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Analysis and geometry of the measurable Riemannian
structure on the Sierpiński gasket

Naotaka Kajino

Abstract. This expository article is devoted to a survey of existent results
concerning the measurable Riemannian structure on the Sierpiński gasket and

to a brief account of the author’s recent result on Weyl’s eigenvalue asymptotics
of its associated Laplacian. In particular, properties of the Hausdorff measure
with respect to the canonical geodesic metric are described in some detail as
a key step to the proof of Weyl’s asymptotics. A complete characterization of

minimal geodesics is newly proved and applied to invalidity of Ricci curvature
lower bound conditions such as the curvature-dimension condition and the
measure contraction property. Possibility of and difficulties in extending the
results to other self-similar fractals are also discussed.
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1. Introduction

The purpose of this expository article is to review known results concerning the
measurable Riemannian structure on the Sierpiński gasket (Figure 1) and describe
its connections to general theories of analysis and geometry on metric measure
spaces. We also state the author’s recent result on Weyl’s eigenvalue asymptotics
of its associated Laplacian and briefly explain the idea of its proof. In particular, we
present various properties of the Hausdorff measure with respect to the canonical
geodesic metric as the key facts for the proof of Weyl’s asymptotics.

The notion of the measurable Riemannian structure on the Sierpiński gasket
was first introduced by Kigami [56] on the basis of Kusuoka’s construction in [67]
of “weak gradients” for Dirichlet forms on fractals. In [56], Kigami proved that the
Sierpiński gasket can be embedded in R2 by a certain harmonic map, whose image
is now called the harmonic Sierpiński gasket (Figure 2), and that Kusuoka’s “weak
gradients” can be identified as the gradients with respect to the (measurable) “Rie-
mannian structure” inherited from R2 through this embedding. (Related results
are also found in Hino [38, 40].) These results are reviewed in Section 3 after a
brief account of the Sierpiński gasket and its standard Dirichlet form in Section 2.

Kigami further proved in [58] that the heat kernel associated with this “Rie-
mannian structure” satisfies the two-sided Gaussian bound in terms of the natural
geodesic metric, unlike typical fractal diffusions treated e.g. in [11, 64, 26, 7, 8] for
whose transition densities (heat kernels) the two-sided sub-Gaussian bounds hold.
Later in [48] the author proved some more detailed asymptotics of that heat kernel
such as Varadhan’s asymptotic relation, together with an analytic characterization
of the geodesic metric and slight generalizations and improvements of the results
in [58]. These results are reviewed in Section 5 following a summary of basic geo-
metric properties of the measurable Riemannian structure in Section 4, where we
also newly prove a complete characterization of minimal geodesics (Theorem 4.19).

Very recently, the author has also proved Weyl’s Laplacian eigenvalue asymp-
totics for this case, which is to be treated in a forthcoming paper [51]. The proof
of Weyl’s asymptotics require some detailed properties of the Hausdorff measure
with respect to the geodesic metric and this is reviewed in Section 6, along with
the singularity of the Hausdorff measure to the energy measures. Then in Section
7, we give the statement of Weyl’s asymptotics and sketch the idea of its proof.

Since the situation of the measurable Riemannian structure on the Sierpiński
gasket looks similar to that of Riemannian manifolds, it is natural to expect close
connections to general theories of analysis and geometry on metric measure spaces
which are not applicable to the case of typical fractal diffusions. In fact, Koskela
and Zhou [62, Section 4] recently proved that the theory of differential calculus
on metric measure spaces, established by Cheeger [19] and developed further by
e.g. Shanmugalingam [86] and Keith [52, 53, 54], is applicable to the measurable
Riemannian structure on the Sierpiński gasket. To be more precise, they prove that
in this case the (1, 2)-Sobolev space equipped with a natural (1, 2)-seminorm, due
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Figure 1. Sierpiński gasket
Figure 2. Harmonic
Sierpiński gasket

to Cheeger [19, Section 2] and Shanmugalingam [86, Definition 2.5], coincides with
the standard Dirichlet form on the Sierpiński gasket. This result is briefly reviewed
in Subsection 8.1. On the other hand, the notions of Ricci curvature lower bound for
general metric measure spaces due to Lott and Villani [75, 74], Sturm [91, 92] and
Ohta [80] are not applicable to the case of the measurable Riemannian structure.
More precisely, the (harmonic) Sierpiński gasket equipped with the natural geodesic
metric and the “Riemannian volume measure” does not satisfy either the curvature
dimension condition CD(k,N) of Lott and Villani [75, 74] and Sturm [91, 92]
or the measure contraction property MCP(k, N) of Ohta [80] and Sturm [92] for
any (k, N) ∈ R × [1,∞]. We prove this fact in Subsection 8.2 (Theorem 8.25) as
an application of the characterization of minimal geodesics (Theorem 4.19) after a
review of the precise definitions of CD(k, N) and MCP(k, N) and related results.

Finally, we conclude this paper with a short discussion on possibility of (and
difficulties in) extending the above-mentioned results to other self-similar fractals.

In the appendix, we provide a brief review of important results for the Brownian
motion and the standard Laplacian on the Sierpiński gasket, whose associated heat
kernel is known to satisfy the two-sided sub-Gaussian estimate and exhibit various
oscillatory behavior. Those who are not familiar with these results are strongly
recommended to read the appendix directly after Section 2.

Notation. In this article, we adopt the following notation and conventions.
(1) N = {1, 2, 3, . . . }, i.e. 0 6∈ N.
(2) The cardinality (the number of all the elements) of a set A is denoted by #A.
(3) We set sup ∅ := 0 and inf ∅ := ∞. We write a∨b := max{a, b}, a∧b := min{a, b},
a+ := a∨ 0 and a− := −(a∧ 0) for a, b ∈ [−∞,∞]. We use the same notations also
for functions. All functions treated in this paper are assumed to be [−∞,∞]-valued.
(4) Let k ∈ N. The Euclidean inner product and norm on Rk are denoted by 〈·, ·〉
and | · | respectively. For a continuous map γ : [a, b] → Rk, where a, b ∈ R, a ≤ b, let
`Rk(γ) be its length with respect to | · |. Let Rk×k be the set of real k× k matrices,
which are also regarded as linear maps from Rk to itself through the standard basis
of Rk, and set Rk×k

0 := Rk×k \{0Rk×k}. For T ∈ Rk×k, let det T be its determinant,
T ∗ its transpose, and ‖T‖ its Hilbert-Schmidt norm with respect to 〈·, ·〉. The real
orthogonal group of degree k is denoted by O(k).
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(5) Let E be a topological space. The Borel σ-field of E is denoted by B(E). We set
C(E) := {f | f : E → R, f is continuous} and ‖f‖∞ := supx∈E |f(x)|, f ∈ C(E).
For A ⊂ E, its interior in E is denoted by intE A and its boundary in E by ∂EA.
(6) Let (E, ρ) be a metric space. For r ∈ (0,∞), x ∈ K and A ⊂ E, we set
Br(x, ρ) := {y ∈ E | ρ(x, y) < r}, diamρ A := supy,z∈A ρ(y, z) and distρ(x,A) :=
infy∈A ρ(x, y). For f : E → R we set Lipρ f := supx,y∈E, x 6=y |f(x) − f(y)|/ρ(x, y).
A metric ρ0 on E is called comparable to ρ if and only if c1ρ ≤ ρ0 ≤ c2ρ for some
c1, c2 ∈ (0,∞).

2. Sierpiński gasket and its standard Dirichlet form

In this section, we briefly recall basic facts concerning the Sierpiński gasket and
its standard Dirichlet form (resistance form). We mainly follow [48, Section 2] for
the presentation of this section and refer the reader to [27, 57, 60, 87] for further
details of each fact.

Definition 2.1 (Sierpiński gasket). Let V0 = {q1, q2, q3} ⊂ R2 be the set of
the three vertices of an equilateral triangle, set S := {1, 2, 3}, and for i ∈ S define
fi : R2 → R2 by fi(x) := (x + qi)/2. The Sierpiński gasket (Figure 1) is defined
as the self-similar set associated with {fi}i∈S , i.e. the unique non-empty compact
subset K of R2 that satisfies K =

∪
i∈S fi(K). For i ∈ S we set Fi := fi|K : K → K.

Define Vm for m ∈ N inductively by Vm :=
∪

i∈S Fi(Vm−1) and set V∗ :=
∪

m∈N Vm.

Note that Vm−1 ⊂ Vm for any m ∈ N. K is always regarded as equipped with
the relative topology inherited from R2, so that Fi : K → K is continuous for each
i ∈ S and V∗ is dense in K.

Definition 2.2. (1) Let W0 := {∅}, where ∅ is an element called the empty
word, let Wm := Sm = {w1 . . . wm | wi ∈ S for i ∈ {1, . . . , m}} for m ∈ N and
W∗ :=

∪
m∈N∪{0} Wm. For w ∈ W∗, the unique m ∈ N ∪ {0} with w ∈ Wm is

denoted by |w| and called the length of w. Also for i ∈ S and n ∈ N∪ {0} we write
in := i . . . i ∈ Wn.
(2) We set Σ := SN = {ω1ω2ω3 . . . | ωi ∈ S for i ∈ N}, and define the shift map
σ : Σ → Σ by σ(ω1ω2ω3 . . . ) := ω2ω3ω4 . . . . Also for i ∈ S we define σi : Σ → Σ by
σi(ω1ω2ω3 . . . ) := iω1ω2ω3 . . . and set i∞ := iii . . . ∈ Σ. For ω = ω1ω2ω3 . . . ∈ Σ
and m ∈ N ∪ {0}, we write [ω]m := ω1 . . . ωm ∈ Wm.
(3) For w = w1 . . . wm ∈ W∗, we set Fw := Fw1 ◦ · · · ◦ Fwm (F∅ := idK), Kw :=
Fw(K), σw := σw1 ◦ · · · ◦ σwm (σ∅ := idΣ) and Σw := σw(Σ).

Associated with the triple (K, S, {Fi}i∈S) is a natural projection π : Σ →
K given by the following proposition, which is used to describe the topological
structure of K.

Proposition 2.3. There exists a unique continuous surjective map π : Σ → K
such that Fi ◦ π = π ◦ σi for any i ∈ S, and it satisfies {π(ω)} =

∩
m∈N K[ω]m for

any ω ∈ Σ. Moreover, #π−1(x) = 1 for x ∈ K \ V∗, π−1(qi) = {i∞} for i ∈ S, and
for m ∈ N and each x ∈ Vm \ Vm−1 there exist w ∈ Wm−1 and i, j ∈ S with i 6= j
such that π−1(x) = {wij∞, wji∞}.

Recall the following basic fact ([57, Proposition 1.3.5-(2)]) meaning that V0

should be considered as the “boundary” of K, which we will use below without
further notice: if w, v ∈ W∗ and Σw ∩ Σv = ∅ then Kw ∩ Kv = Fw(V0) ∩ Fv(V0).
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As studied in [5, 57, 87], a standard Dirichlet form (to be precise, a resistance
form) (E ,F) is defined on the Sierpiński gasket K, as follows. See [57, Chapter
2] and [60, Part 1] for general theory of resistance forms. A concise introduction
to the theory of resistance forms is found in [87, Chapter 1], where the theory is
illustrated by treating the particular case of the Sierpiński gasket in detail.

Definition 2.4. Let m ∈ N∪{0}. We define a non-negative definite symmetric
bilinear form Em : RVm × RVm → R on Vm by

(2.1) Em(u, v) :=
1
2
· 1
2

(5
3

)m ∑
x,y∈Vm, x

m∼y

(u(x) − u(y))(v(x) − v(y)),

where, for x, y ∈ Vm, we write x
m∼ y if and only if x, y ∈ Fw(V0) for some w ∈ Wm

and x 6= y.

The usual definition of Em does not contain the factor 1/2 so that each edge in
the graph (Vm,

m∼) has resistance (3/5)m. Here it has been added for simplicity of
the subsequent arguments; see Definition 3.1-(0) below. The factor 3/5, called the
resistance scaling factor of the Sierpiński gasket, is specifically chosen for the sake
of the validity of the following proposition.

Proposition 2.5. Let m,n ∈ N ∪ {0}, m ≤ n. Then for each u ∈ RVm ,

(2.2) Em(u, u) = min{En(v, v) | v ∈ RVn , v|Vm = u}

and there exists a unique function hm,n(u) ∈ RVn with hm,n(u)|Vm = u such that
Em(u, u) = En(hm,n(u), hm,n(u)). Moreover, hm,n : RVm → RVn is linear.

Let u : V∗ → R. (2.2) implies that {Em(u|Vm , u|Vm)}m∈N∪{0} is non-decreasing
and hence has the limit in [0,∞]. Moreover, if limm→∞ Em(u|Vm , u|Vm) < ∞, then
it is not difficult to verify that u is uniformly continuous with respect to any metric
on K compatible with the original (Euclidean) topology of K, so that u is uniquely
extended to a continuous function on K. Based on these observations, we can prove
the following theorem; see [57, Chapter 2 and Section 3.3] or [87, Chapter 1] for
details. Let 1 := 1K denote the constant function on K with value 1.

Theorem 2.6. Define F ⊂ C(K) and E : F × F → R by

F := {u ∈ C(K) | limm→∞ E(m)(u|Vm , u|Vm) < ∞},

E(u, v) := limm→∞ E(m)(u|Vm , v|Vm) ∈ R, u, v ∈ F .
(2.3)

Then F is a dense subalgebra of C(K), E is a non-negative definite symmetric
bilinear form on F , and (E ,F) possesses the following properties:

(1) {u ∈ F | E(u, u) = 0} = {c1 | c ∈ R} =: R1, and (F/R1, E) is a Hilbert space.
(2) RE(x, y) := supu∈F\R1 |u(x) − u(y)|2/E(u, u) < ∞ for any x, y ∈ K and RE :

K × K → [0,∞) is a metric on K compatible with the original topology of K.
(3) u+ ∧ 1 ∈ F and E(u+ ∧ 1, u+ ∧ 1) ≤ E(u, u) for any u ∈ F .
(4) F = {u ∈ C(K) | u ◦ Fi ∈ F for any i ∈ S}, and for any u, v ∈ F ,

(2.4) E(u, v) =
5
3

∑
i∈S

E(u ◦ Fi, v ◦ Fi).
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(E ,F) is called the standard resistance form on the Sierpiński gasket, which is
indeed a resistance form on K with resistance metric RE by Theorem 2.6-(1),(2),(3)
and F being a dense subalgebra of C(K). Consequently we also have the following
theorem by virtue of [60, Corollary 6.4, Theorems 9.4 and 10.4], where the strong
locality of (E ,F) follows from (2.4) and E(1,1) = 0. See [27, Section 1.1] for the
notions of regular Dirichlet forms and their strong locality.

Theorem 2.7. Let ν be a finite Borel measure on K with full support, i.e. such
that ν(U) > 0 for any non-empty open subset U of K. Then (E ,F) is a strongly
local regular Dirichlet form on L2(K, ν), and its associated Markovian semigroup
{T ν

t }t∈(0,∞) on L2(K, ν) admits a continuous integral kernel pν , i.e. a continuous
function pν = pν(t, x, y) : (0,∞)×K ×K → R such that for any f ∈ L2(K, ν) and
any t ∈ (0,∞),

(2.5) T ν
t f =

∫
K

pν(t, ·, y)f(y)dν(y) ν-a.e.

In the situation of Theorem 2.7, a standard monotone class argument easily
shows that such pν is unique and satisfies pν(t, x, y) = pν(t, y, x) ≥ 0 for any
(t, x, y) ∈ (0,∞) × K × K. Moreover, pν is in fact (0,∞)-valued by [59, Theorem
A.4]. ν is called the reference measure of the Dirichlet space (K, ν, E ,F), and pν is
called the (continuous) heat kernel associated with (K, ν, E ,F). See [60, Theorem
10.4] for other basic properties of pν .

Since we have a regular Dirichlet form (E ,F) with compact state space K,
by [27, (3.2.13) and (3.2.14)] we can define E-energy measures as in the following
definition.

Definition 2.8. The E-energy measure of u ∈ F is defined as the unique Borel
measure µ〈u〉 on K such that

(2.6)
∫

K

fdµ〈u〉 = E(uf, u) − 1
2
E(u2, f) for any f ∈ F .

We also define λ〈u〉 to be the unique Borel measure on Σ that satisfies λ〈u〉(Σw) =
(5/3)|w|E(u◦Fw, u◦Fw) for any w ∈ W∗, which exists by (2.4) and the Kolmogorov
extension theorem. For u, v ∈ F we set µ〈u,v〉 := (µ〈u+v〉 − µ〈u−v〉)/4 and λ〈u,v〉 :=
(λ〈u+v〉 − λ〈u−v〉)/4, so that they are finite Borel signed measures on K and on Σ
respectively and are symmetric and bilinear in (u, v) ∈ F × F .

Let u ∈ F . According to [20, Theorem 4.3.8] (see also [16, Theorem I.7.1.1]),
the strong locality of (E ,F) implies that the image measure µ〈u〉 ◦u−1 on (R,B(R))
is absolutely continuous with respect to the Lebesgue measure on R. In particular,
µ〈u〉({x}) = 0 for any x ∈ K. We also easily see the following proposition by using
(2.4) and (2.6). Note that π(A) ∈ B(K) for any A ∈ B(Σ) by Proposition 2.3.

Proposition 2.9. λ〈u,v〉 = µ〈u,v〉◦π and λ〈u,v〉◦π−1 = µ〈u,v〉 for any u, v ∈ F .

The definition of the measurable Riemannian structure on the Sierpiński gasket
involves certain harmonic functions. In the present setting, harmonic functions are
formulated as follows.

Definition 2.10. (1) We define FB := {u ∈ F | u|K\B = 0} for each B ⊂ K.
(2) Let F be a closed subset of K. Then h ∈ F is called F -harmonic if and only if

(2.7) E(h, h) = inf
u∈F, u|F =h|F

E(u, u) or equivalently, E(h, u) = 0, ∀u ∈ FK\F .
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We set HF := {h ∈ F | h is F -harmonic} and Hm := HVm for each m ∈ N ∪ {0}.

Note that HF is a linear subspace of F for any closed subset F of K and that
Hm−1 ⊂ Hm for any m ∈ N. Moreover, we easily have the following proposition by
[60, Lemma 8.2 and Theorem 8.4].

