to produce a unit /^-acceleration of the missile.

In view of the linearity of (3) to (6) in A and p, we deduce immediately the following
corollary.

Corollary 1. If, at any instant, the configuration and flow field are given, the in-
stantaneous effect of an additional acceleration of the missile, with components , • ■ ■ a6,
is to produce components Ylt-i Thkak of reaction in the liquid.

This result will be compared with experimental data in Sec. 5.
4. Momentum interpretation. If there is no container, so that W = W' and IF" = 0,

momentum interpretations of the Thk are also possible. I shall show this directly from
momentum considerations. (To make this rigorous, one must consider, as in [1] or [3],
the convergence of the momentum integrals involved.)

Let the missile, supposed of finite diameter, be given initial acceleration from rest,
and let C by any cylinder parallel to the a^-axis, whose finite cross-section contains the
wetted area IF = IF' of the missile. The total A-momentum4 in C is finite; moreover,

4By /i-momentum, we mean linear momentum parallel to the lA-axis.
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since the liquid is at rest initially, the rate of convection of fluid /t-momontum out of
C is zero. Since the fluid is non-viscous, the shear stresses across this boundary are also
zero; hence the rate of total transfer of /t-momentum across the boundary of C is zero.
We conclude that the time rate of increase of ^-momentum of the liquid in C, is equal
to the A-component of pressure force.

A corresponding result holds for moments of momentum; in this case C must be a
solid of revolution containing W, with the axis about which the moment is taken, for
axis of symmetry. Combining with Theorem 2, we get the following result. (We define
an "/i-curve" to be a straight line parallel to the x^-axis, if h = 1, 2, 3; and to be a circle
perpendicular to the z^-axis, with center on the xA_3-axis, if h = 4, 5, 6.)

Theorem 5. Let a missile be given a unit ^-acceleration from rest, in a liquid bounded
by the missile wetted area and a free surface. Then the rate of increase of the /i-com-
ponent of liquid momentum in any region C bounded by /i-curves, which contains W,
is exactly Thk initially.

5. Application, we can apply the corollary of Theorem 4 to the case of a missile B
travelling vertically in a cavity, as in Fig. 2. The reaction to acceleration of B will be
at least as great as if the liquid were confined to the underside of a plane bounding the
wetted area of B (indicated as a dashed line in Fig. 2).

In this case, as first noted by von Karman [6], the acceleration potential can be
obtained by symmetry, using the reflection principle. It follows that the instantaneous
inertia opposed by the liquid to the acceleration of B, should be between 50 per cent
and 100 per cent of that offered if there were no cavity, and the same area were wetted.

This is not necessarily the same as the change in the cavity drag coefficient due to
steady acceleration or deceleration (cf. Sec. 1, end). In fact, data obtained at the Naval
Ordnance Laboratory5, indicate that this change probably corresponds to less than 25
per cent of that occurring if there were no cavity.

The preceding results also apply to the case of impact on water, for which the mo-
mentum interpretation of §4 may be of interest. In this case, a rigorous lower bound to
the loss of energy at impact is obtained by Theorem 1. Unfortunately, about 50 per
cent of the energy lost at impact is presumably absorbed by the energy of compression
(and radiated as acoustic energy); hence this bound is excessively low.

However, as the impact phase has been extensively discussed by other authors
([4], [5], [6]), especially in connection with the landing of seaplane floats, we shall not
discuss it further here.

6A. May and J. Woodhull, "The virtual mass of a sphere entering water vertically", Journal of
Applied Physics 21 1285-9 (1950).
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6. Correction for hydrostatic force. Since gravity has been neglected above, it is
interesting to have a rough estimate of the effect of gravity on the pressure exerted by
a liquid on a missile moving through it with wetted area W trailed by a cavity (Fig. 2).
We suppose the liquid incompressible, and bounded by W', container walls W", and a
free surface S. The additional instantaneous acceleration b due to a vertical gravity
field with intensity g satisfies b = gVB, where V2£> = 0, B = y (depth coordinate)
on S, and dB/dn = 0 on W + W" = W; the associated hydrostatic pressure is pg(y — B).

For given boundary configurations S and W, the resulting "hydrostatic acceleration
potential" gB can be most easily estimated using an electrolytic tank, and the results
interpreted in terms of the dimension! ess cavity buoyancy coefficient

n _ hydrostatic bouyancy force
0 h

pg X mean depth X horizontal projection of W

In this way, CH was estimated7 for three two-dimensional cavity flows, having profiles
similar to that of Fig. 2. The cavity buoyancy coefficients averaged about 25 per cent.
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ON THE NON-UNIQUENESS OF PERIODIC SOLUTIONS FOR AN
ASYMMETRIC LlfiNARD EQUATION*

By G. F. D. DUFF and N. LEVINSON (Massachusetts Institute of Technology)

The following result has been stated by H. Serbin [5, Theorem II]. Let f(x), g(x)
be continuous for — °° < x < °°, and let

f{x) < 0, —x[ < x < Xi , (1.0)

f(x) >0, X < — X[ , Xi < x, (1.1)

where x[ > 0 and Xj > 0. Let

f f(x) dx > 0 (1.2)
J 0

xgix) >0, x 9^ 0 (1-3)

*Received Aug. 20, 1951. This paper was written in the course of research sponsored in part by
the Office of Naval Research.


