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Abstract. In 1984, the second author conjectured a quadratic transformation
formula which relates two hypergeometric 2F1 functions over a finite field Fq .
We prove this conjecture in Theorem 2. The proof depends on a new linear
transformation formula for pseudo-hypergeometric functions over Fq . Theorem
2 is then applied to give an elegant new transformation formula (Theorem 3)
for 2F1 functions over finite fields.

1. Introduction

Let Fq be a field of q elements, where q is a power of an odd prime p. Through-
out this paper, A,B,C,D, χ, ε, φ denote complex multiplicative characters on F

∗
q ,

extended to map 0 to 0. Here ε and φ always denote the trivial and quadratic
characters, respectively. For y ∈ Fq, let ζ

y denote the additive character

ζy := exp

(
2πi

p

(
yp + yp

2

+ · · ·+ yq
))

.

Recall the definitions of the Gauss sum

G(A) =
∑
y∈Fq

A(y)ζy

and the Jacobi sum

J(A,B) =
∑
y∈Fq

A(y)B(1− y).

These sums have the familiar properties

G(ε) = −1, J(ε, ε) = q − 2,

and for nontrivial A,

G(A)G(A) = A(−1)q, J(A,A) = −A(−1), J(ε, A) = −1.

Gauss and Jacobi sums are related by [4, p. 59]

J(A,B) =
G(A)G(B)

G(AB)
, if AB �= ε.
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The Hasse–Davenport product relation [4, p. 351] yields

(1.1) A(4)G(A)G(Aφ) = G(A2)G(φ).

As in [12, p. 82], define the hypergeometric 2F1 function over Fq by

(1.2) 2F1

(
A,B

C
x

)
=

ε(x)

q

∑
y∈Fq

B(y)BC(y − 1)A(1− xy), x ∈ Fq.

Define the binomial coefficient over Fq as in [12, p. 80] by(
A
B

)
=

B(−1)

q
J(A,B).

In [7, (1.11)] and [6, (1.10)], we defined a pseudo-hypergeometric function
F ∗(C,D;x) for x ∈ Fq by

(1.3) F ∗(C,D;x) :=
q

q − 1

∑
χ

(
Cχ2

χ

)(
Cχ
Dχ

)
χ
(x
4

)
+ CD(−1)

C(x/4)

q
,

where the sum is over all characters χ on Fq. The function F ∗(C,D;x) could be
defined more simply by using Gauss sums instead of Jacobi sums; see [7, Lemma
2.1]. (This is in line with the observation in [15] about an elegant way to define
general hypergeometric functions over finite fields.) However, here we stick with
the formulation in (1.3) because it allows us to more easily apply theorems in [12].

We will need the following alternative formula for F ∗(C,D;x). In [7, p. 224], it
is proved that if C �= D and x /∈ {0, 1}, then

(1.4) F ∗(C,D;x) =
C(2)

q

∑
t

CD
2
(1− t)CD(1− x− t2).

In fact, (1.4) holds even when C = D, but this fact will not be used here, so we
omit the proof.

Note. On the fifth line from the bottom in [7, p. 224], the misprint AC2 should be
corrected to AC. Four lines before Theorem 1.1 in [7], replace the clause “because
...” with “because every element in Fq is a square in Fq2”, and in the same sentence,
replace “(3.2)–(3.3)” with “(2.16)–(2.17)”.

We are now prepared to state our results.

Lemma 1. Suppose that A, A2B, and φAB are all nontrivial. Let y ∈ Fq with
y /∈ {0, 1}. Then

F ∗(B,AB; y) =
φAB(−1)A

2
B(2)G(A2B)G(φAB)

G(φ)G(A)
F ∗(B, φA; 1− y).

Lemma 1 gives a linear transformation formula for the pseudo-hypergeometric
function F ∗. It will be employed to prove Theorem 2.

Theorem 2. Suppose that A, A2B, and φAB are all nontrivial. Let x ∈ Fq with
x �= −1. Then

2F1

(
A,B
A2

4x

(1 + x)2

)

=
A(4)φB(−1)G(A2B)G(φAB)

G(φ)G(A)
B2(1 + x) 2F1

(
φAB,B

φA
x2

)
.

(1.5)
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Theorem 2 gives a finite field analogue of an important 2F1 quadratic transforma-
tion of Gauss related to elliptic integrals [3, p. 50], [1, (3.1.11)]. A transformation
equivalent to Theorem 2 is given in [9, Theorem 17].

In 1984, the second author [11, (4.40)] proved Theorem 2 in the special case
that the character B is even, and he conjectured that Theorem 2 holds in general
[11, p. 54]. After proving this conjecture, we will employ Theorem 2 to prove
Theorem 3.

Note. On the second line of [11, p. 54], the misprint 2/(1+x)2 should be corrected
to 2/(1 + x2). Also, the second equality in [11, (4.40)] should be ignored, as it is
incorrect.

Theorem 3. Let q ≡ 1 (mod 4), so that there exists a quartic character χ4 on Fq.
Let z ∈ Fq with z /∈ {0, 1,−1}. Then for any character D on Fq,

(1.6) D4(z − 1)2F1

(
D,Dχ4

χ4
z4
)

= 2F1

(
D,D2φ

Dφ
−
(
z + 1

z − 1

)2
)
.

Theorem 3, which motivated this paper, gives an elegant transformation formula
for 2F1 functions over finite fields. The first author [5] has applied Theorem 3 to
evaluate a weighted sum of hypergeometric functions over Fq. The evaluation turns
out to be elementarily equivalent to an identity that Katz [13] had proved using
rigidity properties of Kloosterman sheaves.