Proposition 2.11. Let F be a non-empty closed subset of K.
(1) Let u ∈ F . Then there exists a unique hF (u) ∈ HF such that hF (u)|F = u|F .
Moreover, hF : F → HF is linear.
(2) Let h ∈ HF . Then minF h ≤ h(x) ≤ maxF h for any x ∈ K.

Proposition 2.5 and (2.4) imply the following useful characterizations of Hm.

Proposition 2.12. It holds that for any m ∈ N ∪ {0},

Hm = {u ∈ F | E(u, u) = Em(u|Vm , u|Vm)}(2.8)

= {u ∈ F | u ◦ Fw ∈ H0 for any w ∈ Wm}.(2.9)

For each h ∈ H0, by virtue of h ◦ Fw ∈ H0, w ∈ W∗, h|V∗ can be, in principle,
explicitly calculated from h|V0 through simple matrix multiplications, as follows.

Proposition 2.13 ([57, (3.2.3) and Example 3.2.6]). Define

(2.10) A1 :=
1
5

5 0 0
2 2 1
2 1 2

 , A2 :=
1
5

2 2 1
0 5 0
1 2 2

 , A3 :=
1
5

2 1 2
1 2 2
0 0 5

 ,

which we regard as linear maps from RV0 to itself through the standard basis of RV0 .
Then for any u ∈ H0 and any w = w1 . . . wm ∈ W∗,

(2.11) u ◦ Fw|V0 = Awm · · ·Aw1(u|V0).

3. Measurable Riemannian structure on the Sierpiński gasket

This section is devoted to a brief introduction to the notion of the measurable
Riemannian structure on the Sierpiński gasket and its basic properties. We continue
to follow mainly [48, Section 2] and refer to [67, 56, 38] for further details.

We first define a “harmonic embedding” Φ of K into R2, through which we will
regard K as a kind of “Riemannian submanifold in R2” to obtain its measurable
Riemannian structure. We also introduce a measure µ which is regarded as the
E-energy measure of the “embedding” Φ and will play the role of the “Riemannian
volume measure”. See [95] for an attempt to generalize the framework of harmonic
embeddings and their energy measures to other finitely ramified fractals.

Recall that V0 = {q1, q2, q3}.

Definition 3.1. (0) We define h1, h2 ∈ F to be the V0-harmonic functions
satisfying h1(q1) = h2(q1) = 0, h1(q2) = h1(q3) = 1 and −h2(q2) = h2(q3) = 1/

√
3,

so that E(h1, h1) = E(h2, h2) = 1 (recall the factor 1/2 in (2.1)) and E(h1, h2) = 0
by (2.8), and h1 ◦ F1 = (3/5)h1 and h2 ◦ F1 = (1/5)h2 by (2.11).
(1) We define a continuous map Φ : K → R2 and a compact subset KH of R2 by

(3.1) Φ(x) := (h1(x), h2(x)), x ∈ K and KH := Φ(K).

KH is called the harmonic Sierpiński gasket (Figure 2). We also set q̂i := Φ(qi) for
i ∈ S, so that {q̂1, q̂2, q̂3} = Φ(V0) is the set of vertices of an equilateral triangle.
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(2) We define finite Borel measures µ on K and λ on Σ by

(3.2) µ := µ〈h1〉 + µ〈h2〉 and λ := λ〈h1〉 + λ〈h2〉,

respectively, so that λ = µ ◦ π and λ ◦ π−1 = µ by Proposition 2.9. µ is called the
Kusuoka measure on the Sierpiński gasket.

Notation. In what follows h1, h2 always denote the V0-harmonic functions
given in Definition 3.1-(0). We often regard {h1, h2} as an orthonormal basis of
(H0/R1, E). Moreover, we set

(3.3) ‖u‖E :=
√

E(u, u), u ∈ F and SH0 := {h ∈ H0 | ‖h‖E = 1}.

The following proposition, which is in fact an easy consequence of Proposition
2.13, provides an alternative geometric definition of KH, and essentially as its
corollary we also see the injectivity of Φ (Theorem 3.3), Proposition 3.4 below and
that µ〈h〉 has full support for any h ∈ H0 \ R1.

Proposition 3.2 ([56, §3]). Define

(3.4) T1 :=
(

3/5 0
0 1/5

)
, T2 :=

(
3/10 −

√
3/10

−
√

3/10 1/2

)
, T3 :=

(
3/10

√
3/10√

3/10 1/2

)
and set Tw := Tw1 · · ·Twm for w = w1 . . . wm ∈ W∗ (T∅ :=

(
1 0
0 1

)
). Also for i ∈ S

define Hi : R2 → R2 by Hi(x) := q̂i + Ti(x − q̂i). Then the following hold:
(1) T2 = R 2

3 πT1R− 2
3 π and T3 = R− 2

3 πT1R 2
3 π, where Rθ :=

(
cos θ − sin θ
sin θ cos θ

)
for θ ∈ R.

(2) For any w ∈ W∗, T ∗
w := (Tw)∗ is equal to the matrix representation of the linear

map F ∗
w : H0/R1 → H0/R1, F ∗

wh := h ◦ Fw by the basis {h1, h2} of H0/R1.
(3) Hi ◦Φ = Φ◦Fi and hence Hi ◦(Φ◦π) = (Φ◦π)◦σi for any i ∈ S. In particular,

KH =
∪

i∈S Hi(KH), i.e. KH is the self-similar set associated with {Hi}i∈S.

Theorem 3.3 ([56, Theorem 3.6]). Φ : K → KH is a homeomorphism.

Proposition 3.4. µ(Kw) = λ(Σw) = (5/3)|w|‖Tw‖2 for any w ∈ W∗.

Moreover, we have the following theorem due to Kusuoka [67] (see [48, Theorem
6.8] for an alternative simple proof based on (2.4) and the strong locality of (E ,F)).
Recall that σ : Σ → Σ is the shift map defined by σ(ω1ω2ω3 . . . ) := ω2ω3ω4 . . . .

Theorem 3.5 ([67, §6, Example 1]). λ is σ-ergodic, that is, λ ◦ σ−1 = λ and
λ(A)λ(Σ \ A) = 0 for any A ∈ B(Σ) with σ−1(A) = A.

We also remark the following fact due to Hino [38].

Theorem 3.6 ([38, Theorem 5.6]). Let h ∈ H0 \ R1. Then µ and µ〈h〉 are
mutually absolutely continuous.

Now we can introduce the measurable Riemannian structure on K, which is
formulated as a Borel measurable map Z : K → R2×2, as follows. Recall that
π|Σ\π−1(V∗\V0) is injective by Proposition 2.3.

Proposition 3.7 ([67, §1], [56, Proposition B.2]). Define ΣZ ∈ B(Σ) and
KZ ∈ B(K) by

(3.5) ΣZ :=
{

ω ∈ Σ
∣∣∣∣ ZΣ(ω) := lim

m→∞

T[ω]mT ∗
[ω]m

‖T[ω]m‖2
exists in R2×2

}
, KZ := π(ΣZ).
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Then λ(Σ \ΣZ) = µ(K \KZ) = 0, ZΣ(ω) is an orthogonal projection of rank 1 for
any ω ∈ ΣZ , π−1(V∗) ⊂ ΣZ and ZΣ(ω) = ZΣ(τ) for ω, τ ∈ π−1(x), x ∈ V∗ \ V0.
Hence setting Zx := ZΣ(ω), ω ∈ π−1(x) for x ∈ KZ and Zx :=

(
1 0
0 0

)
for x ∈ K\KZ

gives a well-defined Borel measurable map Z : K → R2×2, x 7→ Zx.

Theorem 3.8 ([56, §4]). Set C1
Φ(K) := {v ◦ Φ | v ∈ C1(R2)}. Then for each

u ∈ C1
Φ(K), ∇u := (∇v) ◦ Φ is independent of a particular choice of v ∈ C1(R2)

satisfying u = v ◦ Φ. Moreover, C1
Φ(K) ⊂ F , C1

Φ(K)/R1 is dense in (F/R1, E),
and for any u, v ∈ C1

Φ(K),

(3.6) dµ〈u,v〉 = 〈Z∇u, Z∇v〉dµ and E(u, v) =
∫

K

〈Z∇u,Z∇v〉dµ.

In view of Theorem 3.8, especially (3.6), we may regard Z as defining a “one-
dimensional tangent space Im Zx of K at x with the metric inherited from R2” for
µ-a.e. x ∈ K in a measurable way, with µ considered as the associated “Riemannian
volume measure” and Z∇u as the “gradient vector field” of u ∈ C1

Φ(K). Then the
Dirichlet space associated with this “Riemannian structure” is (K, µ, E ,F).

Remark 3.9. (1) By [56, Theorem B.5-(1)], Σ \ ΣZ is dense in Σ and hence
K \ KZ is dense in K. In other words, there exists a dense set of points x of K
where the notion of the tangent space ImZx at x does not make sense.
(2) Z|KZ : KZ → R2×2 is discontinuous. Indeed, let n ∈ N ∪ {0} and set xn :=
F1n3(q2), so that limn→∞ xn = q1. Then it easily follows from (3.4) and (3.5) that
Zq1 =

(
1 0
0 0

)
and Zxn =

(
0 0
0 1

)
, which does not converge to

(
1 0
0 0

)
= Zq1 as n → ∞.

As a matter of fact, any u ∈ F admits a natural “gradient vector field” ∇̃u,
thereby (3.6) extended to functions in F , as in the following theorem whose essential
part is due to Hino [38, Theorem 5.4]; see [48, Theorem 2.17] for details.

Theorem 3.10. Let h ∈ H0 \ R1. Then for any u ∈ F the following hold:
(1) For µ-a.e. x ∈ K, there exists ∇̃u(x) ∈ Im Zx such that for any ω ∈ π−1(x),

(3.7) sup
y∈K[ω]m

∣∣∣u(y) − u(x) − 〈∇̃u(x), Φ(y) − Φ(x)〉
∣∣∣ = o(‖T[ω]m‖) as m → ∞.

Such ∇̃u(x) ∈ Im Zx as in (3.7) is unique for each x ∈ KZ , and dµ〈u〉 = |∇̃u|2dµ.
(2) For µ〈h〉-a.e. x ∈ K, there exists du

dh (x) ∈ R such that for any ω ∈ π−1(x),

(3.8) sup
y∈K[ω]m

∣∣∣∣u(y) − u(x) − du

dh
(x)(h(y) − h(x))

∣∣∣∣ = o(‖h ◦ F[ω]m‖E) as m → ∞.

Such du
dh (x) ∈ R as in (3.8) is unique for each x ∈ K, and dµ〈u〉 =

(
du
dh

)2
dµ〈h〉.

In fact, Theorem 3.10 has been recently improved by Koskela and Zhou [62]
where the reminder estimates for the derivatives ∇̃u and du

dh are given in terms of
the associated geodesic metrics; see Theorem 8.3 below.

Remark 3.11. (1) As mentioned in [48, Remark 2.20], the “gradient vector
field” ∇̃u in Theorem 3.10-(1) coincides with the “weak gradient” Y (· ; u) defined
by Kusuoka [67, Lemma 5.1] (see also [58, Definition 4.11]).
(2) The rank of the matrix Z, which is 1 µ-a.e. in the present case, is closely related
to the martingale dimension of the associated diffusion process. The martingale
dimension of a symmetric diffusion process is formally defined as the maximal
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number of martingale additive functionals which are independent in the sense of
stochastic integral representation, and intuitively it corresponds to the “maximal
dimension of the tangent space” over the state space. For the purpose of analytic
characterization of martingale dimension, Kusuoka [67, 68] introduced the notion
of index for certain strongly local symmetric regular Dirichlet forms on a certain
class of self-similar fractals and identified it as the martingale dimension of the
associated diffusion. Hino [38, Definitions 2.9, 3.3 and Theorem 3.4] has recently
extended these results to general strongly local symmetric regular Dirichlet forms,
where the index is defined through certain matrix-valued measurable maps similar
to Z as above whose entries are the Radon-Nikodym derivatives of energy measures.

The index of a non-degenerate elliptic symmetric diffusion on a smooth manifold
is easily seen to be equal to the dimension of the manifold, whereas it is difficult to
determine the exact value of the index for diffusions on fractals. In our case of the
standard resistance form (E ,F) on the Sierpiński gasket, it follows from rank Z = 1,
µ-a.e., that the index is 1, and the same is true also for the k-dimensional Sierpiński
gasket with k ≥ 3, as shown in [67, §6, Example 1]. Hino [37, 39] has recently
proved that the index of a point-recurrent self-similar diffusion (to be precise, the
index of the resistance form associated with a regular harmonic structure — see
[57, Chapter 3]) on a post-critically finite self-similar set is always 1. This result in
particular applies to Brownian motion on affine nested fractals, whose construction
is essentailly due to Lindstrøm [73]; see [57, Section 3.8], [64, 26] and references
therein for details concerning affine nested fractals and Brownian motion on them.

In the case of the canonical Dirichlet form on a generalized Sierpiński carpet,
which was constructed in [6, 8, 69] and is known to be unique by [9], Hino has also
proved in [39, Theorem 4.16] that the index is less than or equal to the spectral
dimension ds of the generalized Sierpiński carpet. Note that this result gives only
an upper bound for the index, so that the exact value of the index for generalized
Sierpiński carpets is still unknown, except when ds < 2, which implies that the index
is 1. (A brief summary of important facts concerning the canonical Dirichlet form
on generalized Sierpiński carpets, as well as pictures of some typical generalized
Sierpiński carpets, is available in [50, Section 5].)
(3) [38, Theorem 5.4], from which Theorem 3.10 follows, was stated and proved
only for (regular harmonic structures on) post-critically finite self-similar sets. In
fact, Hino [40, Theorem 3.4] has recently generalized it to general strongly local
symmetric regular Dirichlet forms with finite index. See [40] for details.

4. Geometry under the measurable Riemannian structure

This section is a brief summary of the results in [48, Section 3], which are
slight improvements of those in [58, Sections 3 and 5] and concern basic geometric
properties of K under the measurable Riemannian structure.

We start with the definition of the canonical geodesic metrics associated with
the Dirichlet spaces (K, µ, E ,F) and (K, µ〈h〉, E ,F), h ∈ H0 \ R1.

Definition 4.1. Let h ∈ H0 \R1. We define the harmonic geodesic metric ρH
on K and the h-geodesic metric ρh on K by respectively

ρH(x, y) := inf{`H(γ) | γ : [0, 1] → K, γ is continuous, γ(0) = x, γ(1) = y},(4.1)

ρh(x, y) := inf{`h(γ) | γ : [0, 1] → K, γ is continuous, γ(0) = x, γ(1) = y}(4.2)
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for x, y ∈ K, where we set `H(γ) := `R2(Φ ◦ γ) and `h(γ) := `R(h ◦ γ) for each
continuous map γ : [a, b] → K, a, b ∈ R, a ≤ b.

ρH was first introduced by Kigami in [58, Section 5], and the author adopted his
idea to define ρh in [48]. As observed in [48, Section 3] and reviewed below, ρh plays
the role of the canonical geodesic metric for the Dirichlet space (K,µ〈h〉, E ,F), as ρH
does for (K,µ, E ,F), and (K, ρh, µ〈h〉) possesses most of the fundamental geometric
properties in common with (K, ρH, µ). The generalization to (K, ρh, µ〈h〉), where in
fact the constants involved are all independent of h ∈ SH0 , played essential roles in
the proofs of the main results of [48], and it does also in the proofs of the author’s
recent results in [51], which are reviewed in Sections 6 and 7 below.

Remark 4.2. Note that ρH is different from the “harmonic metric” ρΦ on K
introduced in [56, Definition 3.8], which is defined by

(4.3) ρΦ(x, y) := |Φ(x) − Φ(y)|, x, y ∈ K.

ρΦ is a metric on K compatible with the original topology of K by Theorem 3.3
and satisfies ρΦ ≤ ρH, but ρH is not comparable to ρΦ. Indeed, as noted in [58, p.
800, Remark], ρΦ

(
F1n(q2), F1n(q3)

)
/ρH

(
F1n(q2), F1n(q3)

)
= O(3−n) as n → ∞.

In practice, we need to relate the metrics ρH and ρh suitably to the cell structure
of K to obtain various fundamental inequalities such as volume doubling property of
measures and weak Poincaré inequality. In [59], Kigami proposed a systematic way
of describing the geometry of a self-similar set using the cell-structure and applied
it to establish reasonable sufficient conditions for sub-Gaussian bounds of the heat
kernel associated with a self-similar Dirichlet form. We follow his framework to
describe the relation between the cell structure of K and the metrics ρH and ρh.
Definitions 4.3, 4.4, 4.6, 4.8 and Proposition 4.5 below are adopted from [59].

Definition 4.3. (1) Let w, v ∈ W∗, w = w1 . . . wm, v = v1 . . . vn. We define
wv ∈ W∗ by wv := w1 . . . wmv1 . . . vn (w∅ := w, ∅v := v). We write w ≤ v if and
only if w = vτ for some τ ∈ W∗. Note that Σw ∩ Σv = ∅ if and only if neither
w ≤ v nor v ≤ w.
(2) A finite subset Λ of W∗ is called a partition of Σ if and only if Σw ∩Σv = ∅ for
any w, v ∈ Λ with w 6= v and Σ =

∪
w∈Λ Σw.

(3) Let Λ1, Λ2 be partitions of Σ. We say that Λ1 is a refinement of Λ2, and write
Λ1 ≤ Λ2, if and only if for each w1 ∈ Λ1 there exists w2 ∈ Λ2 such that w1 ≤ w2.

If Λ1 ≤ Λ2, then we have a natural surjection Λ1 → Λ2 by which w1 ∈ Λ1 is
mapped to the unique w2 ∈ Λ2 such that w1 ≤ w2, and in particular, #Λ1 ≥ #Λ2.

Definition 4.4. (1) A family S = {Λs}s∈(0,1] of partitions of Σ is called a scale
on Σ if and only if S satisfies the following three properties:

(S1) Λ1 = W0 (= {∅}). Λs1 ≤ Λs2 for any s1, s2 ∈ (0, 1] with s1 ≤ s2.
(S2) min{|w| | w ∈ Λs} → ∞ as s ↓ 0.
(Sr) Each s ∈ (0, 1) admits ε ∈ (0, 1− s] such that Λs′ = Λs for any s′ ∈ (s, s + ε).

(2) A function l : W∗ → (0, 1] is called a gauge function on W∗ if and only if
l(wi) ≤ l(w) for any (w, i) ∈ W∗ × S and limm→∞ max{l(w) | w ∈ Wm} = 0.

There is a natural one-to-one correspondence between scales on Σ and gauge
functions on W∗, as in the following proposition. See [59, Section 1.1] for a proof.



12 NAOTAKA KAJINO

Proposition 4.5. (1) Let l be a gauge function on W∗. For s ∈ (0, 1], define

(4.4) Λs(l) := {w | w = w1 . . . wm ∈ W∗, l(w1 . . . wm−1) > s ≥ l(w)}
where l(w1 . . . wm−1) := 2 when w = ∅. Then the collection S(l) := {Λs(l)}s∈(0,1] is
a scale on Σ. We call S(l) the scale induced by the gauge function l.
(2) Let S = {Λs}s∈(0,1] be a scale on Σ. Then there exists a unique gauge function
lS on W∗ such that S = S(lS). We call lS the gauge function of the scale S.

Definition 4.6. Let S = {Λs}s∈(0,1] be a scale on Σ. For s ∈ (0, 1] and x ∈ K,
we define

(4.5) Ks(x, S) :=
∪

w∈Λs, x∈Kw

Kw, Us(x, S) :=
∪

w∈Λs, Kw∩Ks(x,S)6=∅

Kw.

Ks(x, S) and Us(x, S) are clearly non-decreasing in s ∈ (0, 1], and it immediately
follows from [57, Proposition 1.3.6] that {Ks(x, S)}s∈(0,1] and {Us(x, S)}s∈(0,1] are
fundamental systems of neighborhoods of x in K.

Proposition 2.3 easily yields the following lemma.

Lemma 4.7. Let S = {Λs}s∈(0,1] be a scale on Σ, let s ∈ (0, 1], x ∈ K and w ∈
Λs. Then #{v ∈ Λs | Kv ∩ Ks(x, S) 6= ∅} ≤ 6 and #{v ∈ Λs | Kw ∩ Kv 6= ∅} ≤ 4.

Definition 4.8. Let S = {Λs}s∈(0,1] be a scale on Σ. A metric ρ on K is called
adapted to S if and only if there exist β1, β2 ∈ (0,∞) such that

(4.6) Bβ1s(x, ρ) ⊂ Us(x, S) ⊂ Bβ2s(x, ρ), (s, x) ∈ (0, 1] × K.

Lemma 4.9. Let S = {Λs}s∈(0,1] be a scale on Σ with gauge function l and let
ρ be a metric on K adapted to S. Then ρ is compatible with the original topology
of K, and diamρ Kw ≤ β2l(w) for any w ∈ W∗, where β2 ∈ (0,∞) is as in (4.6).

Proof. See [48, Lemma 3.7]. �
Next we define scales on Σ to which the metrics ρH and ρh, h ∈ SH0 , are

adapted (recall (3.3) for SH0).

Definition 4.10. (1) We define SH = {ΛH
s }s∈(0,1] to be the scale on Σ induced

by the gauge function lH : W∗ → (0, 1], lH(w) := ‖Tw‖ ∧ 1 =
√

(3/5)|w|µ(Kw) ∧ 1.
(2) Let h ∈ SH0 . We define Sh = {Λh

s}s∈(0,1] to be the scale on Σ induced by the

gauge function lh : W∗ → (0, 1], lh(w) := ‖h ◦ Fw‖E =
√

(3/5)|w|µ〈h〉(Kw).

As we will state in Theorem 4.15 below, ρH and ρh introduced in Definition 4.1,
where h ∈ SH0 , are indeed metrics on K adapted to SH and Sh respectively and
the infimums in (4.1) and (4.2) are achieved by a specific class of paths in K. The
key to these results is the next theorem, which requires the following definition.

Definition 4.11. (1) For x, y ∈ R2, we set xy := {x + t(y − x) | t ∈ [0, 1]},
which is also regarded as the map [0, 1] 3 t 7→ (1 − t)x + ty ∈ R2.
(2) Let m ∈ N∪{0} and x, y ∈ Vm, x

m∼ y, where m∼ is as in Definition 2.4. We define
w(x, y) to be the unique w ∈ Wm such that x, y ∈ Fw(V0). Note that xy ⊂ Kw(x,y).

Theorem 4.12 ([94], [58, Theorem 5.4]). Set I := [−1/
√

3, 1/
√

3]. Then
Φ(q2q3) = {(ϕ(t), t) | t ∈ I} for some ϕ : I → R, and the following hold:
(1) ϕ is C1 but not C2, ϕ′ is strictly increasing and ϕ′(±1/

√
3) = ±1/

√
3.

(2) q2q3 ⊂ KZ and (ϕ′(t), 1) ∈ Im ZΦ−1(ϕ(t),t) for any t ∈ I.
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(3) KH ⊂ {(s, t) ∈ R × I | s ≤ ϕ(t)}, or equivalently, h1 ≤ ϕ ◦ h2.

Definition 4.13. (1) Let m ∈ N ∪ {0}. A sequence Γ = {xk}N
k=0 ⊂ Vm,

where N ∈ N, is called an m-walk if and only if xk−1
m∼ xk for k ∈ {1, . . . , N} and

w(xk−1, xk) 6= w(xk, xk+1) for k ∈ {1, . . . , N − 1}. For such Γ we define continuous
maps Γ : [0, N ] → K and Γ̂ : [0, `H(Γ)] → K by

(4.7) Γ(t) := (k − t)xk−1 + (t − k + 1)xk, t ∈ [k − 1, k], k ∈ {1, . . . , N},

and Γ̂ := Γ ◦ ϕ−1
Γ , where ϕΓ is the homeomorphism ϕΓ : [0, N ] → [0, `H(Γ)],

ϕΓ(t) := `H(Γ|[0,t]); note that `H(Γ) < ∞ by Theorem 4.12 and Proposition 3.2.
(2) Let γ : [a, b] → K be continuous, a, b ∈ R, a < b. For m ∈ N ∪ {0}, γ is
called a harmonic m-geodesic if and only if γ(t) = Γ̂

(
`H(Γ) t−a

b−a

)
, t ∈ [a, b] for some

m-walk Γ. γ is called a harmonic geodesic if and only if there exist n ∈ N∪{0} and
{am}m≥n, {bm}m≥n ⊂ [a, b] with limm→∞ am = a and limm→∞ bm = b such that
am+1 ≤ am < bm ≤ bm+1 and γ|[am,bm] is a harmonic m-geodesic for each m ≥ n.

Then Theorem 4.12 together with Propositions 3.2 and 3.7 immediately yields
the following proposition.

Proposition 4.14. If γ : [0, 1] → K is a harmonic geodesic, then Φ ◦ γ|(0,1) is
C1 and for any t ∈ (0, 1), γ(t) ∈ KZ , (Φ◦γ)′(t) ∈ Im Zγ(t) and |(Φ◦γ)′(t)| = `H(γ).

Theorem 4.15 ([58, Theorems 5.1 and 5.11], [48, Propositions 3.15 and 3.16]).
Let h ∈ SH0 and let h denote any one of H and h.
(1) ρh is a metric on K satisfying

(4.8) B√
2s/50(x, ρh) ⊂ Us(x, Sh) ⊂ B10s(x, ρh), (s, x) ∈ (0, 1] × K.

(2) For each x, y ∈ K with x 6= y, there exists a harmonic geodesic γh
xy : [0, 1] → K

such that γh
xy(0) = x, γh

xy(1) = y and ρh(x, y) = `h(γh
xy). Moreover, if m ∈ N∪{0}

and x, y ∈ Vm then we can take a harmonic m-geodesic as γh
xy.

Remark 4.16. Let γ : [0, 1] → K be a harmonic geodesic and let h ∈ H0 \R1.
Then we easily see from Theorem 4.12 that the set {t ∈ (0, 1) | (h ◦ γ)′(t) = 0}
is discrete (see [48, (3.15)]), so that ϕh : [0, 1] → [0, `h(γ)], ϕh(t) := `h(γ|[0,t]),
is strictly increasing. Therefore γ admits a parametrization by `h-length given by
γ ◦ ϕ−1

h : `h(γ ◦ ϕ−1
h |[0,t]) = t for any t ∈ [0, `h(γ)].

The proof of Theorem 4.15 is based on the following lemma, which in turn is
an easy consequence of Theorem 4.12.

Lemma 4.17 ([58, Lemma 5.6], [48, Lemma 3.18]). Let h ∈ SH0 and let h
denote any one of H and h. Let w ∈ W∗ and x, y ∈ Fw(V0), x 6= y. Then

`h(xy) = inf{`h(γ) | γ : [0, 1] → Kw, γ is continuous, γ(0) = x, γ(1) = y},(4.9)
√

2
10

lh(w) ≤ `h(xy) ≤ 4
√

6
3

lh(w).(4.10)

The proof of (4.9) for `H utilizes the following theorem from convex geometry as
well, which is quoted in [58, Theorem 5.2] without reference. Recall that a subset Γ
of R2 is called a Jordan curve if and only if it is homeomorphic to {x ∈ R2 | |x| = 1}.
For such Γ, its length `R2(Γ) with respect to the Euclidean norm | · | is naturally
defined, and according to the Jordan curve theorem (see e.g. [77, Section 4]), R2 \Γ
consists of two connected components whose boundaries in R2 are both equal to Γ.
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Theorem 4.18. Let C be a compact convex subset of R2 with intR2 C 6= ∅.
(1) ∂R2C is a Jordan curve and `R2(∂R2C) < ∞.
(2) Let D be a compact subset of R2 such that ∂R2D is a Jordan curve and C ⊂ D.
If C 6= D, or equivalently if ∂R2C 6= ∂R2D, then `R2(∂R2C) < `R2(∂R2D).

Proof. (1) An elementary argument shows that ∂R2C is a Jordan curve (see
e.g. [15, Theorems 6.7 and 11.9]), and it follows from (2) that `R2(∂R2C) < ∞.
(2) Note that for q ∈ intR2 D, ∂R2D regarded as a closed curve in R2 \ {q} is
not homotopic in R2 \ {q} to a constant map, by virtue of the Schönflies theorem
[77, Section 10, Theorem 4] saying that every injective continuous map from a
Jordan curve to R2 is the restriction of a homeomorphism from R2 to R2. On
the basis of this fact, the assertion can be verified by using [15, Theorem 7.9]
to approximate ∂R2C by convex polygons whose vertices belong to ∂R2C and by
applying the arguments in [15, Proof of Theorem 7.11 and Exercise 7.4]. �

In fact, we can also prove the following characterization of shortest paths with
respect to `H by using Theorems 4.12 and 4.18, as follows.

Theorem 4.19. Let γ : [0, 1] → K be continuous and satisfy ρH(γ(0), γ(1)) =
`H(γ) > 0. Then there exist a unique harmonic geodesic γ̂ : [0, 1] → K and a
unique non-decreasing continuous surjection ϕγ : [0, 1] → [0, 1] such that γ = γ̂◦ϕγ .
Moreover, if m ∈ N ∪ {0} and γ(0), γ(1) ∈ Vm, then γ̂ is a harmonic m-geodesic.

Theorem 4.19 has important applications to the invalidity of various geometric
conditions on (K, ρH, µ) related to Ricci curvature lower bound; see Subsection 8.2
below.

We need the following lemma for the proof of Theorem 4.19.

Lemma 4.20. Let w ∈ W∗ and x, y ∈ Fw(V0), x 6= y. Let a, b ∈ R, a < b and
let γ : [a, b] → Kw be a continuous injective map with γ(a) = x and γ(b) = y. If
`H(γ) ≤ `H(xy), then γ([a, b]) = xy.

Proof. Let C,D be the compact subsets of R2 with intR2 C 6= ∅ 6= intR2 D
whose boundaries in R2 are the Jordan curves Φ(x)Φ(y) ∪ Φ(xy) and Φ(x)Φ(y) ∪
Φ ◦ γ([a, b]), respectively. Then C is convex and C ⊂ D by virtue of the rotational
symmetry of KH, Proposition 3.2-(3), Theorem 4.12 and the Jordan curve theorem.
Therefore if `H(γ) ≤ `H(xy), then `R2(∂R2D) ≤ `R2(∂R2C), hence ∂R2D = ∂R2C by
Theorem 4.18-(2), and thus γ([a, b]) = xy. �

Proof of Theorem 4.19. For uniqueness, let γ̂ and ϕγ be as in the assertion,
so that ϕγ(0) = 0, ϕγ(1) = 1 and `H(γ̂) = `H(γ). Let t ∈ [0, 1] and choose s ∈ [0, 1]
so that t = `H(γ|[0,s])/`H(γ). Then `H(γ|[0,t]) = `H(γ̂|[0,ϕγ(t)]) = `H(γ)ϕγ(t) by
Proposition 4.14, hence t = ϕγ(s) and γ̂(t) = γ(s), proving the uniqueness assertion.

For existence, define a non-decreasing continuous surjection ϕγ : [0, 1] → [0, 1]
by ϕγ(t) := `H(γ|[0,t])/`H(γ). Since γ(s) = γ(t) for any s, t ∈ [a, b] with ϕγ(s) =
ϕγ(t), there exists a unique map γ̂ : [0, 1] → K such that γ = γ̂ ◦ ϕγ , and then γ̂ is
continuous and `H(γ̂|[0,t]) = t`H(γ) for any t ∈ [0, 1]. In particular, `H(γ̂|[s,t]) > 0
for any s, t ∈ [0, 1] with s < t, which together with `H(γ̂) = `H(γ) = ρH(γ(0), γ(1)),
γ̂(0) = γ(0) and γ̂(1) = γ(1) shows that γ̂ is injective.

To see that γ̂ is a harmonic geodesic, set n := inf{m ∈ N∪{0} | #γ̂−1(Vm) ≥ 2}
(n < ∞ by γ̂(0) 6= γ̂(1)), and for m ≥ n set am := min γ̂−1(Vm) and bm :=
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max γ̂−1(Vm), so that am+1 ≤ am < bm ≤ bm+1 for any m ≥ n. The injectivity of
γ̂ easily yields limm→∞ am = 0, limm→∞ bm = 1 and #γ̂−1(Vm) < ∞.

Let m ≥ n, N := #γ̂−1(Vm) − 1 and let {tk}N
k=0 be the strictly increasing

enumeration of the elements of γ̂−1(Vm), so that t0 = am and tN = bm. Also
set xk := γ̂(tk) for k ∈ {0, . . . , N} and Γ := {xk}N

k=0 ⊂ Vm. We claim that
Γ is an m-walk and that γ̂(t) = Γ̂

(
`H(Γ) t−am

bm−am

)
for any t ∈ [am, bm]. Indeed, let

k ∈ {1, . . . , N}. It easily follows from γ̂((tk−1, tk))∩Vm = ∅ that xk−1
m∼ xk and that

γ̂([tk−1, tk]) ⊂ Kw(xk−1,xk), and then we also have `H(γ̂|[tk−1,tk]) = ρH(xk−1, xk) by
`H(γ̂) = ρH(γ̂(0), γ̂(1)). If k < N and w(xk−1, xk) = w(xk, xk+1), then Lemma 4.20
implies `H(xk−1xk+1) < `H(γ̂|[tk−1,tk+1]), contradicting `H(γ̂) = ρH(γ̂(0), γ̂(1)).
Thus Γ is an m-walk. Moreover, since `H(γ̂|[tk−1,tk]) = ρH(xk−1, xk) ≤ `H(xk−1xk),
Lemma 4.20 yields γ̂([tk−1, tk]) = xk−1xk, which together with `H(γ̂|[0,t]) = t`H(γ̂),
t ∈ [0, 1], easily implies the above claim. Thus γ̂|[am,bm] is a harmonic m-geodesic for
any m ≥ n and hence γ̂ is a harmonic geodesic. If m ∈ N∪{0} and γ(0), γ(1) ∈ Vm,
then m ≥ n, am = 0 and bm = 1, so that γ̂ is a harmonic m-geodesic. �

Remark 4.21. If h ∈ H0\R1, then the assertions of Theorem 4.19 and Lemma
4.20 are not valid for `h and ρh.

Proof. Noting that minV0 h < maxV0 h by Proposition 2.11-(2), let i, j ∈ S
be such that h(qi) = minV0 h and h(qj) = maxV0 h and let {k} = S \ {i, j}. We
first assume h(qi) + h(qj) 6= 2h(qk). By considering −h and qj instead of h and qi

if necessary, we may assume that h(qi) + h(qj) < 2h(qk). Let U be the connected
component of h−1((−∞, h(qk)) with qi ∈ U . Then Theorem 4.12 and the rotational
symmetry of KH easily imply that h is strictly decreasing on qkqi and on qkFkn(qj)
for some n ∈ N. Therefore Kkn \ {qk} ⊂ U by the strong maximum principle [57,
Theorem 3.2.14] for h ◦ Fkn , and hence ρh(qi, x) = h(x) − h(qi) for any x ∈ Kkn

by [48, (4.13)] (see (5.8) below). A similar argument for −h ◦ Fkn together with
[48, (4.13)] also implies that ρh(qk, x) = h(qk) − h(x) for any x ∈ Kkm for some
m ≥ n. Thus by Theorem 4.15 and Remark 4.16, for any x ∈ Kkm \ {qk} there
exists a continuous injective map γx : [0, 1] → K with γx(0) = qi, γx(1/2) = x
and γx(1) = qk such that `h(γx) = h(qk) − h(qi) = `h(qiqk) = ρh(qi, qk). Now if
x ∈ Kkm \

∪
w∈W∗

Fw(q1q2 ∪ q2q3 ∪ q3q1), then the conclusions of Theorem 4.19 and
Lemma 4.20 are not valid for γx since γ̂((0, 1)) ⊂

∪
w∈W∗

Fw(q1q2∪ q2q3∪ q3q1) and
hence x 6∈ γ̂((0, 1)) for any harmonic geodesic γ̂ : [0, 1] → K.