Stanton [17] has found the following analogue of (1.6) over the complex numbers,
valid for any nonnegative integer n:

(z − 1)4n+2
2F1

(
−n− 1/4,−2n− 1

−n+ 1/4
−
(
z + 1

z − 1

)2
)

≡ (−2z)
Γ(2n+ 3)Γ(3/4)

Γ(n+ 2)Γ(n+ 3/4)
2F1

(
−n− 1/4,−n

5/4
z4
)
.

(1.7)

Both sides of (1.7) are polynomials in z of degree 4n+1, and the symbol ≡ signifies
that the two polynomials are identical.

Remark. Transformation formulas for hypergeometric functions over Fq have nu-
merous applications to number theory, algebraic geometry, and modular forms; for
some recent examples, see [2], [8], [10], [14], [15], [16]. In [9], a number of such
transformation formulas are proved and interpreted geometrically.

2. Proof of Lemma 1

In view of (1.4) and the hypothesis that A and φAB are nontrivial, it suffices to
prove that α = β, where

α := G(A2B)G(φAB)
∑
t

A
2
B(1− t)φAB(y − t2)

and

β = φBA(−1)A2B(2)G(φ)G(A)
∑
t

A2B(1− t)A(1− y − t2).

We have

α =
∑
t

∑
w

∑
z

A
2
B(1− t)A2B(w)φAB(y − t2)φAB(z)ζw+z.
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Since A2B and φAB are nontrivial,

α =
∑
t

∑
w �=0

∑
z �=0

A2B(w)φAB(z)ζw(1−t)+z(y−t2).

Replacing w by 2wz, we obtain

α = A2B(2)
∑
w

A2B(w)
∑
z

φA(z)ζz(y−1+(w+1)2)
∑
t

ζ−z(t+w)2

= A2B(2)φ(−1)G(φ)
∑
w

A2B(w)
∑
z

A(z)ζz(y−1+(w+1)2).

Since A is nontrivial, it follows that

α = A2B(2)φ(−1)G(φ)G(A)
∑
w

A2B(w)A(y − 1 + (w + 1)2).

Replacing w by w − 1, we see that α = β, which completes the proof of Lemma 1.

3. Proof of Theorem 2

Both sides of (1.5) vanish when x = 0. When x = 1, each 2F1 in (1.5) has the
argument 1, so that (1.5) can be directly verified using [12, Theorem 4.9], with the
aid of the Hasse-Davenport relation (1.1). Thus for the remainder of the proof,
assume that x /∈ {0,−1, 1}.

Applying [12, Theorem 4.4(i)] to the left side of (1.5), we see that (1.5) is equiv-
alent to

2F1

(
A,B
AB

(1− x)2

(1 + x)2

)

=
A(4)φAB(−1)G(A2B)G(φAB)

G(φ)G(A)
B2(1 + x) 2F1

(
φAB,B

φA
x2

)
.

(3.1)

To prove (3.1), first suppose that x = ±i, where i ∈ Fq is a primitive fourth root
of unity. In this case q ≡ 1 (mod 4) and φ(−1) = 1. Each 2F1 in (3.1) has the
argument −1, so that (3.1) can be verified using [12, (4.11)], with the aid of the
Hasse-Davenport relation (1.1). Thus for the remainder of the proof, we assume
that x /∈ {0,−1, 1, i,−i}.

Apply [12, Theorem 4.16] to see that the 2F1 on the left side of (3.1) equals

B

(
2(x2 + 1)

(x+ 1)2

)
F ∗

(
B,AB;

(
x2 − 1

x2 + 1

)2
)
,

by (1.3). Similarly, the 2F1 on the right side of (3.1) equals

B(1 + x2)F ∗
(
B, φA;

4x2

(1 + x2)2

)
.

Thus (3.1) is equivalent to

F ∗

(
B,AB;

(
x2 − 1

x2 + 1

)2
)

=
φAB(−1)A

2
B(2)G(A2B)G(φAB)

G(φ)G(A)
F ∗

(
B, φA;

4x2

(1 + x2)2

)
,
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which immediately follows from Lemma 1 with

y =

(
x2 − 1

x2 + 1

)2

.

This completes the proof of Theorem 2.

4. Proof of Theorem 3

Note that since q ≡ 1 (mod 4), we have φ(−1) = 1, and there exists a primitive
fourth root of unity i ∈ Fq. The proof may be facilitated by the observation that
−4 = (1 + i)4, so that χ4(−4) = 1.

If D is either trivial or quartic, then the 2F1 functions in (1.6) are degenerate, so
that (1.6) follows directly from [12, Corollary 3.16]. Thus assume that D is neither
quartic nor trivial.

We will apply three transformations to convert the right side of (1.6) to the
left side. First apply the transformation in [12, Theorem 4.20] with A = D and
B = Dχ4 to express the 2F1 on the right side of (1.6) in terms of

(4.1) 2F1

(
Dχ4, Dχ4

Dφ
− (z2 − 1)2

4z2

)
.

We will next utilize the transformation

(4.2) 2F1

(
A,B

C
x

)
= ABC(−1)B(x)2F1

(
BC,B

BA

1

x

)
,

which follows by replacing y by y/x in (1.2). Apply the transformation (4.2) with
A = Dχ4, B = Dχ4, and C = Dφ to express the 2F1 in (4.1) in terms of

(4.3) 2F1

(
χ4, Dχ4

φ
− 4z2

(z2 − 1)2

)
.

Finally apply the transformation in Theorem 2 of this paper with A = χ4, B = Dχ4,
and x = −z2 to express the 2F1 in (4.3) in terms of the 2F1 on the left side of (1.6).
After some simplification, these three successive transformations yield the desired
result (1.6).
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