If h(qi) + h(qj) = 2h(qk), then since h ∈ H{qi,qj} by the axial symmetry of K
and (E ,F), it follows similarly to [48, Proposition 4.9] (see Proposition 5.8 below)
that ρh(qi, x) = h(x) − h(qi) and ρh(qj , x) = h(qj) − h(x) for any x ∈ K. The rest
of the proof goes in exactly the same way as in the previous paragraph. �

At the last of this section, we state the volume doubling property and the weak
Poincaré inequality of (K, µ, E ,F) and (K, µ〈h〉, E ,F) under the metrics ρH and ρh,
respectively. The following lemma is essential for the proofs of those properties.

Lemma 4.22 ([48, Lemma 3.9], cf. [58, Section 3]). Let h ∈ SH0 .
(1) For any (w, i) ∈ W∗ × S,

1
15

µ(Kw) ≤ µ(Kwi) ≤
3
5
µ(Kw),

1
5
‖Tw‖ ≤ ‖Twi‖ ≤ 3

5
‖Tw‖,(4.11)

1
15

µ〈h〉(Kw) ≤ µ〈h〉(Kwi) ≤
3
5
µ〈h〉(Kw),

1
5
lh(w) ≤ lh(wi) ≤ 3

5
lh(w).(4.12)
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(2) If w, v ∈ W∗ satisfies |w| = |v| and Kw ∩ Kv 6= ∅, then

(4.13) µ〈h〉(Kw) ≤ 9µ〈h〉(Kv), lh(w) ≤ 3lh(v) and lH(w) ≤ 3lH(v).

Then we can verify the following proposition on the basis of Lemma 4.22 in
exactly the same ways as [59, Proofs of Theorems 1.3.5 and 1.4.3].

Proposition 4.23 ([48, Proposition 3.10], cf. [58, Theorem 6.2]). (1) There
exists cG ∈ (0,∞) such that for any g, h ∈ SH0 ,

(4.14) µ〈g〉(Kw) ≤ cGµ〈g〉(Kv)

whenever either w, v ∈ ΛH
s or w, v ∈ Λh

s for some s ∈ (0, 1] and Kw ∩ Kv 6= ∅.
(2) Let κ := log5 15 and κ̂ := log5/3 15. Then there exists cv ∈ (0,∞) such that for
any g, h ∈ SH0 , any x ∈ K and any s, t ∈ (0, 1] with s ≤ t,

(4.15) ν(Ut(x, S)) ≤ cv

( t

s

)κ

ν(Us(x, S)), µ〈g〉(Ut(x, S)) ≤ cv

( t

s

)κ̂

µ〈g〉(Us(x, S)),

where (ν, S) denotes any one of (µ, SH) and (µ〈h〉, S
h).

Remark 4.24. The powers κ and κ̂ in (4.15) are best possible. See [48, Remark
3.11] for details.

Now we conclude the volume doubling property of (K, ρH, µ) and (K, ρh, µ〈h〉)
as an immediate consequence of Proposition 4.23-(2) and Theorem 4.15-(1).

Theorem 4.25 ([58, Theorem 6.2], [48, Theorem 3.19]). As in Proposition
4.23-(2) let κ := log5 15 and κ̂ := log5/3 15. Then there exists cV ∈ (0,∞) such that
for any g, h ∈ H0 \ R1, any x ∈ K and any r, s ∈ (0,∞) with r ≤ s,

(4.16) ν(Bs(x, ρ)) ≤ cV

(s

r

)κ

ν(Br(x, ρ)), µ〈g〉(Bs(x, ρ)) ≤ cV

(s

r

)κ̂

µ〈g〉(Br(x, ρ)),

where (ν, ρ) denotes any one of (µ, ρH) and (µ〈h〉, ρh).

Finally we state the weak Poincaré inequality of (K,µ, E ,F) and (K, µ〈h〉, E ,F).

Proposition 4.26 ([48, Proposition 3.20]). Let cP := 34106c4
G with cG as in

Proposition 4.23-(1). Let h ∈ H0 \R1 and let (ν, ρ) denote any one of (µ, ρH) and
(µ〈h〉, ρh). Then for any (r, x) ∈ (0,∞)×K, with uν,ρ

r,x := ν(Br(x, ρ))−1
∫

Br(x,ρ)
udν,

(4.17)
∫

Br(x,ρ)

∣∣u − uν,ρ
r,x

∣∣2dν ≤ cPr2µ〈u〉
(
B250

√
2r(x, ρ)

)
, u ∈ F .

Proposition 4.26 is easily proved by using Lemma 4.7, Theorem 4.15-(1), Lemma
4.22-(1), Proposition 4.23-(1) and the following fact implied by the definition of the
resistance metric RE : for any w ∈ W∗ and any x, y ∈ Kw,

(4.18) |u(x)−u(y)|2 ≤ RE
(
F−1

w (x), F−1
w (y)

)
E(u◦Fw, u◦Fw) ≤ 3

(3
5

)|w|
µ〈u〉(Kw);

note that we easily have diamRE K ≤ 3 by using [57, Lemma 3.3.5].

Notation. In what follows we will use the constants κ = log5 15, κ̂ = log5/3 15,
cG and cV appearing in Proposition 4.23 and Theorem 4.25 without further notice.
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5. Short time asymptotics of the heat kernels

In this section, we review known results on short time asymptotic behavior of
the heat kernels pµ and pµ〈h〉 , h ∈ H0\R1, mainly following [48, Sections 4–6]. The
results concern three different aspects of the asymptotics: off-diagonal Gaussian
behavior, one-dimensional behavior at vertices and non-integer-dimensional µ-a.e.
on-diagonal behavior, which are reviewed separately in each of the following three
subsections.

5.1. Intricsic metrics and off-diagonal Gaussian behavior. Let us start
this subsection with the following standard definition.

Definition 5.1. Let ν be a finite Borel measure on K with full support. Define

(5.1) ρν(x, y) = sup{u(x) − u(y) | u ∈ F , µ〈u〉 ≤ ν}, x, y ∈ K.

Clearly, ρν(x, y) = ρν(y, x) ∈ [0,∞), ρν(x, x) = 0 and ρν(x, y) ≤ ρν(x, z) + ρν(z, y)
for any x, y, z ∈ K; in fact, ρν(x, y)2 ≤ ν(K)RE(x, y). ρν is called the intrinsic
metric of the Dirichlet space (K, ν, E ,F) or simply the ν-intrinsic metric on K.

As suggested by the results of [89, 90, 83, 44], off-diagonal Gaussian behavior
of the Markovian semigroup of a strong local Dirichlet space is described best by
the associated intrinsic metric. On the other hand, it is highly non-trivial to give a
reasonable geometric characterization of the intrinsic metric for concrete examples.
For the canonical Dirichlet space associated with a smooth Riemannian manifold,
it is not difficult to see that the intrinsic metric is equal to its Riemannian distance;
see [79] and references therein for related results on Riemannian manifolds. The
same is in fact true also for (K,µ, E ,F) and (K, µ〈h〉, E ,F), h ∈ H0 \R1, as follows.

Theorem 5.2 ([48, Theorem 4.2]). Let h ∈ H0 \ R1 and let (ν, ρ) denote any
one of (µ, ρH) and (µ〈h〉, ρh). Then ρ = ρν . Moreover, ρ(x, ·) ∈ F and µ〈ρ(x,·)〉 = ν
for any x ∈ K.

Then in view of Theorem 4.25 and Proposition 4.26, the general results of
Sturm [89, 90] and Ramı́rez [83] together with ρ = ρν imply the following Gaussian
bounds and Varadhan’s asymptotic relation.

Corollary 5.3 ([58, Theorem 6.3], [48, Corollary 4.3]). Let h ∈ H0 \R1 and
let (ν, ρ) denote any one of (µ, ρH) and (µ〈h〉, ρh). Let n ∈ N. Then there exist
cL, cU ∈ (0,∞) determined solely by κ, cG, cV and cU(n) ∈ (0,∞) determined solely
by n, κ, cG, cV such that for any (t, x, y) ∈ (0,∞) × K × K,

cL

exp
(
−ρ(x,y)2

cLt

)
ν
(
B√

t(x, ρ)
) ≤ pν(t, x, y) ≤ cU

(
1 + ρ(x,y)2

t

)κ/2 exp
(
−ρ(x,y)2

4t

)√
ν
(
B√

t(x, ρ)
)
ν
(
B√

t(y, ρ)
) ,(5.2)

∣∣∂n
t pν(t, x, y)

∣∣ ≤ cU(n)

(
1 + ρ(x,y)2

t

)κ/2+n exp
(
−ρ(x,y)2

4t

)
tn

√
ν
(
B√

t(x, ρ)
)
ν
(
B√

t(y, ρ)
) .(5.3)

Corollary 5.4 ([48, Corollary 4.4]). Let h ∈ H0 \ R1 and let (ν, ρ) denote
any one of (µ, ρH) and (µ〈h〉, ρh). Then

(5.4) lim
t↓0

4t log pν(t, x, y) = −ρ(x, y)2, x, y ∈ K.
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Moreover, according to a recent result [62, Theorem 7.1] of Koskela and Zhou,
we have the following asymptotic behavior of the “logarithmic derivatives of the
heat kernels” by virtue of ρ(x, ·) ∈ F and µ〈ρ(x,·)〉 = ν, x ∈ K; see [76, 88] for
the corresponding pointwise results for the heat kernels on Riemannian manifolds.
Note that distρ(·, A) ∈ F for any A ⊂ K with A 6= ∅ by Proposition 5.6 below.

Corollary 5.5. Let h ∈ H0 \R1 and let (ν, ρ) denote any one of (µ, ρH) and
(µ〈h〉, ρh). Then for any A ∈ B(K) with ν(A) > 0, µ〈4t log T ν

t 1A〉 converges weakly
to µ〈distρ(·,A)2〉 as t ↓ 0, that is, for any f ∈ C(K),

(5.5) lim
t↓0

∫
K

fdµ〈4t log T ν
t 1A〉 =

∫
K

fdµ〈distρ(·,A)2〉.

The proof of ρ ≤ ρν and that of ρ(x, ·) ∈ F and µ〈ρ(x,·)〉 = µ for x ∈ K
are based on Theorem 3.10 and Theorem 4.15-(2), whereas the converse inequality
ρν ≤ ρ is an immediate consequence of the following proposition.

Proposition 5.6 ([48, Proposition 4.10]). Let h ∈ H0\R1 and let (ν, ρ) be any
one of (µ, ρH) and (µ〈h〉, ρh). Then {u ∈ F | µ〈u〉 ≤ ν} = {u ∈ C(K) | Lipρ u ≤ 1}.

Proposition 5.6 is proved by using Theorem 4.15-(2) and Proposition 5.8 below
to reduce the proof to the case of the heat kernels on one-dimensional intervals. We
need the following lemma for the statement of Proposition 5.8.

Lemma 5.7 (cf. [60, Theorem 10.4]). Let ν be a finite Borel measure on K with
full support, let U be a non-empty open subset of K and set ν|U := ν|B(U) and EU :=
E|FU×FU . Then (EU ,FU ) is a strong local regular Dirichlet form on L2(U, ν|U )
whose associated Markovian semigroup {T ν,U

t }t∈(0,∞) admits a unique continuous
integral kernel pU

ν = pU
ν (t, x, y) : (0,∞) × U × U → [0,∞), and pU

ν is extended to a
continuous function on (0,∞)×K×K by setting pU

ν := 0 on (0,∞)×(K×K\U×U).
pU

ν is called the heat kernel associated with (U, ν|U , EU ,FU ).

Proposition 5.8 ([48, Proposition 4.9]). Let h ∈ H0\R1, i ∈ S, b ∈ (h(qi),∞)
and set a := h(qi). Suppose that the connected component U of h−1((−∞, b)) with
qi ∈ U satisfies U ∩ V0 = {qi}. Let p[a,b) = p[a,b)(t, x, y) : (0,∞) × [a, b] × [a, b] →
[0,∞) be the heat kernel for d2/dx2 on [a, b] with Neumann (reflecting) boundary
condition at a and Dirichlet (absorbing) boundary condition at b. Then

µ〈h〉 ◦ (h|U )−1 = E(h, hi
1)1[a,b]dx (dx is the Lebesgue measure on R),(5.6)

pU
µ〈h〉

(t, qi, x) = E(h, hi
1)

−1p[a,b)(t, a, h(x)), (t, x) ∈ (0,∞) × U,(5.7)

ρh(qi, x) = ρµ〈h〉(qi, x) = h(x) − a, x ∈ U,(5.8)

where U denotes the closure of U in K.

5.2. One-dimensional asymptotics at vertices. As observed from the pic-
ture of the harmonic Sierpiński gasket KH (Figure 2), for x ∈ V∗, sufficiently small
neighborhoods of Φ(x) in KH are geometrically very close to the “tangent line of
KH at Φ(x)”. As reflections of this geometric intuition, the Kusuoka measure µ and
the associated heat kernel pµ exhibit sharp one-dimensional behavior, as follows.

Theorem 5.9 ([48, Theorem 5.3]). The limit limr↓0 µ(Br(x, ρH))/r =: 2ξx ∈
(0,∞) exists for any x ∈ V∗.
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Theorem 5.10 ([48, Theorem 5.8]). Let x ∈ V∗. Choose ζx = (ζ1
x, ζ2

x) ∈ Im Zx

so that |ζx| = 1 and set hx := ζ1
x(h1 − h1(x)1) + ζ2

x(h2 − h2(x)1). Then there exist
tx, rx, cx ∈ (0,∞) such that for any δ ∈ (0, 1] and any (t, y) ∈ (0, tx] × Brx(x, ρH),

(5.9)

∣∣∣∣∣pµ(t, x, y) −
exp

(
−hx(y)2

4t

)
ξx

√
4πt

∣∣∣∣∣ ≤ cx,δ

(
t

κ̂−1
2 + δκ|hx(y)|

2(κ̂−1)
κ+1

)exp
(
− hx(y)2

4(1+δ)t

)
ξx

√
4πt

,

where cx,δ := cx/δ
15
4 κ+ κ̂

2 +2. In particular, limt↓0
√

4πtpµ(t, x, x) = 1/ξx.

Theorem 5.11 ([48, Theorem 5.16]). Let x ∈ V∗ and α ∈ (−1,∞). Then

(5.10) lim
t↓0

1
tα/2

∫
K

ρH(x, y)αpµ(t, x, y)dµ(y) =
∫

R
|y|α e−y2/4

√
4π

dy.

The key to the proofs of Theorems 5.9, 5.10 and 5.11 is again reduction to the
“direction of the tangent line Im Zx = Rζx of KH at Φ(x)”, that is, to the case
of µ〈hx〉, pµ〈hx〉 and ρhx , based on a suitable modification [48, Proposition 5.4] of
Proposition 5.8 for hx on a sufficiently small neighborhood of x.

5.3. On-diagonal asymptotics at almost every point. As we saw in Sub-
sections 5.1 and 5.2, the heat kernel pµ of (K, µ, E ,F) satisfies the Gaussian bounds
and Varadhan’s asymptotic relation of exactly the same forms as those for the heat
kernels on Riemannian manifolds, and pµ(t, x, x) is asymptotically equivalent to a
constant multiple of 1/

√
4πt as t ↓ 0 for each x ∈ V∗. On the other hand, we cannot

expect such a smooth behavior of pµ(t, x, x) for generic x ∈ K. Indeed, we have the
following result. Recall that λ = µ ◦ π. Note also that 2 log25/3 5 = 1.5181 . . . < 2.

Theorem 5.12 ([48, Theorem 6.1 and Proposition 6.6]). Let h ∈ H0 \R1 and
let (ν, ρ) denote any one of (µ, ρH) and (µ〈h〉, ρh). Define

(5.11) η := inf
m∈N

1
2m

∑
w∈Wm

λ(Σw) log ‖Tw‖ and dloc := 2 + η−1 log
5
3
.

Then η = lim
m→∞

1
2m

∑
w∈Wm

λ(Σw) log ‖Tw‖ ∈
[
log

√
3

5 , log 3
5

)
, dloc ∈ (1, 2 log25/3 5]

and

(5.12) lim
r↓0

log ν(Br(x, ρ))
log r

= lim
t↓0

2 log pν(t, x, x)
− log t

= dloc ν-a.e. x ∈ K.

The key step for the proof of Theorem 5.12 is the following proposition, which
can be verified by using Lemma 4.7, Proposition 4.23-(1), (4.8), (4.16) and (4.11).

Proposition 5.13 ([48, Proposition 6.4]). Let x ∈ K and ω ∈ π−1(x). Then
limr↓0 log µ(Br(x, ρH))/ log r exists if and only if limm→∞

1
m log ‖T[ω]m‖ exists, and

if either of these two limits exists then

(5.13)
limr↓0 log µ(Br(x, ρH))

log r
= 2 +

log 5
3

limm→∞
1
m log ‖T[ω]m‖

∈ [1, 2 log25/3 5].

It is immediate from (5.11) that η < log 3
5 . Since η = limm→∞

1
m log ‖T[ω]m‖

for λ-a.e. ω ∈ Σ by the σ-ergodicity of λ (Theorem 3.5) and Kingman’s subadditive
ergodic theorem [23, Theorem 10.7.1], Theorem 5.12 is now easily proved by using
Proposition 5.13 (as well as its counterpart for (µ〈h〉, ρh)) and (5.2).
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6. Ahlfors regularity and singularity of Hausdorff measure

In this and the next sections, we review the author’s recent unpublished results
to be treated in a forthcoming paper [51] which mainly concerns Weyl’s Laplacian
eigenvalue asymptotics for the Dirichlet space (K, µ, E ,F). A crucial fact for Weyl’s
asymptotics is the Ahlfors regularity of (K, ρH) and of (K, ρh) uniform in h ∈ SH0 ,
which we explain in some detail in this section as a preparation for the next section.
We also see that the Hausdorff measures on (K, ρH) and (K, ρh) (of the appropriate
dimension) are singular with respect to the Kusuoka measure µ.

Let us first recall the following standard notations and definitions. See e.g. [24,
Chapters 2 and 3] and references therein for details of Hausdorff measure, Hausdorff
dimension and box-counting dimension; note that the definitions there apply to any
metric space although they are stated only for the Euclidean spaces.

Notation. Let (E, ρ) be a metric space and let A ⊂ E be non-empty.
(1) For α ∈ (0,∞), the α-dimensional Hausdorff measure on E with respect to ρ is
denoted by Hα

ρ and the Hausdorff dimension of A with respect to ρ by dimH(A, ρ).
(2) The lower and upper box-counting dimensions of A with respect to ρ are denoted
by dimB(A, ρ) and dimB(A, ρ), respectively. If they are equal, their common value,
called the box-counting dimension of A with respect to ρ, is denoted by dimB(A, ρ).

Note that 0 ≤ dimH(A, ρ) ≤ dimB(A, ρ) ≤ dimB(A, ρ) ≤ ∞ by [24, (3.17)].

The following theorem was obtained in [48]. Recall (5.11) for the constant dloc.

Theorem 6.1 ([48, Theorem 7.2 and Proposition 7.6]). Set d := dimH(K, ρH).
Then dloc ≤ d ≤ 2 log25/3 5 and Hd

ρH
(K) ∈ (0,∞). Moreover, for any h ∈ SH0 ,

d = dimB(K, ρH) = dimB(K, ρh),(6.1)

3−10s−d ≤ #Λh
s ≤ #ΛH

s ≤ 319s−d, s ∈ (0, 1].(6.2)

The proof of (6.2) heavily relies on the rotational symmetry of K and (E ,F),
whereas (6.1) follows from (6.2) by virtue of Lemma 4.7, (4.8) and [47, Proposition
2.24]. In fact, we can further prove the following theorem which asserts that (K, ρH)
and (K, ρh), h ∈ SH0 , are Ahlfors regular with Hausdorff dimension d.

Theorem 6.2. There exist c6.1, c6.2 ∈ (0,∞) such that for any h ∈ SH0 and
any (r, x) ∈ (0, 1] × K,

(6.3) c6.1r
d ≤ Hd

ρH
(Br(x, ρH)) ≤ c6.2r

d, c6.1r
d ≤ Hd

ρh
(Br(x, ρh)) ≤ c6.2r

d.

In particular, d = dimH(K, ρh) for any h ∈ H0 \ R1.

The following propositions are the key steps for the proof of Theorem 6.2.

Proposition 6.3. Let h ∈ SH0 and let Λ be a partition of Σ. Then

(6.4) 3−29 ≤
∑
w∈Λ

‖h ◦ Fw‖d
E ≤ 329.

Proposition 6.4. There exist c6.3, c6.4 ∈ (0,∞) such that for any h ∈ H0 \R1
and any w ∈ W∗,

c6.3‖Tw‖d ≤ Hd
ρH

(Kw) ≤ c6.4‖Tw‖d,(6.5)

c6.3‖h ◦ Fw‖d
E ≤ Hd

ρh
(Kw) ≤ c6.4‖h ◦ Fw‖d

E .(6.6)
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Theorem 6.2 is now an easy consequence of Proposition 6.4 together with (4.8),
Lemma 4.7 and Lemma 4.22-(1). Proposition 6.3 follows by applying (6.2) to
Λh◦Fw/‖h◦Fw‖E

s/‖h◦Fw‖E
with s := minv∈Λ ‖h ◦Fv‖E for w ∈ Λ and using #Λh◦Fw/‖h◦Fw‖E

s/‖h◦Fw‖E
=

#{v ∈ Λh
s | v ≤ w} to sum up the resulting inequalities, which is possible since the

constants in (6.2) is independent of h. Then we can also verify Proposition 6.4 on
the basis of Proposition 6.3, Lemma 4.9 and the following lemma, by considering
h ◦ Fw/‖h ◦ Fw‖E instead of h to localize the argument to Kw (or alternatively, by
using Lemma 7.6 below).

Lemma 6.5 (cf. [48, Lemma 7.8]). Let S = {Λs}s∈(0,1] be a scale on Σ with
gauge function l and let ρ be a metric on K adapted to S with β1, β2 ∈ (0,∞)
as in (4.6). Let α, δ, ε ∈ (0,∞) and let Hα

ρ,δ be the α-dimensional pre-Hausdorff
measure on K with respect to ρ as defined in [24, (2.1)] and [57, Definition 1.5.1].
If δ ∈ (0, β1) and Hα

ρ,δ(K) < ε, then there exists a partition Λ of Σ such that∑
w∈Λ l(w)α < 4β−α

1 ε and maxw∈Λ l(w) ≤ β−1
1 δ.

For h, h⊥ ∈ SH0 with E(h, h⊥) = 0, a monotone class argument using Propo-
sition 6.4 easily shows that 2−d/2c6.3c

−1
6.4H

d
ρH

≤ Hd
ρh

+ Hd
ρ

h⊥
≤ 21−d/2c−1

6.3c6.4H
d
ρH

.
Furthermore we can also prove the following absolute continuity similar to Theorem
3.6 by using Proposition 6.4 to follow closely [38, Proof of Theorem 5.6].

Theorem 6.6. Let h ∈ H0 \ R1. Then Hd
ρH

and Hd
ρh

are mutually absolutely
continuous.

Recall that dloc ≤ d by Theorem 6.1. In fact, here we have the strict inequality,
which also implies the singularity of Hd

ρH
and Hd

ρh
, h ∈ H0 \R1, with respect to µ.

Theorem 6.7. dloc < d.

Corollary 6.8. Hd
ρH

is singular to µ, and so is Hd
ρh

for any h ∈ H0 \ R1.

Proof. Let h ∈ H0\R1 and let (ν, ρ) denote any one of (µ, ρH) and (µ〈h〉, ρh).
Define Kν,ρ

dloc ∈ B(K) by

(6.7) Kν,ρ
dloc :=

{
x ∈ K

∣∣∣∣ lim
r↓0

log ν(Br(x, ρ))
log r

= dloc

}
.

Then µ
(
K \ Kν,ρ

dloc

)
= 0 by Theorems 5.12 and 3.6, whereas dimH

(
Kν,ρ

dloc , ρ
)

= dloc

by [24, Proposition 4.9], where (4.16) is used to verify [24, Covering lemma 4.8] for
(K, ρ), and hence Hd

ρ

(
Kν,ρ

dloc

)
= 0 by dloc < d. Thus Hd

ρ is singular to µ. �
In the rest of this section, we briefly explain the idea of the proof of Theorem

6.7. A similar idea was also used in [36, Theorem 4.1 and Proof of Theorem 2.1]
to establish singularity of energy measures on self-similar sets. For m ∈ N, we set

(6.8) ηm :=
1

2(2 − d)

∑
w∈Wm

(5
3

)m

‖Tw‖2 log
‖Tw‖2

Hd
ρH

(Kw)
,

so that limm→∞
1
mηm = η by Theorem 5.12 and Proposition 6.4. Then for m,n ∈ N,

η(m+1)n =
( 5
3 )(m+1)n

2(2 − d)

∑
w∈Wmn

Hd
ρH

(Kw)
∑

v∈Wn

Hd
ρH

(Kwv)
Hd

ρH
(Kw)

‖Twv‖2

Hd
ρH

(Kwv)
log

‖Twv‖2

Hd
ρH

(Kwv)

≥
( 5
3 )(m+1)n

2(2 − d)

∑
w∈Wmn

Hd
ρH

(Kw)
( 3
5 )n‖Tw‖2

Hd
ρH

(Kw)
log

( 3
5 )n‖Tw‖2

Hd
ρH

(Kw)
= ηmn +

n log 3
5

2 − d
,(6.9)
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where the inequality is due to the convexity of the function (0,∞) 3 t 7→ t log t and∑
v∈Wn

‖Twv‖2 = (3/5)n‖Tw‖2. (6.9) in particular yields

(6.10)
log 3

5

2 − dloc
= η = lim

m→∞

ηm

m
≥ lim

m→∞

1
m

(
η1 + (m − 1)

log 3
5

2 − d

)
=

log 3
5

2 − d

and hence dloc ≤ d, which was proved in [48, Proof of Theorem 7.2] by a different
method.

Note that c−1
6.4‖Tw‖2−d ≤ ‖Tw‖2/Hd

ρH
(Kw) ≤ c−1

6.3‖Tw‖2−d for any w ∈ W∗
by Proposition 6.4 and that the image Z(KZ) of the map Z|KZ

: KZ → R2×2 is
equal to the set of all orthogonal projections on R2 of rank 1 by Theorem 4.12
and the rotational symmetry of KH. By using these facts and the definition of
Z in Proposition 3.7, we can verify that if we fix a sufficiently large n ∈ N, then(
‖Twv‖2/Hd

ρH
(Kwv)

)
v∈Wn

∈ RWn appearing in the first line of (6.9) is some uniform
distance away from constant vectors for m large enough and for sufficiently many
w ∈ Wmn. Then the second line of (6.9) has to be smaller than the first by a uniform
constant for m large enough, which together with the same limiting procedure as
in (6.10) yields dloc < d. See [51] for the complete proof and further details.

7. Weyl’s Laplacian eigenvalue asymptotics

As already mentioned in the last section, our main concern in this section is
Weyl’s Laplacian eigenvalue asymptotics for the Dirichlet space (K, µ, E ,F), which
is the main result of the author’s forthcoming paper [51].

Let us start with the following basic definition. See Lemma 5.7 above for the
definitions of ν|U , (EU ,FU ), {T ν,U

t }t∈(0,∞) and pU
ν .

Definition 7.1. Let ν be a finite Borel measure on K with full support and let
U be a non-empty open subset of K. Noting that the non-positive self-adjoint oper-
ator ∆ν,U of (U, ν|U , EU ,FU ) (the generator of {T ν,U

t }t∈(0,∞)) has discrete spectrum
and that tr T ν,U

t < ∞ for t ∈ (0,∞) by [21, Theorem 2.1.4], let {λν,U
n }n∈N be the

non-decreasing enumeration of all the eigenvalues of −∆ν,U , where each eigenvalue
is repeated according to its multiplicity. The eigenvalue counting function Nν,U

and the partition function Zν,U of the Dirichlet space (U, ν|U , EU ,FU ) are defined
respectively by, for λ ∈ R and t ∈ (0,∞),

Nν,U (λ) := #{n ∈ N | λν,U
n ≤ λ},(7.1)

Zν,U (t) := tr T ν,U
t =

∑
n∈N

e−λν,U
n t =

∫
R

e−λtdNν,U (λ) =
∫

K

pU
ν (t, x, x)dν(x).(7.2)

In the situation of Definition 7.1, Nν,U (λ) < ∞ for λ ∈ R by limn→∞ λν,U
n = ∞,

Nν,U (λ) = 0 for λ ∈ (−∞, 0) by λν,U
1 ≥ 0, and Zν,U is (0,∞)-valued and continuous.

The main result of [51] is stated as follows.

Theorem 7.2. There exist cN, cZ ∈ (0,∞) such that for any non-empty open
subset U of K with Hd

ρH
(∂KU) = 0,

(7.3) lim
λ→∞

Nµ,U (λ)
λd/2

= cNHd
ρH

(U) and lim
t↓0

td/2Zµ,U (t) = cZHd
ρH

(U).
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Recall that for the eigenvalue counting function NU and the partition function
ZU associated with the Dirichlet Laplacian on a non-empty open subset U of Rk

with volk(U) < ∞, where volk denotes the Lebesgue measure on Rk, it holds that

(7.4) lim
λ→∞

NU (λ)
λk/2

= (2π)−kvk volk(U) and lim
t↓0

tk/2ZU (t) = (4π)−k/2 volk(U)

with vk := volk({x ∈ Rk | |x| < 1}). See e.g. [17, 18, 70, 71, 72, 78] and references
therein for known results concerning Weyl’s asymptotics on Euclidean domains and
Riemannian manifolds. According to Theorem 7.2, the Dirichlet Laplacian ∆µ,U

on a non-empty open subset U of K satisfies Weyl’s eigenvalue asymptotics similar
to (7.4) unless ∂KU is “too rough”, but the limit is given by a constant multiple
of the Hausdorff measure Hd

ρH
, which is, unlike (7.4), singular to the “Riemannian

volume measure” µ by Corollary 6.8.
The rest of this section is devoted to a sketch of the proof of Theorem 7.2.

The main idea of the proof is to follow the method due to Kigami and Lapidus
[61] of obtaining a renewal equation for the eigenvalue counting function (or the
partition function) from the self-similarity of (E ,F) to apply a suitable renewal
theorem. The problem in doing so for the present setting of (K, µ, E ,F) is that the
reference measure µ is not self-similar, but it can be resolved by incorporating the
information on the pair {h1 ◦ Fw, h2 ◦ Fw} of V0-harmonic functions appearing in
µ ◦Fw = (5/3)|w|(µ〈h1◦Fw〉 +µ〈h2◦Fw〉

)
as the second variable, in the following way.

Definition 7.3. Let M =
(

a b
c d

)
∈ R2×2

0 . We define ΦM := MΦ : K → R2,

µM := µ〈ah1+bh2〉 + µ〈ch1+dh2〉,(7.5)

ρM (x, y) := inf{`M (γ) | γ : [0, 1] → K, γ is continuous, γ(0) = x, γ(1) = y}(7.6)

for x, y ∈ K, where `M (γ) := `R2(ΦM ◦γ) for each continuous map γ : [aγ , bγ ] → K,
aγ , bγ ∈ R, aγ ≤ bγ . Note that ΦM (x) = ((ah1 +bh2)(x), (ch1 +dh2)(x)) for x ∈ K.

Namely, we identify M =
(

a b
c d

)
∈ R2×2

0 with the pair {ah1 + bh2, ch1 + dh2}
of V0-harmonic functions and define the counterpart of Φ, µ, ρH for M by replacing
{h1, h2} with {ah1+bh2, ch1+dh2}. Then for M ∈ R2×2

0 with det M 6= 0, Theorems
3.8 and 3.10-(1) are valid with ΦM , µM , ZM := ‖MZ‖−2MZM∗ in place of Φ, µ, Z
(Theorem 3.10-(1) remains valid for det M = 0 if we set ZM :=

(
1 0
0 0

)
for MZ = 0);

note that ZM (x) is the orthogonal projection onto M(ImZx) for each x ∈ K.
We also define the corresponding scale on Σ as follows. Note that ‖M‖2 =

‖ah1 + bh2‖2
E + ‖ch1 + dh2‖2

E for M =
(

a b
c d

)
∈ R2×2

0 .

Definition 7.4. (1) We set S2×2 := {M ∈ R2×2 | ‖M‖ = 1}.
(2) Let M ∈ S2×2. We define SM = {ΛM

s }s∈(0,1] to be the scale on Σ induced by
the gauge function lM : W∗ → (0, 1], lM (w) := ‖MTw‖ =

√
(3/5)|w|µM (Kw).

Then for M ∈ S2×2, by exactly the same proofs we still have Theorem 4.15
and Lemma 4.17 with M in place of h, and Lemma 4.22 and Proposition 4.23 with
µM , lM , SM = {ΛM

s }s∈(0,1] in place of µ〈h〉, lh, Sh = {Λh
s}s∈(0,1] and cG, cv the same.

Consequently Theorem 4.25, Proposition 4.26, Theorem 5.2, Corollaries 5.3, 5.4, 5.5
and Proposition 5.6 hold for (ν, ρ) = (µM , ρM ), M ∈ R2×2

0 , with cV, cP, cL, cU, cU(n)
unchanged. Theorem 4.19 and Lemma 4.20 with ρM , `M in place of ρH, `H are also
valid for any M ∈ R2×2

0 with det M 6= 0 by exactly the same proofs.
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Remark 7.5. Here we do not exclude the case of det M = 0 where µM , ρM , `M

are equal to µ〈h〉, ρh, `h for some h ∈ H0 \ R1 with ‖h‖E = ‖M‖ and lM , SM are
equal to lh, Sh when M ∈ S2×2. This consideration is absolutely necessary for the
proof of Theorem 7.2, whose reason will be described at the very end of this section.

Noting that #∂KKw < ∞ for w ∈ W∗ by ∂KKw ⊂ Fw(V0), we can easily verify
the following lemma from Proposition 3.2 and the definitions of ρM and Hd

ρM
.

Lemma 7.6. Hd
ρM

◦ Fw = Hd
ρMTw

for any M ∈ R2×2
0 and any w ∈ W∗.

The following proposition is a crucial step for the proof of Theorem 7.2.

Proposition 7.7. (1) There exist c7.1, c7.2 ∈ (0,∞) such that

(7.7) c7.1‖M‖d ≤ Hd
ρM

(K) ≤ c7.2‖M‖d, M ∈ R2×2
0 .

(2) Define T : R2×2
0 → (0,∞) by T(M) := Hd

ρM
(K)1/d. Then T is continuous, and

for any M ∈ R2×2
0 , any U ∈ O(2) and any a ∈ R \ {0},

(7.8) T(M)d =
∑
i∈S

T(MTi)d, T(UM) = T(M) and T(aM) = |a|T(M).

Remark 7.8. (1) Let M ∈ R2×2
0 , det M 6= 0 and cM := infT∈R2×2

0
‖MT‖/‖T‖,

so that cM > 0. Then a monotone class argument using (6.5), Lemma 7.6 and (7.7)
easily shows that c−1

6.4c7.1c
d
MHd

ρH
≤ Hd

ρM
≤ c−1

6.3c7.2‖M‖dHd
ρH

. In particular, Hd
ρM

is singular to µ by Corollary 6.8.
(2) In fact, for each r, s ∈ (0,∞) with r ≤ s, T is d

d+1 -Hölder continuous on
{M ∈ R2×2

0 | r ≤ ‖M‖ ≤ s} with respect to the norm metric.
(3) The properties stated in Proposition 7.7-(2) characterizes T uniquely up to
constant multiples: if T0 : R2×2

0 → [0,∞) is continuous and satisfies (7.8) for any
M ∈ R2×2

0 , any U ∈ O(2) and any a ∈ R\{0}, then T0 = c0T for some c0 ∈ [0,∞).

Proposition 7.7-(1) follows from Proposition 6.3, Lemma 6.5 and (4.8) with M
in place of h, and (7.8) is immediate from Lemma 7.6 and the definition of T. On
the other hand, the proof of the continuity of T at M ∈ R2×2

0 satisfying det M = 0
is quite involved and relies heavily on Theorem 4.15-(2).

By virtue of Proposition 7.7, now we can associate to the function (t,M) 7→
ZµM ,K\V0(t) a certain renewal equation to which Kesten’s renewal theorem [55,
Theorem 2] for functionals of Markov chains is applicable, as follows. Define

(7.9) ST := {M ∈ R2×2
0 | T(M) = 1} and MT := T(M)−1M ∈ ST, M ∈ R2×2

0 ,

so that ST is compact by Proposition 7.7, and further define N : ST ×R → N∪ {0}
and Z : ST × (0,∞) → (0,∞) by

(7.10) N(M, λ) := NµM ,K\V0(λ) and Z(M, t) := ZµM ,K\V0(t).

Let M ∈ ST. Then µM ≤ c
−d/2
7.1 µ by (7.7) and hence λ

µM ,K\V0
1 ≥ c

2/d
7.1 λ

µ,K\V0
1 > 0.

Since NµM ,Ki\Fi(V0)(λ) = NµMTi
,K\V0(λ) = N

(
(MTi)T, T(MTi)2λ

)
for λ ∈ R and

i ∈ S by (2.4) and µM ◦ Fi = (5/3)µMTi , [57, Corollary 4.1.8] yields

0 ≤ N(M, λ) −
∑
i∈S

N
(
(MTi)T, T(MTi)2λ

)
= NµM ,K\V0(λ) − NµM ,K\V1(λ) ≤ 3
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for λ ∈ R, and hence for any t ∈ (0,∞),

(7.11) 0 ≤ Z(M, t) −
∑
i∈S

Z
(
(MTi)T, T(MTi)−2t

)
≤ 3.

Now we define f, g : ST × R → R by f(M, s) := e−dsZ(M, e−2s) and

(7.12) g(M, s) := e−ds

(
Z(M, e−2s) −

∑
i∈S

Z
(
(MTi)T, T(MTi)−2e−2s

))
,

so that for any (M, s) ∈ ST × R, 0 ≤ g(M, s) ≤ 3e−ds and

(7.13) f(M, s) = g(M, s) +
∑
i∈S

T(MTi)df
(
(MTi)T, s + log T(MTi)

)
.

Since
∑

i∈S T(MTi)d = T(M)d = 1 by (7.8), we observe that the sum in (7.13)
involves a conservative Markovian kernel (see Definition 8.2 below) P on (ST,B(ST))
given by

(7.14) P(M, ·) :=
∑
i∈S

T(MTi)dδ(MTi)T , M ∈ ST,

where δM (A) := 1A(M), M ∈ ST, A ⊂ ST. Then by considering a Markov chain
X = (Ω, M, {Xn}n∈N∪{0}, {PM}M∈ST

) on ST such that PM ◦ X−1
1 = P(M, ·) for

M ∈ ST and another sequence {un}n∈N of real random variables on (Ω,M) such
that un = − log T(XnTi) on {Xn+1 = (XnTi)T}, from (7.13) we obtain

(7.15) f(M, s) = EM

[
n−1∑
k=0

g(Xk, s − Vk)

]
+ EM [f(Xn, s − Vn)]

for any (M, s) ∈ ST × R and any n ∈ N, where Vn :=
∑n−1

k=0 uk. It is not difficult
to see that 0 ≤ f(Xn, s − Vn) ≤ c7.3e

ds(3/5)dn for n large enough (depending only
on s) for some c7.3 ∈ (0,∞), and hence letting n → ∞ in (7.15) results in

(7.16) f(M, s) = EM

[ ∞∑
n=0

g(Xn, s − Vn)

]
, (M, s) ∈ ST × R.

Kesten’s renewal theorem [55, Theorem 2] asserts the convergence as s → ∞ of a
function of the form (7.16) to a finite limit which is independent of M . Therefore
once the assumptions of [55, Theorem 2] are verified, we can conclude (7.3) for
U = Kw \Fw(V0), w ∈ W∗, where the strict positivity of the limit is guaranteed by
an a priori bound [48, Theorem 7.2] for Zµ,K , and then the extension to general
U with Hd

ρH
(∂KU) = 0 is straightforward. The assumptions of [55, Theorem 2]

consist of conditions [55, I.1–I.4] on the random variables {(Xn, Vn)}n∈N∪{0}, the
direct Riemann integrability [55, Definition 1] of the function g : ST × R → R and
the continuity of g. The direct Riemann integrability of g follows from the estimates
λ

µM ,K\V0
1 ≥ c

2/d
7.1 λ

µ,K\V0
1 > 0 and 0 ≤ g(M, s) ≤ 3e−ds for (M, s) ∈ ST × R, and for

the sake of the continuity of g we need to consider the partition functions ZµM ,K\V0

and not the eigenvalue counting functions NµM ,K\V0 .
To verify part of the conditions [55, I.1 and I.2], we need the existence and the

uniqueness of an invariant probability measure for P. The existence follows by the
classical theorem of Krylov and Bogolioubov [63] (see [32, Theorem 1.10]) since ST

is compact and P is a Feller Markovian kernel, i.e. Pu ∈ C(ST) for any u ∈ C(ST),
by the continuity of T. The uniqueness is implied by a recent powerful result [99,
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Theorem 6.4] of Worm and Hille (see also [98, Theorem 7.4.6]). (To be precise, the
uniqueness is assured only after taking the quotient ŠT := O(2)\ST of ST by the
canonical left action O(2) × ST 3 (U,M) 7→ UM ∈ ST of O(2) on ST. Accordingly
ST in the above argument has to be replaced by ŠT.) Note that the state space ST

of the Markov chain X would not be compact if S0
T := {M ∈ ST | det M = 0} were

removed. Moreover, since S0
T is closed in ST and P-invariant (i.e. P(M, S0

T) = 1 for
any M ∈ S0

T), the invariant measure for P has to be supported on S0
T (to be precise,

P needs to be regarded as a Markovian kernel on (ŠT,B(ŠT))). For these reasons
we cannot exclude S0

T from the state space of the Markov chain X.

8. Connections to general theories on metric measure spaces

In this section, we briefly mention some connections to general theories of
analysis and geometry on metric measure spaces. In Subsection 8.1, we state some
recent results of Koskela and Zhou [62, Section 4] on connections to the theory
of differential calculus on metric measure spaces initiated by Cheeger [19] and
developed further by many people, e.g. Shanmugalingam [86] and Keith [52, 53,
54]. Subsection 8.2 concerns the theory of Ricci curvature lower bound for metric
measure spaces established by Lott and Villani [75, 74] and Sturm [91, 92] and
partially also by Ohta [80]. In fact, very recently there have been attempts to
unify methods and ideas developed in those fields to establish differential calculus
on an even wider range of metric measure spaces, e.g. Ambrosio, Gigli and Savaré
[2, 3, 4], Gigli [29] and Koskela and Zhou [62]. There are also a huge number of
other related results and it is beyond the author’s ability to review even just the
central achievements of these fields. For further details, we refer the reader to the
above-mentioned works, monographs [34, 1, 96, 97] and references therein.

We need the following definitions for the discussions below.

Definition 8.1. Let (E, ρ) be a metric space and let γ : [a, b] → E, a, b ∈ R,
a ≤ b, be continuous.
(1) The ρ-length `ρ(γ) of γ is defined by
(8.1)
`ρ(γ) := sup{

∑n
k=1 ρ(γ(tk−1), γ(tk)) | n ∈ N, {tk}n

k=0 ⊂ [a, b] is non-decreasing}.

(2) Suppose `ρ(γ) < ∞ and define ϕγ : [a, b] → [0, `ρ(γ)] by ϕγ(t) := `ρ(γ|[a,t]).
Since γ(s) = γ(t) for any s, t ∈ [a, b] with ϕγ(s) = ϕγ(t), there exists a unique
map γρ : [0, `ρ(γ)] → E such that γ = γρ ◦ ϕγ , and then γρ is continuous and
`ρ(γρ|[0,t]) = t for any t ∈ [0, `ρ(γ)]. γρ is called the ρ-length parametrization of γ.
(3) Suppose a < b. Then γ is called a minimal ρ-geodesic if and only if `ρ(γ|[a,t]) =
t−a
b−aρ(γ(a), γ(b)) for any t ∈ [a, b], or equivalently ρ(γ(s), γ(t)) = |t−s|

b−a ρ(γ(a), γ(b))
for any s, t ∈ [a, b]. Let G(E, ρ) denote the set of minimal ρ-geodesics with domain
[0, 1], which is equipped with the metric ρG(E,ρ)(γ1, γ2) := supt∈[0,1] ρ(γ1(t), γ2(t)).

Also recall the following standard definition.

Definition 8.2. Let (E,B) be a measurable space. Then P : E ×B → [0, 1] is
called a Markovian kernel on (E,B) if and only if P(x, ·) : B → [0, 1] is a measure
on (E,B) for any x ∈ E and P(·, A) : E → [0, 1] is B-measurable for any A ∈ B.
Such P is called conservative if and only if P(x,E) = 1 for any x ∈ E.
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8.1. Identification of Dirichlet form as Cheeger energy. In [19] Cheeger
established a theory of differential calculus on a general metric measure space which
admits the volume doubling property and the weak (1, p)-Poincaré inequality (in
terms of upper gradients) for some p ∈ [1,∞). Since (K, ρH, µ) and (K, ρh, µ〈h〉),
h ∈ H0 \ R1, satisfy the volume doubling property (Theorem 4.25) and the weak
Poincaré inequality in terms of (the densities of) the E-energy measures (Proposition
4.26), it is natural to expect that Cheeger’s results in [19] are applicable to them.
Koskela and Zhou [62, Section 4] have recently proved that this is indeed the case,
that Cheeger’s Rademacher theorem [19, Theorem 4.38] takes an explicit form
using Φ and h as the coordinate functions, and that the associated Cheeger 2-
energies coincide with the Dirichlet form (E ,F). To be precise, they have proved
the following results. Recall Theorem 3.10 for the derivatives ∇̃u and du

dh of u ∈ F .

Theorem 8.3 ([62, Theorems 4.2 and 4.3]). Let h ∈ H0 \R1 and u ∈ F . Then
for µ-a.e. x ∈ K, or equivalently for µ〈h〉-a.e. x ∈ K (recall Theorem 3.6),

u(y) − u(x) = 〈∇̃u(x), Φ(y) − Φ(x)〉 + o(ρH(x, y)) as y → x,(8.2)

u(y) − u(x) =
du

dh
(x)(h(y) − h(x)) + o(ρh(x, y)) as y → x.(8.3)

Definition 8.4. Let (E, ρ) be a metric space. For f : E → R, we define

(8.4) Lipρ f(x) := lim
r↓0

sup
y∈Br(x,ρ)\{x}

|f(y) − f(x)|
ρ(x, y)

, x ∈ E.

Note that Lipρ f : E → [0,∞] is Borel measurable if f ∈ C(E).

Theorem 8.5 ([62, Theorems 4.1 and 4.3]). Let h ∈ H0 \R1 and u ∈ F . Then

(8.5) |∇̃u| = LipρH
u µ-a.e. and

∣∣∣du

dh

∣∣∣ = Lipρh
u µ〈h〉-a.e.

As a consequence, we obtain the identification of (E ,F) as the Cheeger 2-energy
and (1, 2)-Sobolev space, for which let us recall Cheeger’s definitions in [19].

Definition 8.6 ([35]). Let (E, ρ) be a metric space and let f : E → R. A
Borel measurable function g : X → [0,∞] is called an upper ρ-gradient for f if and
only if for any continuous map γ : [0, 1] → E with `ρ(γ) < ∞,

(8.6) |f(γ(1)) − f(γ(0))| ≤
∫ `ρ(γ)

0

g(γρ(s))ds.

Definition 8.7 ([19, Section 2]). Let (E, ρ) be a metric space and let m be
a Borel measure on E such that m(Br(x, ρ)) ∈ (0,∞) for any (r, x) ∈ (0,∞) × E.
For p ∈ [1,∞), we define the Cheeger p-energy Chρ,m

p : Lp(E, m) → [0,∞] by
(8.7)

Chρ,m
p (f) := inf

lim inf
n→∞

∫
E

gp
ndm

∣∣∣∣∣∣
gn is an upper ρ-gradient for an m-version
of fn for each n ∈ N for some {fn}n∈N ⊂
Lp(E, m) with limn→∞

∫
E
|fn−f |pdm = 0


and the Cheeger (1, p)-Sobolev space H1,p(E, ρ, m) over (E, ρ, m) by

(8.8) H1,p(E, ρ, m) := {f ∈ Lp(E, m) | Chρ,m
p (f) < ∞}.
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Remark 8.8. (1) Chρ,m
p was originally termed the “upper gradient p-energy”

in [19]. Here we have followed the notation and terminology adopted in [2, 3, 29].
(2) Shanmugalingam [86, Definition 2.5] proposed another way of defining a (1, p)-
Sobolev space under the same framework, independently of Cheeger’s work [19,
Section 2]. Her Sobolev space is denoted as N1,p(E, ρ,m) and called the Newtonian
space of index p ∈ [1,∞), and she proved in [86, Theorem 4.10] that for p ∈ (1,∞),
H1,p(E, ρ,m) = N1,p(E, ρ, m) and they are equipped with exactly the same norm.

Corollary 8.9. Let h ∈ H0 \ R1. Then E(u, u) = ChρH,µ
2 (u) = Chρh,µ〈h〉

2 (u)
for any u ∈ F and F = H1,2(K, ρH, µ) = H1,2(K, ρh, µ〈h〉).

Proof. On the basis of Theorem 4.25 and Proposition 4.26, the first assertion
follows from (8.5), [52, Theorem 2], [19, Theorem 6.1] and [62, Theorem 2.2-(i)],
whereas [62, Theorem 2.2-(i)] and [86, Theorem 4.10] yield the latter. �

Remark 8.10. Let M ∈ R2×2
0 and let ΦM , µM , ρM be as in Definition 7.3. Then

Theorems 8.3, 8.5 and Corollary 8.9 with ΦM , µM , ρM in place of Φ, µ, ρH are still
valid with exactly the same proofs as those in [62, Section 4], where ∇̃u is given
by the version of Theorem 3.10-(1) for ΦM , µM with Z and ‖T[ω]m‖ replaced by
ZM := ‖MZ‖−2MZM∗ (ZM :=

(
1 0
0 0

)
when MZ = 0) and ‖MT[ω]m‖, respectively.

8.2. Invalidity of Ricci curvature lower bound. In the last decade, Lott
and Villani [75, 74] and Sturm [91, 92] formulated Ricci curvature lower bound
for general metric measure spaces and showed that for a complete Riemannian
manifold equipped with Riemannian distance and volume, their formulations are
equivalent to the usual lower bound of its Ricci curvature tensor. Around the same
period, Ohta [80] and Sturm [92] proposed another formulation of Ricci curvature
lower bound which is in principle weaker but easier to handle. Their main idea
was to make use of notions from optimal transport theory, and they also derived
various analytic and geometric consequences of their formulations.

The purpose of this subsection is to show that (K, ρH, µ) does not satisfy any
of those conditions for Ricci curvature lower bound. We need to introduce several
notions from optimal transport theory to state the Ricci bound conditions precisely.

Throughout this subsection, we fix a complete separable metric space (E, ρ) and
a Borel measure m on E such that m(E) > 0 and E =

∪
U⊂E open in E, m(U)<∞ U .

Definition 8.11 (Wasserstein space). Let P(E) denote the set of all Borel
probability measures on E. Let p ∈ [1,∞) and define

Pp(E, ρ) :=
{
ν ∈ P(E)

∣∣ ∫
E

ρ(x, y)pdν(y) < ∞ for some (any) x ∈ E
}
,(8.9)

W ρ
p (ν1, ν2)p := inf

{∫
E×E

ρpd$
∣∣ $ ∈ P(E × E), $ ◦ pr−1

j = νj , j = 1, 2
}

(8.10)

for ν1, ν2 ∈ P(E), where prj : E×E → E is given by prj(x1, x2) := xj . Then W ρ
p is

indeed a metric on Pp(E, ρ) by [96, Theorem 7.3-(i)] and called the p-Wasserstein
distance over (E, ρ). (Pp(E, ρ),W ρ

p ) is called the p-Wasserstein space over (E, ρ),
which is a complete separable metric space by [97, Theorem 6.18].

Definition 8.12 (Relative entropy). For ν ∈ P(E), we write ν � m if and
only if ν is absolutely continuous with respect to m. We define the relative entropy
Entm : P2(E, ρ) → [−∞,∞] with respect to m by

(8.11) Entm(ν) :=

{∫
E

dν
dm log dν

dmdm if ν � m and
∫

E

(
dν
dm log dν

dm

)+
dm < ∞,

∞ otherwise
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for ν ∈ P2(E, ρ), and we set P∗
2 (E, ρ,m) := {v ∈ P2(E, ρ) | Entm(ν) < ∞}.

Definition 8.13 (Curvature-dimension condition, [91, Definition 4.5-(i)]). Let
k ∈ R. We say that (E, ρ, m) satisfies the curvature-dimension condition CD(k,∞)
or (E, ρ, m) has curvature ≥ k if and only if for any ν0, ν1 ∈ P∗

2 (E, ρ, m) there exists
a minimal W ρ

2 -geodesic α : [0, 1] → P2(E, ρ) such that α(0) = ν0, α(1) = ν1 and

(8.12) Entm(α(t)) ≤ (1− t) Entm(α(0))+ t Entm(α(1))− k

2
t(1− t)W ρ

2 (α(0), α(1))2

for any t ∈ [0, 1]. Note that α(t) ∈ P∗
2 (E, ρ,m) for any t ∈ [0, 1] for such α.

The curvature-dimension condition CD(k,∞) is a generalization of the notion
of Ricci curvature lower bound adapted to the setting of a general metric measure
space. Indeed, the following equivalence holds for complete Riemannian manifolds.

Theorem 8.14 ([85, Theorem 1.1], [91, Theorem 4.9]). Let (M, g) be a com-
plete Riemannian manifold with Riemannian geodesic distance ρg and Riemannian
volume measure mg. Let k ∈ R. Then (M, ρg, mg) satisfies CD(k,∞) if and only if
Ricg ≥ kg, i.e. Ricg(v, v) ≥ kg(v, v) for any x ∈ M and any v ∈ TxM , where TxM
denotes the tangent space of M at x and Ricg the Ricci curvature tensor of (M, g).

Definition 8.15. For A,B ⊂ E and t ∈ [0, 1], we define

(8.13) [A,B]ρt :=
{

z ∈ E

∣∣∣∣ ρ(x, z) = tρ(x, y) and ρ(z, y) = (1−t)ρ(x, y)
for some (x, y) ∈ A × B

}
.

Note that [A, B]ρt ∈
∩

ν∈P(E) B(E)
ν

if A,B ∈ B(E) by [22, III.13, III.17 and III.33],

where B(E)
ν

denotes the completion of B(E) by ν. We also set [x, y]ρt := [{x}, {y}]ρt
for x, y ∈ E and t ∈ [0, 1], so that [x, y]ρt is a closed subset of E.

Let A,B ∈ B(E) be such that m(A),m(B) ∈ (0,∞) and set ν0 := m(A)−11Am
and ν1 := m(B)−11Bm. By [91, Lemma 2.11-(ii)], if ν0, ν1 ∈ P2(E, ρ) and α :
[0, 1] → P2(E, ρ) is a minimal W ρ

2 -geodesic with α(0) = ν0 and α(1) = ν1, then
α(t)([A,B]ρt ) = 1 for any t ∈ [0, 1]. Thus an application of Jensen’s inequality to the
left-hand side of (8.12), together with the lower semicontinuity of W ρ

2 under weak
convergence ([97, Remark 6.12]), yields the following generalized Brunn-Minkowski
inequality, which was new even for complete Riemannian manifolds.

Proposition 8.16 (Brunn-Minkowski inequality, cf. [92, Proposition 2.1]). Let
k ∈ R and suppose that (E, ρ, m) satisfies CD(k,∞). Then for any A,B ∈ B(E)
with m(A), m(B) ∈ (0,∞) and any t ∈ [0, 1],
(8.14)

log m([A,B]ρt ) ≥ (1 − t) log m(A) + t log m(B) +
k

2
t(1 − t)W ρ

2

(
1A

m(A)
m,

1B

m(B)
m

)2

.

Remark 8.17. (1) Some time after [91], Sturm introduced in [92, Defini-
tion 1.3] a variant of the curvature-dimension condition for (E, ρ,m) denoted as
CD(k, N), where k ∈ R and N ∈ [1,∞). Roughly speaking, (E, ρ, m) satisfying
CD(k, N) has Ricci curvature bounded from below by k and dimension at most
N . Indeed, according to [92, Theorem 1.7], for (M, g), ρg,mg as in Theorem 8.14,
(M, ρg,mg) satisfies CD(k, N) if and only if Ricg ≥ kg and dimM ≤ N . As natu-
rally expected from its meaning, if (E, ρ, m) satisfies CD(k, N) then it also satisfies
CD(k′, N ′) for any k′ ∈ (−∞, k] and any N ′ ∈ [N,∞) by [92, Proposition 1.6-(i)].
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Moreover by [92, Proposition 1.6-(ii)], if k ∈ R, (E, ρ, m) satisfies CD(k, N) for
some N ∈ [1,∞) and m(E) < ∞, then (E, ρ, m) also satisfies CD(k,∞).
(2) Independently of Sturm’s work [91, 92], Lott and Villani [74, Definition 4.7]
(see also [75, Definitions 5.12 and 5.13]) also defined the notion of (E, ρ, m) having
N -Ricci curvature bounded below by k for k ∈ R and N ∈ [1,∞], which is essentially
the same as the curvature-dimension condition CD(k, N). As noted in [74, Remark
4.11], this notion gets weaker as K decreases and N increases. (In the main texts of
[75, 74], the compactness of the metric space is assumed for the sake of simplicity,
but many results there can be extended to the non-compact case; see [75, Appendix
E] and [97, Chapters 29 and 30].) As remarked in [74, discussions before and after
Lemma 4.14], for k ∈ R, N ∈ [1,∞] and (E, ρ, m) with E compact and m(E) < ∞,
the condition of N -Ricci curvature bounded below by k implies CD(k, N).
(3) An important feature of the notions of CD(k, N) and of N -Ricci curvature
bounded below by k is that they are preserved under measured Gromov-Hausdorff
limits; see [91, Subsection 4.5], [92, Section 3], [75, Subsections 4.2, 5.3 and E.5]
and [97, Chapter 29] for details. They also give rise to a lot of fundamental analytic
and geometric consequences; see e.g. [92, Section 2], [75, Section 6], [74, Section
5] and [97, Chapter 30].

There is yet another formulation of Ricci curvature lower bound for (E, ρ, m)
due to Ohta [80] and Sturm [92], which is given as follows.

Definition 8.18 (Measure contraction property, [92, Section 5], cf. [80]). Let
k ∈ R and N ∈ [1,∞). (E, ρ, m) is said to satisfy the measure contraction property
MCP(k, N) if and only if for each t ∈ (0, 1), there exists for m-a.e. x ∈ E a Markovian
kernel Pt,x on (E,B(E)) such that Pt,x(y, [x, y]ρt ) = 1 for m-a.e. y ∈ E and

(8.15)
∫

E

ς
(t)
k,N (ρ(x, y))Pt,x(y, ·)dm(y) ≤ m,

where ς
(t)
k,N : [0,∞) → (0,∞] is defined by

(8.16) ς
(t)
k,N (θ) :=



∞ if kθ2 ≥ (N − 1)π2,

t

(
sin

(
tθ

√
k/(N − 1)

)
sin

(
θ
√

k/(N − 1)
) )N−1

if 0 < kθ2 < (N − 1)π2,

tN if kθ2 = 0,

t

(
sinh

(
tθ

√
−k/(N − 1)

)
sinh

(
θ
√

−k/(N − 1)
) )N−1

if kθ2 < 0

for N > 1 and ς
(t)
k,1(θ) := ∞1(0,∞)(kθ2) + t1(−∞,0](kθ2).

Remark 8.19. (1) Let t ∈ (0, 1), k, k′ ∈ R, k ≥ k′ and N,N ′ ∈ [1,∞), N ≤ N ′.
Then it is easy to see that ς

(t)
k,N ≥ ς

(t)
k′,N ′ , so that MCP(k, N) implies MCP(k′, N ′).

(2) Sturm’s original version [92, Definition 5.1] of MCP(k, N) is slightly stronger
than as in Definition 8.18, requiring additionally the Borel measurability of Pt,x(y, ·)
in (x, y) ∈ E × E and

∫
E

ς
(1−t)
k,N (ρ(x, y))Pt,x(y, ·)dm(x) ≤ m for m-a.e. y ∈ E.

(3) MCP(k, N) as in Definition 8.18 is implied by Ohta’s definition [80, Definition
2.1] of MCP(k,N) under his standing assumptions in [80] that m(Br(x, ρ)) ∈ (0,∞)
for any (r, x) ∈ (0,∞) × E and that (E, ρ) is a length space, i.e. for any x, y ∈ E,
ρ(x, y) = inf{`ρ(γ) | γ : [0, 1] → E, γ is continuous, γ(0) = x, γ(1) = y}. Indeed,



ANALYSIS AND GEOMETRY OF MEASURABLE RIEMANNIAN STRUCTURE ON S.G. 31

this observation is easily verified by using [23, Theorems 10.2.1 and 10.2.2] (and
m

(
E \B

π
√

(N−1)/k
(x, ρ)

)
= 0 for any x ∈ E when k(N −1) > 0, which follows from

[80, Theorem 4.3 and Lemma 4.4-(i)]).

In principle, MCP(k,N) is weaker than CD(k, N) but still means Ricci curvature
lower bound by k and dimension upper bound by N . Indeed, by [80, Corollary 2.7]
or [92, Remark 5.3], if (E, ρ, m) satisfies MCP(k,N) then dimH(suppE [m], ρ) ≤ N ,
where suppE [m] := {x ∈ E | m(U) > 0 for any open subset U of E with x ∈ U}.
Furthermore CD(k, N) implies MCP(k, N) under mild conditions on (E, ρ, m), and
for a complete Riemannian manifold (M, g), MCP(k, N) corresponds to Ricg ≥ kg
and dim M ≤ N in a weaker sense than CD(k, N) does, as follows.

Theorem 8.20 ([92, Lemma 4.1 and Theorem 5.4]). Let k ∈ R, N ∈ [1,∞)
and suppose that (E, ρ,m) satisfies CD(k, N).
(1) If (E, ρ) is non-branching, i.e. x1 = x2 for any z, x0, x1, x2 ∈ E with 2ρ(z, xi) =
ρ(x0, x1) = ρ(x0, x2), i ∈ {0, 1, 2}, then there exists a Borel measurable map γ :
E × E → G(E, ρ) such that for m × m-a.e. (x, y) ∈ E × E, γ(x, y) is the unique
minimal ρ-geodesic with γ(x, y)(0) = x and γ(x, y)(1) = y.
(2) If a map γ : E×E → G(E, ρ) as in (1) exists, then (E, ρ,m) satisfies MCP(k,N).

Theorem 8.21 ([80, Theorem 3.2 and Corollary 3.3], [92, Corollary 5.5]). Let
(M, g) be a complete Riemannian manifold with Riemannian geodesic distance ρg

and Riemannian volume measure mg. (Note that (M, ρg) is non-branching.) Let
k ∈ R. Then (M, ρg, mg) satisfies MCP(k, dim M) if and only if Ricg ≥ kg.

In fact, Rajala [82] has recently proved the implication CD(k, N) ⇒ MCP(k, N)
without the additional geometric conditions on (E, ρ, m) assumed in Theorem 8.20.

Theorem 8.22 ([82, Theorem 1.4]). Let k ∈ R, N ∈ (1,∞) and suppose that
(E, ρ) is a locally compact length space. If (E, ρ,m) satisfies CD(k, N), then it also
satisfies MCP(k,N).

Remark 8.23. To be precise, the formulation [82, Definition 2.1] of CD(k, N)
in [82] is slightly stronger than that in [92], requiring the convexity of the entropy
functionals also for measures which are not absolutely continuous with respect to
m. This formulation is in fact essentially the same as Sturm’s original one in [92];
see [75, Proposition 3.21 and Lemma 3.24] for a detailed discussion in this regard
when E is a compact length space and N = ∞, and see [97, Corollary 29.23] for
the general case.

Remark 8.24. (1) In principle, MCP(k, N) should hold for a wider range of
metric measure spaces than CD(k, N). Indeed, for (M, g), ρg,mg as in Theorem
8.21, MCP(k, N) with dim M < N does not imply CD(k, N) nor Ricg ≥ kg in
general, as noted in [92, Remark 5.6]. Furthermore for the (2n + 1)-dimensional
Heisenberg group Hn(R) := R2n+1 equipped with the Carnot-Carathéodory metric
and the Lebesgue measure, where n ∈ N, MCP(k,N) holds if and only (k, N) ∈
(−∞, 0]× [2n+3,∞) by [46, Theorem 2.3 and Remark 3.3], whereas CD(k,N) does
not hold for any (k, N) ∈ R × [1,∞] by [46, Theorem 3.2 and Remark 3.3].

Another advantage of MCP(k, N) is that it is easier to handle than CD(k, N).
For example, MCP(k,N) is preserved by the operations of taking products and
cones of metric measure spaces by [81, Proposition 3.3 and Theorem 4.2], but
similar properties for CD(k, N) are not known except for products of non-branching
compact CD(k,∞)-spaces due to [91, Proposition 4.16].
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(2) Similarly to CD(k,N), MCP(k, N) is preserved by measured Gromov-Hausdorff
limits; see [80, Section 6] and [92, Theorem 5.9 and Corollary 5.10]. MCP(k, N)
also admits almost the same analytic and geometric consequences as CD(k, N); see
[80, Sections 2, 4 and 5], [92, Sections 5 and 6] and [84, Section 3] for details.

Now we turn to the case of the Sierpiński gasket K equipped with the harmonic
geodesic metric ρH and the Kusuoka measure µ. We have the following result.

Theorem 8.25. Let k ∈ R and N ∈ [1,∞). Then (K, ρH, µ) does not satisfy
any one of CD(k,∞),CD(k, N), MCP(k, N).

The rest of this section is devoted to the proof of Theorem 8.25. We start with
the following easy lemma. Recall that we set xy := {(1 − t)x + ty | t ∈ [0, 1]} for
x, y ∈ R2 (Definition 4.11-(1)).

Lemma 8.26. Set 4∗ :=
∪

w∈W∗
Fw(q1q2 ∪ q2q3 ∪ q3q1). Then µ(4∗) = 0.

Proof. Let h ∈ H0, w ∈ W∗, i ∈ S and S \ {i} = {j, k}. By [45, Lemma 4.2],

(8.17) µ〈h〉(Kvj ∪ Kvk) = µ〈h〉(Kv) − µ〈h〉(Kvi) ≤
14
15

µ〈h〉(Kv), v ∈ W∗

(see [42, Proposition 3.8] and [39, Proposition 5.27] for similar estimates in more
general settings), and then an inductive use of (8.17) easily shows that

µ〈h〉(Fw(qjqk)) = lim
m→∞

µ〈h〉
(∪

v∈{j,k}mKwv

)
≤ lim

m→∞

(14
15

)m

µ〈h〉(Kw) = 0.

Thus µ〈h〉(4∗) = 0 and hence µ(4∗) = µ〈h1〉(4∗) + µ〈h2〉(4∗) = 0. �
The key to the proof of Theorem 8.25 is the following proposition, which is an

easy consequence of Theorem 4.19.

Proposition 8.27. Let A,B ⊂ K and t ∈ (0, 1). Then [A, B]ρH
t ⊂ 4∗∪(A∩B).

Proof. Let z ∈ [A,B]ρH
t . Take (x, y) ∈ A × B such that ρH(x, z) = tρH(x, y)

and ρH(z, y) = (1− t)ρH(x, y). If x = y, then ρH(x, z) = 0 and z = x = y ∈ A∩B.
Assume x 6= y, so that z 6∈ {x, y}. By Theorem 4.15-(2), there exist harmonic
geodesics γxz : [0, t] → K and γzy : [t, 1] → K such that γxz(0) = x, γxz(t) =
z = γzy(t), γzy(1) = y, `H(γxz) = ρH(x, z) = tρH(x, y) and `H(γzy) = ρH(z, y) =
(1 − t)ρH(x, y). Define γ : [0, 1] → K by γ|[0,t] := γxz and γ|[t,1] := γzy. Then
γ is continuous, γ(0) = x, γ(t) = z, γ(1) = y and `H(γ) = `H(γxz) + `H(γzy) =
ρH(x, y). Now Theorem 4.19 implies that γ = γ̂ ◦ ϕγ for some harmonic geodesic
γ̂ : [0, 1] → K and a non-decreasing continuous surjection ϕγ : [0, 1] → [0, 1], and
then z = γ̂(ϕγ(t)) ∈ 4∗ by z 6∈ {x, y} = {γ̂(0), γ̂(1)} and the definition of γ̂ being
a harmonic geodesic (Definition 4.13-(2)). Thus [A,B]ρH

t ⊂ 4∗ ∪ (A ∩ B). �
Proof of Theorem 8.25. Let A,B ∈ B(K) be such that µ(A)µ(B) > 0 and

µ(A∩B) = 0. Let t ∈ (0, 1). Then µ([A,B]ρH
t ) = 0 by Proposition 8.27 and Lemma

8.26, so that (8.14) does not hold and hence neither does CD(k,∞) by Proposition
8.16. [92, Proposition 1.6-(ii)] (see Remark 8.17-(1) above) further implies that
(K, ρH, µ) does not satisfy CD(k,N), either.

For MCP(k,N), let t ∈ (0, 1), x ∈ K and suppose that there exists a Markovian
kernel Pt,x on (K,B(K)) satisfying (8.15) and Pt,x(y, [x, y]ρH

t ) = 1, µ-a.e. y ∈ K.
Then since [x, y]ρH

t ⊂ 4∗ for any y ∈ K \ {x} by Proposition 8.27, Pt,x(y,4∗) = 1
for µ-a.e. y ∈ K and hence (8.15) yields µ(4∗) ≥

∫
K

ς
(t)
k,N (ρH(x, y))dµ(y) > 0,

contradicting Lemma 8.26. Therefore (K, ρH, µ) does not satisfy MCP(k,N). �
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Remark 8.28. Unfortunately, the above proof of Theorem 8.25 does not work
for (K, ρh, µ〈h〉), h ∈ H0 \ R1, since the assertion of Theorem 4.19 is not valid
for `h and ρh by Remark 4.21. Theorem 8.25 is quite likely to be true also for
(K, ρh, µ〈h〉), but the author has no idea at this moment how to manage this case.

On the other hand, for any M ∈ R2×2
0 with det M 6= 0 and with µM , ρM , `M as

in Definition 7.3, Theorem 4.19 with ρM , `M in place of ρH, `H is valid and hence
Theorem 8.25 and Proposition 8.27 hold also for (K, ρM , µM ).

9. Possible generalizations to other self-similar fractals

We conclude this paper with some remarks on possible generalizations to other
self-similar fractals. In this paper, we have restricted our attention to the particular
case of the 2-dimensional standard Sierpiński gasket. In fact, it is almost the only
self-similar fractal that possesses all the required properties for the framework and
the results of this paper. Extension to other self-similar fractals would be only
partially possible and involve essential difficulties which would vary depending on
each fractal. Below we illustrate the actual (complicated) situation by mentioning
each of the concrete examples in Figure 3 separately.

9.1. Sierpiński gaskets. Let k ∈ N, k ≥ 3. The k-dimensional standard
Sierpiński gasket is the direct k-dimensional analogue of the Sierpiński gasket. The
results in [67, 56, 38] except those in [56, Lemma 4.2 and Appendix] are stated
and proved including this case and therefore Section 3 is immediately extended
to this case (with obvious changes). As shown in [58, Section 3] for the Kusuoka
measure µ, Lemma 4.22 and Proposition 4.23 can be verified similarly with suitable
changes of the constants. On the other hand, the proof of Lemma 4.17 for the
Sierpiński gasket heavily relied on the 2-dimensionality of the space, as is observed
from its dependence on Theorem 4.18, and extension to the k-dimensional case is
not straightforward at all. Since the proof of Theorem 4.15 was based on Lemma
4.17, it is still unclear how we can verify Theorem 4.15 for the k-dimensional case.

Recall that Lemma 4.17 has two assertions (4.9) and (4.10). It seems possible
to prove (4.9) by taking the projection of the harmonic k-dimensional Sierpiński
gasket onto a suitable 2-dimensional subspace and then applying Theorem 4.18. To
the contrary, the lower inequality of (4.10) is not valid for the k-dimensional case.
Indeed, if h is a V0-harmonic function taking 1 at x ∈ V0, −1 at y ∈ V0 and 0 on
V0 \ {x, y}, then h = 0 on the hyperplane containing V0 \ {x, y}, from which we
can easily show that the lower inequality of (4.10) does not hold. This degeneracy
causes a lot of troubles in the proofs of various geometric inequalities and therefore
extension to the k-dimensional case should require significant effort, although most
of the results in this paper are quite likely to hold also for the k-dimensional case.

Another possible extension is the case of the 2-dimensional level-l Sierpiński
gasket with l ≥ 3 (see Figure 3 for a picture of the level-3 case; the Sierpiński gasket
is regarded as the level-2 case). For simplicity we consider here the level-3 case
only. Then the measurable Riemannian structure can be introduced in exactly the
same manner, and by virtue of the 2-dimensionality and Theorem 4.18 we can prove
Lemma 4.17, thereby Theorem 4.15, and also Theorems 4.19 and 8.25. Interestingly,
however, it is also possible to show that Lemma 4.22-(2) does not hold, on the basis
of the denseness of vertices from which the space spreads away in three directions.
Consequently Proposition 4.23 is not valid by [59, Theorems 1.3.5 and 1.4.3] and
hence neither is the volume doubling property (Theorem 4.25). Therefore by [59,
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ttt

t

Figure 3. Typical self-similar fractals. From the upper left, three-
dimensional standard (level-2) Sierpiński gasket, two-dimensional
level-3 Sierpiński gasket, pentagasket (5-polygasket), hexagasket
(6-polygasket), nonagasket (9-polygasket), snowflake, the Vicsek
set and Sierpiński carpet. In each fractal except the last one, the
set V0 of its boundary points is marked by solid circles.

Theorem 3.2.3], even the on-diagonal upper bound pµ(t, x, x) ≤ cU/µ
(
B√

t(x, ρH)
)

of the heat kernel pµ is false in this case.
It is an interesting challenging problem to establish a sharp two-sided estimate

for the heat kernel pµ in this case, but the actual behavior of pµ is expected to be
very wild and this problem should be difficult. On the other hand, it is still likely
that we can extend Theorem 5.2 and the results in Sections 6 and 7 to this case, but
the actual proofs will be much more involved. In the case of the (level-2) Sierpiński
gasket, Lemma 4.22-(2) is used especially in the proof of the continuity of the
function T : R2×2

0 → (0,∞) defined in Proposition 7.7-(2), and the extension to the
level-3 case, where Lemma 4.22-(2) is invalid, will require a non-trivial improvement
in the proof.

We remark that Hino [41, Theorem 2.3] has recently proved the equality ρ = ρν

asserted in Theorem 5.2 for a class of post-critically finite self-similar fractals with
#V0 = 3 under the assumption that the harmonic structure is non-degenerate, i.e.
Ai ∈ R(#V0)×(#V0) defined by (2.11) is invertible for any i ∈ S. This result in
particular applies to the 2-dimensional level-l Sierpiński gasket with 2 ≤ l ≤ 50;
see [41, Example 2.4] for details.

Lack of the volume doubling property also affects the validity of the assertions
in Subsection 8.1. In fact, Bate [12, Theorem 10.4] and Gong [31, Theorem 1.6
and Proposition 6.1] have recently given a simple equivalent condition for a metric
measure space (E, ρ, m) to admit a measurable differentiable structure in the sense
of Cheeger’s Rademacher theorem [19, Theorem 4.38] for Lipschitz functions. Their
equivalent condition contains the pointwise doubling property

(9.1) lim sup
r↓0

m(B2r(x, ρ))
m(Br(x, ρ))

< ∞ for m-a.e. x ∈ E,
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and in particular (9.1) is necessary for the validity of Cheeger’s Rademacher theorem
[19, Theorem 4.38], which was proved first by Bate and Speight [13, Corollary 2.6].

In the case of the measurable Riemannian structure on the 2-dimensional level-3
Sierpiński gasket, it is possible to prove even that the lim sup in (9.1) is equal to ∞
µ-a.e., which implies that Theorem 8.3 is not valid, whereas interestingly Theorem
3.10 still holds by [38, Theorem 5.4]. In view of these facts it seems interesting to
ask in this case how the “gradient vector field” ∇̃u of u ∈ F given by Theorem 3.10
is related to upper gradients for u and how the canonical Dirichlet form (E ,F) is
related to the Cheeger (1, 2)-Sobolev space and the Cheeger 2-energy.

9.2. Other nested fractals and Sierpiński carpets. For most other nested
fractals such as the N -polygasket with N ≥ 5, N/4 6∈ N (see [49, Subsection 5.2]
for its precise definition), the snowflake and the Vicsek set shown in Figure 3, the
situation is much worse than in the case of Sierpiński gaskets. The problem is that
the harmonic structure is degenerate, i.e. non-constant V0-harmonic functions can
be constant on some Kw, or in other words, the family {Ai}i∈S ⊂ R(#V0)×(#V0) of
matrices defined by (2.11) contains non-invertible ones. In such cases it is highly
non-trivial whether the Kusuoka measure µ :=

∑#V0−1
i=1 µ〈hi〉, where {hi}#V0−1

i=1 ⊂
H0 is arbitrarily chosen to be orthonormal in (H0/R1, E), is energy-dominant in
the sense that µ〈u〉 is absolutely continuous with respect to µ for any u ∈ F . The
method of introducing a measurable Riemannian structure on the basis of µ makes
sense only if µ is energy-dominant, which may or may not be the case depending
on each self-similar fractal.

For example, in the case of the Vicsek set, any V0-harmonic function is constant
on each connected component of the complement of the two diagonals, so that the
Kusuoka measure µ is supported only on the union of the diagonals, which is much
smaller than the whole Vicsek set. For the N -polygasket with N 6= 6, 9 and the
snowflake, it is still not known whether the Kusuoka measure µ is energy-dominant.

On the other hand, in the case of the hexagasket (6-polygasket) and the nona-
gasket (9-polygasket), by virtue of their dihedral symmetry we can prove that the
Kusuoka measure µ is energy-dominant, which was essentially stated and proved
in [93, Section 7]. Therefore µ gives rise to a measurable Riemannian structure.
We can extend Lemma 4.17 and thereby Theorem 4.15 to this case with a suitable
notion of harmonic geodesics, whereas the degeneracy of the harmonic structure
easily implies that Lemma 4.22-(2) and the lower inequalities in Lemma 4.22-(1)
are not true. Consequently Proposition 4.23 and Theorem 4.25 do not hold and
hence neither does the on-diagonal upper bound pµ(t, x, x) ≤ cU/µ

(
B√

t(x, ρH)
)

of the heat kernel pµ by [59, Theorem 3.2.3]. (To be precise, [59, Theorem 3.2.3]
is not directly applicable to this case due to the lack of the lower inequalities in
Lemma 4.22-(1), but we can still verify [59, Lemmas 3.5.4 and 3.5.5] by using cer-
tain specific properties of the hexagasket and the nonagasket.) Similarly to the
case of the 2-dimensional level-3 Sierpiński gasket, it is likely that we can extend
Theorem 5.2 and the results in Sections 6 and 7. In fact, since the linear map
F ∗

w : H0/R1 → H0/R1, F ∗
wh := h ◦ Fw, has rank one with the same image (same

up to symmetry of the space) for “most” w ∈ W∗, just the usual renewal theorem
[25, Section XI.1, Renewal theorem (Alternative form)] should suffice for the proof
of Theorem 7.2 and therefore Proposition 7.7-(2) should not be required. For exten-
sion of the results in Subsection 8.1, the last paragraph of the previous subsection
verbatim applies to this case as well.
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Finally, for the Sierpiński carpet, and its generalizations called generalized
Sierpiński carpets, nothing is known about non-degeneracy of V0-harmonic func-
tions and possibility of introducing a measurable Riemannian structure by using
the energy measures of V0-harmonic functions. Note that the set V0 of boundary
points is an infinite set in this case; for example, V0 = ∂R2([0, 1]2) for the Sierpiński
carpet. On one hand, this property gives us plenty of choices of V0-harmonic func-
tions and it is very likely that some choice of V0-harmonic functions should work
for the purpose of introducing a measurable Riemannian structure. On the other
hand, the infiniteness of V0 makes any kind of explicit calculations for the canonical
Dirichlet form (E ,F) impossible, so that non-degeneracy of V0-harmonic functions
is very difficult to verify despite plentifulness of V0-harmonic functions.

In any of the above cases, we could use instead of V0-harmonic functions a
general family g = {gn}N

n=1 ⊂ F of functions such that µ〈g〉 :=
∑N

n=1 µ〈gn〉 is
energy dominant, as is done in [38, 40], but then it would become much more
difficult to establish fundamental geometric properties like those in Section 4.

Appendix A. Case of the standard Laplacian on the Sierpiński gasket

We follow the notation introduced in Section 2 throughout this appendix. Here
we briefly review some important results for the so-called standard Laplacian ∆0 on
K, which is the non-positive self-adjoint operator of the Dirichlet space (K, µ0, E ,F)
with µ0 the self-similar measure on K with weight (1/3, 1/3, 1/3). Namely, µ0 is
the unique Borel measure on K such that µ0(Kw) = 3−|w| for any w ∈ W∗. µ0

is in fact a constant multiple of the df -dimensional Hausdorff measure on K with
respect to the Euclidean metric, where df := log2 3 is the Hausdorff dimension of
K with respect to the Euclidean metric; for details see e.g. [57, Section 1.5].

The Brownian motion on the Sierpiński gasket, which is the diffusion process
corresponding to (K, µ0, E ,F), was first constructed by Goldstein [30] and Kusuoka
[66] and then intensively studied in a seminal work [11] by Barlow and Perkins. The
most important result in [11] is the following sub-Gaussian bound for the transition
density of the Brownian motion on K with respect to µ0, which is nothing but the
heat kernel pµ0 associated with (K, µ0, E ,F) in our notation. Let

(A.1) ρ0(x, y) := inf{`R2(γ) | γ : [0, 1] → K, γ is continuous, γ(0) = x, γ(1) = y}
for x, y ∈ K, so that ρ0 is a metric on K comparable to the Euclidean metric on
K.

Theorem A.1 ([11, Theorem 1.5]). Let dw := log2 5 and set ds := df/dw.
Then there exist cA.1, cA.2 ∈ (0,∞) such that for any (t, x, y) ∈ (0, 1] × K × K,
(A.2)
cA.1

tds/2
exp

(
−

(ρ0(x, y)dw

cA.1t

) 1
dw−1

)
≤ pµ0(t, x, y) ≤ cA.2

tds/2
exp

(
−

(ρ0(x, y)dw

cA.2t

) 1
dw−1

)
.

Note that dw > 2, which is why an estimates of the form (A.2) is called sub-
Gaussian. Roughly speaking, (A.2) says that heat on K diffuses up to the distance
comparable to t1/dw at time t on average, which is not the case (at least for small t)
for the heat kernels on Riemannian manifolds. The following theorem and propo-
sition are part of the reasons for such a non-classical behavior of pµ0 .

Theorem A.2 ([67, §6, Example 1]). µ〈u〉 is singular to µ0 for any u ∈ F .

Proposition A.3. ρ0(x, ·) 6∈ F for any x ∈ K.
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Theorems A.1 and A.2 have been extended to a wide range of self-similar frac-
tals including (affine) nested fractals, a class of post-critically finite self-similar
fractals with certain good symmetry, and generalized Sierpiński carpets, a natural
generalization of the Sierpiński carpet. See e.g. [64, 26, 7, 8, 9, 59, 60] for ex-
tensions of Theorem A.1 and [14, 36, 43] for those of Theorem A.2. (See Figure 3
above for pictures of several typical nested fractals and the Sierpiński carpet.) On
the other hand, the author is not sure whether a proof of Proposition A.3 is given
in any reference and to what extent it can be generalized, although it is essentially
known to experts at least in simple cases. For the reader’s convenience, we give
here a proof of Proposition A.3 in the present setting of the Sierpiński gasket.

Proof of Proposition A.3. We first prove the assertion for x ∈ V0. Recall
that V0 = {q1, q2, q3}. Without loss of generality we may assume that q1 = (0, 0),
q2 = (1,−1/

√
3) and q3 = (1, 1/

√
3), and by the rotational symmetry of K and

(E ,F) it suffices to show for x = q1. Define f : R2 → R by f(y, z) := (2/
√

3)y.
Then an induction in m easily shows that ρ0(q1, y) = f(y) for any m ∈ N∪{0} and
any y ∈ Vm and hence ρ0(q1, ·) = f |K by the denseness of V∗ in K. Now suppose
f |K ∈ F . Then f |K ◦ Fi = (1/2)f |K + (1{2,3}(i)/

√
3)1 ∈ F for any i ∈ S and

hence E(f |K , f |K) = (5/3)
∑

i∈S E(f |K/2, f |K/2) = (5/4)E(f |K , f |K) by (2.4), so
that E(f |K , f |K) = 0 which contradicts f |K 6∈ R1. Thus ρ0(q1, ·) = f |K 6∈ F .

Next for general x ∈ K, choose i ∈ S so that x ∈ Ki and let j, k ∈ S \ {i}
be such that j 6= k and ρ0(x, Fi(qj)) ≤ ρ0(x, Fi(qk)). Then we easily see that
ρ0(x, Fj(·)) = (1/2)ρ0(qi, ·) + ρ0(x, Fi(qj))1 6∈ F and hence ρ0(x, ·) 6∈ F . �

Also as opposed to the case of the heat kernels on Riemannian manifolds, pµ0

is known to exhibit various oscillatory asymptotic behavior, as follows.

Theorem A.4 ([65, Theorem 1.2-a)]). There exists a continuous log(5/2)-
periodic non-constant function G : R → (0,∞) such that

(A.3) lim
n→∞

(
(2/5)ns

) 1
dw−1 log pµ0

(
(2/5)ns, x, y

)
= −ρ0(x, y)

dw
dw−1 G

(
log

s

ρ0(x, y)

)
for any (s, x, y) ∈ (0,∞)×K ×K with x 6= y. In particular, for any x, y ∈ K with
x 6= y, the limit limt↓0 t

1
dw−1 log pµ0(t, x, y) does not exist.

Theorem A.5 ([49, Corollary 6.2]). The limit limt↓0 tds/2pµ0(t, x, x) does not
exist for any x ∈ K.

A similar oscillation is observed also in the Laplacian eigenvalue asymptotics.

Theorem A.6 ([61, 10], cf. [28], [57, Theorems 4.1.5, 4.3.4, 4.4.10 and B.4.3]).
Let {λ0

n}n∈N be the non-decreasing enumeration of all the eigenvalues of −∆0, where
each eigenvalue is repeated according to its multiplicity, and define the eigenvalue
counting function N0 of (K,µ0, E ,F) by N0(λ) := #{n ∈ N | λ0

n ≤ λ}, λ ∈ R. Then
there exists a right-continuous log 5-periodic discontinuous function G0 : R → R
with 0 < infs∈R G0(s) < sups∈R G0(s) < ∞, such that

(A.4) N0(λ) = λds/2G0(log λ) + O(1) as λ → ∞.

Roughly speaking, the asymptotic log-periodicity stated in Theorems A.4 and
A.6 is more or less implied by the self-similarity of µ0 and (E ,F), whereas it is
highly non-trivial to prove that there does exist oscillation in the asymptotics as in
Theorems A.4, A.5 and A.6. Theorem A.4 was proved by utilizing a very detailed
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description of the behavior of the Brownian motion on K provided in [11], and no
essential extension to other fractals is known for this result because such detailed
information of the Brownian motion is not available for most fractals.

The existence of G0 in Theorem A.6 except its discontinuity was proved by
Kigami and Lapidus in [61, Theorem 2.4 and Corollary 2.5] in the general frame-
work of a self-similar regular Dirichlet form on a post-critically finite self-similar
set equipped with a self-similar measure. In [61] they established the method of
obtaining a certain renewal equation for the eigenvalue counting function N0(λ) to
apply the renewal theorem [57, Theorems B.4.2 and B.4.3] (see also [25, Section
XI.1]) for Borel probability measures on (0,∞). Then the same method has been
used by many authors in the context of analysis on fractals; see e.g. [65, 33, 47, 51].
(A variant of the method of [61] is described in some detail in Section 7 above.)

The discontinuity of G0 in Theorem A.6 was proved by Barlow and Kigami
[10] for affine nested fractals by showing the existence of localized eigenfunctions
of the Laplacian. For example, in our present setting of the Sierpiński gasket, the
dihedral symmetry of (K, µ0, E ,F) implies that there exists an eigenfunction ϕ of
−∆0 with eigenvalue λ ∈ (0,∞) such that ϕ|V0 = 0, and then for any w ∈ W∗,

(A.5) ϕw :=

{
ϕ ◦ F−1

w on Kw,
0 on K \ Kw

is also an eigenfunction of −∆0 with eigenvalue 5|w|λ. This fact immediately implies
the discontinuity of G0, and Theorem A.5 for “generic” x ∈ K is also proved on the
basis of this fact and the eigenfunction expansion [21, (2.1.4)] of the heat kernel
pµ0 , by noticing that ϕw in (A.5) has amplitude comparable to 3|w|/2 after it is
normalized in L2(K, µ0). Some more work is required to show the non-existence of
the limit limt↓0 tds/2pµ0(t, x, x) for any x ∈ K and it has been done in [49] only for
a limited class of concrete nested fractals, whereas the non-existence of this limit
for “generic” points can be still verified for general affine nested fractals, as stated
in [49, Theorem 4.5]. In fact, very recently, the author has proved in [50] that
tds/2pµ0(t, x, x) is neither regularly varying at 0 nor asymptotically log-periodic as
t ↓ 0 for “generic” points x, for a wide range of self-similar fractals including most
(but not all) nested fractals and all generalized Sierpiński carpets.
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